Review

- Subspaces of Rⁿ
- f:R^m->Rⁿ, linear transformation, im(f) and ker(f).
- Linear combination.
- Linear independence.
- Basis and unique representation.

- Consider vectors v₁, v₂,.., v_m in Rⁿ.
- The vector v_i is <u>redundant</u> if v_i is a linear combination of v₁, v₂,.., v_{i-1}.
- The vectors v₁, v₂,.., v_m are <u>linearly</u> <u>independent</u> if none of them is redundant.
- Suppose that the vectors v1, v2,..., vm span a subspace V. If v1, v2,..., vm are linearly independent we say that they <u>form a basis</u> of V.
- If at least one vector v is redundant then v₁, v₂,.., v_m are *linearly dependent*.

,

Theorem.

- Consider vectors v_1 , v_2 ,.., v_p and w_1 , w_2 ,.., w_q in a subspace V of Rⁿ. If the vectors v_1 , v_2 ,.., v_p are linearly independent and the vectors w_1 , w_2 ,.., w_q span V then $q \ge p$.
- All basis of a subspace V of Rⁿ have the same number of vectors.

EXAMPLE

- Find a basis of the subspace V of R³ spanned by the vectors (0,0,1), (1,1,0),(0,1,0).
- Compute the dimension of V.

Example

- Find a basis of a the line defined by the equation y=x/10.
- What is the dimension of a line in Rⁿ?

Theorem: Consider a subspace V of R^n and $v_1, v_2,.., v_p$ vectors in V.

- If $v_1, v_2, ..., v_p$ are linearly independent then $p \leq dim(V)$
- If v_1 , v_2 ,..., v_p span V then $p \ge \dim(V)$.
- If v_1 , v_2 ,.., $v_{dim(V)}$ are linearly independent then v_1 , v_2 ,.., $v_{dim(V)}$ form a basis of V.
- If v_1 , v_2 ,..., $v_{dim(V)}$ span V then v_1 , v_2 ,..., $v_{dim(V)}$ form a basis of V.

EXAMPLE: Find a basis of the kernel and the image

Recall

Consider a matrix A.

A basis of im(A) can be constructed by listing the columns of A and "crossing out" the redundant vectors.

Find a basis of the kernel and the image

