IMPORTANT NOTE: These are the answers. In the exam you need to add justifications Example (3.3-27)

Determine whether the following vectors form a basis of ${\sf R}^4$

(1,1,1,1), (1,-1,1,-1),(1,2,4,8),(1,-2,4,-8)

Answer: Yes, (the matrix with these vectors as columns is invertible)

Find the inverse of the rotation matrix.						
	cos(a)	-sin(a)	Answer=	cos(a)	sin(a)	
	sin(a)	cos(a)		-sin(a)	cos(a)	

Let T be a clockwise rotation in R^2 by $\pi/2$ followed by an orthogonal projection onto the y axis. I. Find the matrix of T.

- 2. Determine whether T is invertible
- 3. Find im(T) and ker(T)

Answer: It was given in class.

Find the inverse of the matrix and check your answer. Interpret your result geometrically.	a b	b -a			
Answer: The matrix is a reflection about a line L followed by a scaling by $(a^2 + b^2)^{1/2}$. The inverse is the same reflexion, followed by a scaling $(a^2 + b^2)^{-1/2}$					
$(a^2 + b^2)^{-1/2}$	b	-a			

For the matrix A below, find all the 2x2 matrices X that satisfy the equation AX=I ₂ .	1 3	2 5	
Answer:	-5	2 -1	

(2.4-31)For which values of the constants a, b and c is the following matrix invertible?

 0
 a
 b
 Of a, b, c

 0
 a
 b
 Of a, b, c

 -a
 0
 c
 that make the matrix invertible

 -b
 -c
 0

3.2-46 Find a basis of the kernel and image of the matrix.Determine the dimensions of the kernel and image.Determine the rank.Justify your answers.

Т

0

Done in class

6

2 0 3 5

0 I 4

Example (3.3-31) Let V be the subspace of R^4 defined by the equation x_1 - $x_2 + 2x_3 + 4x_4 = 0$	Note: The problem was first stated that T was from R to R ⁴ such. In this case, the answer is there are no transformations (why? Prove this!).			
Find a linear transformation T from R ³ to R ⁴ such that ker(T)={0}, im(T)=V.	One answer for a transf. from R ³ to R ⁴ such is			
Describe T by its matrix.	1	0	0	
	1	2	0	
	0	-1	2	
	0	0	-1	

Give an example of a 5 x 4 matrix A with dim(ker A)=3. Compute dim(im A).							
	Т	0	0	0	The image has		
	0	I	0	0	dimension 2		
	0	0	0	0	dimension 2.		
	0	0	0	0			
	0	0	0	0			

Example (3.3-29)

Find a basis of the subspace of R^3 defined by the equation $2x_1+3x_2 + x_3 = 0$

Answer: (3,-2,0), (0,1,-3)