IMPORTANT NOTE: These are the answers. In the exam you need to add justifications

Example (3.3-27)

Determine whether the following vectors form a basis of R^{4}
$(I, I, I, I),(I,-I, I,-I),(I, 2,4,8),(I,-2,4,-8)$
Answer: Yes, (the matrix with these vectors as columns is invertible)

Exercise 1.2-30

Find the polynomial of degree 3 whose graph passes through the points $(0,1),(I, 0),(-I, 0),(2,-15)$

$$
-2 x^{3}-x^{2}+2 x+1
$$

Let T be a clockwise rotation in R^{2} by $\pi / 2$ followed by an orthogonal projection onto the y axis.
I. Find the matrix of T.
2. Determine whether T is invertible 3. Find $\operatorname{im}(T)$ and $\operatorname{ker}(T)$

Answer: It was given in class.

Find the inverse of the matrix and check your answer. Interpret your result geometrically.

Answer: The matrix is a reflection about a line L followed by a scaling by $\left(a^{2}+b^{2}\right)^{1 / 2}$. The inverse is the same reflexion, followed by a scaling $\left(a^{2}+b^{2}\right)^{-1 / 2}$

$$
\left(a^{2}+b^{2}\right)^{-1 / 2}\left|\begin{array}{cc}
a & b \\
b & -a
\end{array}\right|
$$

For the matrix A below, find all the 2×2 matrices X that satisfy the equation $A X=I_{2}$.

Answer: $\left\lvert\, \begin{array}{cc}-5 & 2 \\ 3 & -1\end{array}\right.$

(2.4-3I)For which values of the

 constants a, b and c is the following matrix invertible?$$
\left\lvert\, \begin{array}{ccc|c}
0 & \text { a } & \text { b } & \begin{array}{c}
\text { There are no values } \\
\text { of } a, b, c
\end{array} \\
-\mathrm{a} & 0 & \text { c } & \begin{array}{c}
\text { that make the } \\
\text { matrix invertible }
\end{array}
\end{array}\right.
$$

3.2-46 Find a basis of the kernel and image of the matrix.
Determine the dimensions of the kernel and image.
Determine the rank.
Justify your answers.

Done in class

Give an example of a 5×4 matrix
A with $\operatorname{dim}(\operatorname{ker} A)=3$.
Compute $\operatorname{dim}(i m A)$.

$$
\left\lvert\, \begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right.
$$

The image has dimension 2.

Example (3.3-29)

Find a basis of the subspace of R^{3} defined by the equation $2 x_{1}+3 x_{2}+x_{3}=0$

Answer: (3,-2,0), (0, I,-3)

