MAT 211 - Introduction to linear algebra, Final Review

(1) (1) Compute the determinant of the matrix
(2) Determine the all the values of k for which the matrix is invertible.

$$
\left[\begin{array}{cccc}
1 & 0 & 0 & 2 \\
0 & 0 & 2 & 0 \\
0 & 2 & 0 & 0 \\
2 & 0 & 0 & k
\end{array}\right]
$$

(2) Find an orthogonal matrix A such that if T is a linear transformation on \mathbb{R}^{3} defined by $T(x)=A X$ then $T(1 / \sqrt{2}, 1 / \sqrt{2}, 0)=(1,0,0)$.
(3) Consider the vectors

$$
\begin{aligned}
& \vec{v}_{1}=(1,2,3,4) \\
& \vec{v}_{2}=(5,6,7,8) \\
& \vec{v}_{3}=(4,3,2,1) \\
& \vec{v}_{4}=(1,1,1,1)
\end{aligned}
$$

in \mathbb{R}^{4}. Compute the dimension of $\operatorname{span}\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$.
(4) Find a basis of the subspace of all 3×3 matrices formed by all 3×3 symmetric matrices. Give the coordinates of the identity and of $\mathbf{E}=\left(\begin{array}{ccc}1 & 10 & 20 \\ 10 & 0 & 30 \\ 20 & 30 & 0\end{array}\right)$, with respect to that basis.
(5) The three transformations below are defined the linear space formed by all 2×2 matrices. For each of them, determine whether it linear. If it is, find kernel, image, nullity and rank.
(a) $T(A)=A^{-1}$.
(b) $T(A)=\operatorname{tr}(A) \cdot A$
(c) $T(A)=-A$.
(6) Consider the transformations from P_{2} to P_{2} defined below. Determine whether each of them is linear and if it is, find the correspoinding matrix with respect to the standard basis. (EC find the matrix of T with respect to the basis $\left.\left(1+t, t+t^{2}, 1+t^{2}\right)\right)$
(a) $T(f(t))=f(1) t$.
(b) $T(f(t))=f(0)+3 f(1) t+f(2) t^{2}$.
(7) Compute the area of the parallelogram in \mathbb{R}^{3} whose vertices are $(1,1,1),(1,3,5),(2,4,6)$, and $(2,6,10)$.
(8) The matrices

$$
A=\left[\begin{array}{rrrrr}
2 & 1 & -1 & 0 & 2 \\
0 & 1 & -1 & 3 & 7 \\
0 & 0 & 7 & 8 & 9 \\
0 & 0 & 0 & 1 & -5 \\
0 & 0 & 0 & 0 & 7
\end{array}\right] \quad \text { and } \quad B=\left[\begin{array}{rrrrr}
2 & 2 & 2 & -2 & 0 \\
1 & -1 & 1 & 1 & 0 \\
3 & -3 & -3 & -3 & 0 \\
5 & 5 & -5 & 5 & 0 \\
7 & 7 & 7 & 7 & 7
\end{array}\right]
$$

are both invertible. Find $\operatorname{det}\left(B A B^{-1}\right)$.
(9) Find the eigenvalues of the matrix

$$
\left[\begin{array}{ll}
5 & -4 \\
4 & -5
\end{array}\right] .
$$

Then find an example of a non-zero eigenvector corresponding to each of these eigenvalues.
(10) Find the eigenvalues of the matrix

$$
A=\left[\begin{array}{lll}
2 & 0 & 1 \\
0 & 2 & 0 \\
1 & 0 & 2
\end{array}\right]
$$

Then find the eigenvalues of the matrix A^{3}.
(11) Find the eigenvalues of the matrix

$$
A=\left[\begin{array}{llll}
0 & 0 & 0 & 2 \\
1 & 0 & 2 & 0 \\
1 & 2 & 0 & 0 \\
2 & 0 & 0 & 0
\end{array}\right]
$$

and find the algebraic multiplicity of each eigenvalue.
(12) Denote by A the matrix of the projection onto the subspace W of R^{2} defined by $\{(x, y, z, w) / x+y+z=$ 0 and $y+z+w=0\}$. Find A and A^{2}, A^{100}.

