Example (4.1-25)

MAT2II Review for Midterm 2

Coordinates - Linear spaces - Orthogonality

EXAMPLE (4.2-13)

Let T be a transformation from $\mathrm{R}^{2 \times 2}$ to $\mathrm{R}^{2 \times 2}$ defined by $\mathrm{T}(\mathrm{M})=\mathrm{A} . \mathrm{M}-\mathrm{M} . \mathrm{A}$ where
A is the matrix
$\left|\begin{array}{ll}1 & 2 \\ 0 & 1\end{array}\right|$
Find out whether T is linear. If it is, find kernel, image and nullity and determine whether is an isomorphism.

EXAMPLE (4.3-21)

Find the matrix (with respect to the standard basis) of the transformation T from P_{2} to $P_{2}, T(f)=f^{\prime}-3 f$.

Determine whether is an isomorphism
Find basis of kernel and image of T.
Determine nullity and rank.

EXAMPLE (4.2-67)

For which constants k is the linear transformation $\mathrm{T}(\mathrm{M})=\mathrm{AM}-\mathrm{MB}$ an isomorphism if A and B are the matrices

$$
\left|\begin{array}{ll}
2 & 3 \\
0 & 4
\end{array}\right| \quad\left|\begin{array}{ll}
3 & 0 \\
0 & k
\end{array}\right|
$$

EXAMPLE(5.1-27 modified)

Find the orthogonal projection of $9 \mathrm{e}_{1}$ onto the subspace of R^{4} spanned by $(2,2,10)$ and (2,2,0,1)

EXAMPLE (5.2-39)

Find an orthonormal basis u_{1}, u_{2}, u_{3} of R^{3} such that

- $\operatorname{span}\left(\mathrm{u}_{1}\right)=\operatorname{span}((1,2,3))$
- $\operatorname{span}\left(\mathrm{u}_{1}, \mathrm{u}_{2}\right)=\operatorname{span}((1,2,3),(1,1,-1))$

EXAMPLE (3.4-39)

Denote by T the reflexion abou t the line in \mathbf{R}^{3} spanned by $(1,2,3)$.

Find a basis of R^{3} such that the matrix of T is diagonal.

