MAT 211, Spring 2012 Practice problems for the Midterm 2

1. Determine if the following matrices are invertible. If they are invertible, find their inverses:
(a) $\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$;
(b) $\left(\begin{array}{lll}0 & 1 & 1 \\ 1 & 0 & 2\end{array}\right)$;
(c) $\left(\begin{array}{ll}5 & 7 \\ 2 & 3\end{array}\right)$;
(d) $\left(\begin{array}{cc}5 & 7 \\ 10 & 14\end{array}\right)$;
(e) $\left(\begin{array}{lll}1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1\end{array}\right)$;
(f) $\left(\begin{array}{lll}1 & 2 & 3 \\ 2 & 3 & 4 \\ 5 & 6 & 7\end{array}\right)$;
(g) $\left(\begin{array}{lll}1 & 2 & 3 \\ 2 & 3 & 4 \\ 5 & 6 & 8\end{array}\right) ;$
(h) $\left(\begin{array}{lll}1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1\end{array}\right)$;
(i) $\left(\begin{array}{lll}1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1\end{array}\right)$.
2. For given matrices of linear transformations $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ compute:
(1) m and n - the dimensions of the source and the target spaces
(2) The dimensions of the kernel and the image. Check the Rank-Nullity Theorem.
(3) The bases in the kernel and the image.
(a) $\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$;
(b) $\quad\left(\begin{array}{lll}0 & 1 & 1 \\ 1 & 0 & 2\end{array}\right)$;
(c) $\left(\begin{array}{ll}5 & 7 \\ 2 & 3\end{array}\right)$;
(d) $\quad\left(\begin{array}{cccc}5 & 7 & 12 & 0 \\ 10 & 14 & 24 & 0\end{array}\right)$;
(e) $\left(\begin{array}{lll}1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1\end{array}\right) ; \quad(f) \quad\left(\begin{array}{lll}0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)$;

$$
(g) \quad\left(\begin{array}{llllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8
\end{array}\right) ; \quad(h) \quad\left(\begin{array}{ccc}
1 & 1 & 1 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right) ; \quad(i) \quad\left(\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 1
\end{array}\right) .
$$

3. a) Is there a linear transformation from \mathbb{R}^{7} to \mathbb{R}^{3} with two-dimensional kernel? Give an example or prove that it does not exist.
b) Is there a linear transformation from \mathbb{R}^{3} to \mathbb{R}^{7} with two-dimensional kernel? Give an example or prove that it does not exist.
c) a) Is there a linear transformation from \mathbb{R}^{3} to \mathbb{R}^{2} with two-dimensional kernel? Give an example or prove that it does not exist.
d) Is there a linear transformation from \mathbb{R}^{3} to \mathbb{R}^{7} with two-dimensional image? Give an example or prove that it does not exist.
4. Determine if the following subset is a linear subspace, if yes, find its dimension:
(a) A circle on the plane passing through 0 ;
(b) An intersection of two distinct planes in \mathbb{R}^{3} passing through 0 ;
(c) A union of two distinct planes in \mathbb{R}^{3} passing through 0 ;
(d) The span of vectors $(1,2,3,4)$ and $(3,5,7,9)$;
5. For the vectors $v_{1}=(1,0,-1), v_{2}=(2,3,4), v_{3}=(0,1,0), v_{4}=(1,1,1)$ find the dimension of their span by identifying redundant vectors.
6. Find a basis in a subspace in \mathbb{R}^{3} defined by a system of equations:

$$
\begin{gathered}
\text { (a) } 5 x-3 y+7 z=0 ; \quad \text { b) } \quad\left\{\begin{array}{l}
5 x-3 y+7 z=0 \\
2 x-3 y+z=0
\end{array}\right. \\
\text { (c) }\left\{\begin{array}{l}
5 x-3 y+7 z=0 \\
2 x-3 y+z=0 \\
3 x+6 z=0
\end{array}\right.
\end{gathered}
$$

7. Show that the vectors

$$
v_{1}=(0,1,2,3), v_{2}=(0,0,0,1), v_{3}=(-1,-2,-3,-4), v_{4}=(0,0,1,2)
$$

form a basis in \mathbb{R}^{4}. Compute the coordinates of a vector $(7,8,9,10)$ in this basis.
8. Let $f(x)=a+b x+c x^{2}$.
(a) Show that $T(a, b, c)=(f(0), f(1), f(2))$ defines a linear transformation from \mathbb{R}^{3} to \mathbb{R}^{3}. Find its matrix.
(b) Check if T is invertible. If yes, find the inverse matrix.

