MAT211 Review for Midterm 2 Coordinates - Linear spaces - Orthogonality

Example (4.1-25)

Let W be the space of all polynomials f in P_3 such that f(1)=0. Determine whether the following subspace of P_3 and if so, find its dimension.

EXAMPLE (4.2-13)

Let T be a transformation from R^{2x^2} to R^{2x^2} defined by T(M)=A.M - M.A where A is the matrix

| 1 2 | 0 |

Find out whether T is linear. If it is, find kernel, image and nullity and determine whether is an isomorphism.

EXAMPLE (4.2-67)

For which constants k is the linear transformation T(M)=AM-MB an isomorphism if A and B are the matrices

2	3	:	3	0	
0	4		0	k	

EXAMPLE (4.3-21)

Find the matrix (with respect to the standard basis) of the transformation T from P_2 to P_2 , T(f)=f'-3f.

Determine whether is an isomorphism

Find basis of kernel and image of T.

Determine nullity and rank.

EXAMPLE(5.1-27 modified)

Find the orthogonal projection of $9e_1$ onto the subspace of R^4 spanned by $\ (2,2,10)$ and $\ (2,2,0,1)$

EXAMPLE (5.2-39)

Find an orthonormal basis $u_1,\,u_2,\,u_3$ of R^3 such that

- $span(u_1)=span((1,2,3))$
- $span(u_1,u_2)=span((1,2,3),(1,1,-1))$

EXAMPLE (3.4-39)

Denote by T the reflexion about the line in \mathbb{R}^3 spanned by (1,2,3).

Find a basis of \mathbb{R}^3 such that the matrix of T is diagonal.