MAT 211 Solutions to Midterm 2 Spring 2012.

1. (20 points) Show that the matrix

$$
\left(\begin{array}{ccc}
1 & 1 & 5 \\
-1 & 1 & 2 \\
-1 & 0 & 1
\end{array}\right)
$$

is invertible and compute the inverse matrix.
Solution: Let us find the inverse matrix using elementary transformations:

$$
\left(\begin{array}{ccc|ccc}
1 & 1 & 5 & 1 & 0 & 0 \\
-1 & 1 & 2 & 0 & 1 & 0 \\
-1 & 0 & 1 & 0 & 0 & 1
\end{array}\right)
$$

Add the first row to the second and the third:

$$
\left(\begin{array}{lll|lll}
1 & 1 & 5 & 1 & 0 & 0 \\
0 & 2 & 7 & 1 & 1 & 0 \\
0 & 1 & 6 & 1 & 0 & 1
\end{array}\right)
$$

Subtract from the second row the third multiplied by 2 :

$$
\left(\begin{array}{ccc|ccc}
1 & 1 & 5 & 1 & 0 & 0 \\
0 & 0 & -5 & -1 & 1 & -2 \\
0 & 1 & 6 & 1 & 0 & 1
\end{array}\right)
$$

Swap the second and third row:

$$
\left(\begin{array}{ccc|ccc}
1 & 1 & 5 & 1 & 0 & 0 \\
0 & 1 & 6 & 1 & 0 & 1 \\
0 & 0 & -5 & -1 & 1 & -2
\end{array}\right)
$$

Divide the third row by (-5):

$$
\left(\begin{array}{ccc|ccc}
1 & 1 & 5 & 1 & 0 & 0 \\
0 & 1 & 6 & 1 & 0 & 1 \\
0 & 0 & 1 & 1 / 5 & -1 / 5 & 2 / 5
\end{array}\right)
$$

Subtract the third row from the first and the second:

$$
\left(\begin{array}{ccc|ccc}
1 & 1 & 0 & 0 & 1 & -2 \\
0 & 1 & 0 & -1 / 5 & 6 / 5 & -7 / 5 \\
0 & 0 & 1 & 1 / 5 & -1 / 5 & 2 / 5
\end{array}\right)
$$

Subtract the second row from the first:

$$
\left(\begin{array}{ccc|ccc}
1 & 0 & 0 & 1 / 5 & -1 / 5 & -3 / 5 \\
0 & 1 & 0 & -1 / 5 & 6 / 5 & -7 / 5 \\
0 & 0 & 1 & 1 / 5 & -1 / 5 & 2 / 5
\end{array}\right)
$$

Therefore

$$
A^{-1}=\left(\begin{array}{ccc}
1 / 5 & -1 / 5 & -3 / 5 \\
-1 / 5 & 6 / 5 & -7 / 5 \\
1 / 5 & -1 / 5 & 2 / 5
\end{array}\right)
$$

2. (20 points). Suppose that the matrices A and B are invertible. Show that the matrix $A \cdot B$ is invertible and its inverse matrix is $B^{-1} \cdot A^{-1}$.

Solution 1: Let us multiply $A \cdot B$ and $B^{-1} \cdot A^{-1}$:

$$
\left.(A \cdot B) \cdot\left(B^{-1} \cdot A^{-1}\right)=A \cdot\left(B \cdot B^{-1}\right) \cdot A^{-1}\right)=A \cdot I \cdot A^{-1}=A \cdot A^{-1}=I .
$$

Therefore $A \cdot B$ and $B^{-1} \cdot A^{-1}$ are inverse to each other. Here I denotes the identity matrix.

Solution 2: Suppose that $(A \cdot B)(x)=y$. Then $A(B(x))=y$, so $B(x)=A^{-1}(y)$ and $x=B^{-1}\left(A^{-1}(y)\right)$.

The correct examples were graded with partial credit, which actually depended on the complexity of A and B : for example, if $A=B=I$, maximal partial credit was 10 points since the matrices are too trivial
3. a) (10 points) Show that the vectors

$$
v_{1}=\left(\begin{array}{c}
3 \\
-1 \\
2 \\
7
\end{array}\right), \quad v_{2}=\left(\begin{array}{c}
-1 \\
0 \\
1 \\
2
\end{array}\right), \quad v_{3}=\left(\begin{array}{c}
1 \\
0 \\
3 \\
-1
\end{array}\right), \quad v_{4}=\left(\begin{array}{l}
0 \\
0 \\
2 \\
1
\end{array}\right)
$$

form a basis in \mathbb{R}^{4}.
b) (10 points) Compute the coordinates of the vector

$$
v=\left(\begin{array}{c}
4 \\
-1 \\
7 \\
4
\end{array}\right)
$$

in this basis.
Solution: Let us solve (b) by transforming the matrix into reduced rowechelon form:

$$
\left(\begin{array}{cccc|c}
3 & -1 & 1 & 0 & 4 \\
-1 & 0 & 0 & 0 & -1 \\
2 & 1 & 3 & 2 & 7 \\
7 & 2 & -1 & 1 & 4
\end{array}\right)
$$

Multiply the second row by (-1):

$$
\left(\begin{array}{cccc|c}
3 & -1 & 1 & 0 & 4 \\
1 & 0 & 0 & 0 & 1 \\
2 & 1 & 3 & 2 & 7 \\
7 & 2 & -1 & 1 & 4
\end{array}\right)
$$

Subtract it from all other rows:

$$
\left(\begin{array}{cccc|c}
0 & -1 & 1 & 0 & 1 \\
1 & 0 & 0 & 0 & 1 \\
0 & 1 & 3 & 2 & 5 \\
0 & 2 & -1 & 1 & -3
\end{array}\right)
$$

Multiply the first row by (-1):

$$
\left(\begin{array}{cccc|c}
0 & 1 & -1 & 0 & -1 \\
1 & 0 & 0 & 0 & 1 \\
0 & 1 & 3 & 2 & 5 \\
0 & 2 & -1 & 1 & -3
\end{array}\right)
$$

Subtract it from the third and fourth:

$$
\left(\begin{array}{cccc|c}
0 & 1 & -1 & 0 & -1 \\
1 & 0 & 0 & 0 & 1 \\
0 & 0 & 4 & 2 & 6 \\
0 & 0 & 1 & 1 & -1
\end{array}\right)
$$

Subtract from the third row the fourth multiplied by 4:

$$
\left(\begin{array}{cccc|c}
0 & 1 & -1 & 0 & -1 \\
1 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & -2 & 10 \\
0 & 0 & 1 & 1 & -1
\end{array}\right)
$$

Divide the third row by (-2) and sort the rows:

$$
\left(\begin{array}{cccc|c}
1 & 0 & 0 & 0 & 1 \\
0 & 1 & -1 & 0 & -1 \\
0 & 0 & 1 & 1 & -1 \\
0 & 0 & 0 & 1 & -5
\end{array}\right)
$$

Subtract the fourth row from the third:

$$
\left(\begin{array}{cccc|c}
1 & 0 & 0 & 0 & 1 \\
0 & 1 & -1 & 0 & -1 \\
0 & 0 & 1 & 0 & 4 \\
0 & 0 & 0 & 1 & -5
\end{array}\right)
$$

Add the third row to the second:

$$
\left(\begin{array}{cccc|c}
1 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 3 \\
0 & 0 & 1 & 0 & 4 \\
0 & 0 & 0 & 1 & -5
\end{array}\right)
$$

We conclude that $v=v_{1}+3 v_{2}+4 v_{3}-5 v_{4}$. Moreover, since the matrix in the left hand side has rank 4 , there are no redundant vectors and $v_{1}, v_{2}, v_{3}, v_{4}$ from a basis in \mathbb{R}^{4}.
4. (20 points) Determine which of the following subsets in \mathbb{R}^{n} are linear subspaces. If they are, compute their dimension.
a) A square on the plane with vertices $(0,0),(5,0),(0,5),(5,5)$.
b) A subset in \mathbb{R}^{3} defined by the system of equations

$$
\begin{cases}3 x-y+5 z & =0 \\ x+y+z & =0 \\ x-3 y+3 z & =0\end{cases}
$$

c) A set of all triples (a, b, c) such that the graph of the quadratic polynomial $f(x)=a x^{2}+b x+c$ has horizontal tangent at $x=7$.

Solution: a) No: for example $(5,5)$ belongs to this set by $(-5,-5)$ does not belong to it. One can also say that all possible linear subspaces of plane are 0 , a line or the whole plane, and this is none of them.
b) Yes: it is the kernel of the matrix

$$
\left(\begin{array}{ccc}
3 & -1 & 5 \\
1 & 1 & 1 \\
1 & -3 & 3
\end{array}\right)
$$

. If we subtract the second row from the first and the third, we get:

$$
\left(\begin{array}{ccc}
0 & -4 & 2 \\
1 & 1 & 1 \\
0 & -4 & 2
\end{array}\right)
$$

. We see that the matrix has rank 2 , so the dimension of its kernel equals to $3-2=1$: it is a line.
c) Yes: Such a graph has a horizontal tangent at $x=7$, if $f^{\prime}(7)=0$, in other words, $14 a+b=0$. This equation defines the plane in \mathbb{R}^{3}, so its dimension is 2 .
5. (20 points) Consider a linear transformation T defined by the matrix

$$
T=\left(\begin{array}{cccc}
1 & 1 & 1 & 1 \\
-2 & 3 & 5 & -7 \\
0 & -5 & -7 & 5
\end{array}\right)
$$

a) Compute the basis and dimension of $\operatorname{Ker}(T)$.
b) Compute the basis and dimension of $\operatorname{Im}(T)$.
c) Check the Rank-Nullity Theorem.

Solution: Let us transform the matrix into reduced row-echelon form. Add first row (multiplied by 2) to the second row:

$$
T=\left(\begin{array}{cccc}
1 & 1 & 1 & 1 \\
0 & 5 & 7 & -5 \\
0 & -5 & -7 & 5
\end{array}\right)
$$

Add the second row to the third:

$$
T=\left(\begin{array}{cccc}
1 & 1 & 1 & 1 \\
0 & 5 & 7 & -5 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

Divide the second row by 5 :

$$
T=\left(\begin{array}{cccc}
1 & 1 & 1 & 1 \\
0 & 1 & 7 / 5 & -1 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

Subtract the second row from the first:

$$
T=\left(\begin{array}{cccc}
1 & 0 & -2 / 5 & 2 \\
0 & 1 & 7 / 5 & -1 \\
0 & 0 & 0 & 0
\end{array}\right) .
$$

a) To find the kernel, we have to solve the system with zero right hand side. We can choose x_{3} and x_{4} arbitrarily, $x_{1}=2 / 5 x_{3}-2 x_{4}, x_{2}=-7 / 5 x_{3}+x_{4}$. If we plug in $x_{3}=1, x_{4}=0$, we get a vector $(2 / 5,-7 / 5,1,0)$. If we plug in $x_{3}=0, x_{4}=1$, we get a vector $(-2,1,0,1)$. These two vectors form a basis in $\operatorname{Ker}(T)$, which is 2 -dimensional.
b) To find the image, observe that the third and the fourth columns are redundant, so the basis in the image is formed by the first two columns in $T:(1,-2,0)$ and $(1,3,-5)$. The image is also two-dimensional.
c) The rank-nullity theorem says that $\operatorname{dim} \operatorname{Ket}(T)+\operatorname{dim} \operatorname{Im}(T)=4$. This equation holds since $\operatorname{dim} \operatorname{Ker}(T)=\operatorname{dim} \operatorname{Im}(T)=2$.

