Review

- Subspaces of R^{n}
- $f: R^{m}>\mathrm{R}^{\mathrm{n}}$, linear transformation, $\mathrm{im}(\mathrm{f})$ and $\operatorname{ker}(\mathrm{f})$.
- Linear combination.
- Linear independence.
- Basis and unique representation.
- Consider vectors $\mathrm{v}_{\mathrm{v}}, \mathrm{v}_{2}, ., \mathrm{v}_{\mathrm{m}}$ in R^{n}.
- The vector v_{i} is redundant if v_{i} is a linear combination of $\mathrm{v}_{1}, \mathrm{v}_{2}, ., \mathrm{v}_{\mathrm{i}-1}$.
- The vectors $\mathrm{v}_{\mathrm{l}}, \mathrm{v}_{2}, . ., \mathrm{v}_{\mathrm{m}}$ are linearly independent if none of them is redundant.
- Suppose that the vectors $\mathrm{v}_{1}, \mathrm{v}_{2}, ., \mathrm{v}_{\mathrm{m}}$ span a subspace V. If $\mathrm{v}_{\mathrm{l}}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{\mathrm{m}}$ are linearly independent we say that they form a basis of V.
- If at least one vector v is redundant then v_{l}, $\mathrm{v}_{2}, ., \mathrm{v}_{\mathrm{m}}$ are linearly dependent.

Theorem.

- Consider vectors $\mathrm{v}_{\mathrm{l}}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{\mathrm{p}}$ and $\mathrm{w}_{1}, \mathrm{w}_{2}, . ., \mathrm{w}_{\mathrm{q}}$ in a subspace V of R^{n}. If the vectors $v_{1}, v_{2}, .$. , v_{p} are linearly independent and the vectors $\mathrm{w}_{1}, \mathrm{w}_{2}, \ldots, \mathrm{w}_{\mathrm{q}}$ span V then $\mathrm{q} \geq \mathrm{p}$.
- All basis of a subspace V of R^{n} have the same number of vectors.

Definition: The number of vectors in a basis of a subspace V of R^{n} is called the dimension of V and denoted by $\operatorname{dim}(\mathrm{V})$

EXAMPLE

- Find a basis of the subspace V of R^{3} spanned by the vectors $(0,0,1)$, $(1, I, 0),(0, I, 0)$.
- Compute the dimension of V .

Example

- Find a basis of a the line defined by the equation $y=x / 10$.
- What is the dimension of a line in R^{n} ?

Theorem: Consider a subspace V of R^{n} and $v_{1}, v_{2}, \ldots, v_{p}$ vectors in V.

- If $v_{1}, v_{2}, . ., v_{p}$ are linearly independent then $\mathrm{P} \leq \operatorname{dim}(\mathrm{V})$
- If $v_{1}, v_{2}, \ldots, v_{p} s p a n ~ V$ then $p \geq \operatorname{dim}(V)$.
- If $v_{1}, v_{2}, . ., v_{\operatorname{dim}(v)}$ are linearly independent then $\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{\text {dim }}(\mathrm{v})$ form a basis of V .
- If $v_{1}, v_{2}, \ldots, v_{\operatorname{dim}(V)}$ span V then $v_{1}, v_{2}, \ldots, v_{\operatorname{dim}(V)}$ form a basis of V .

EXAMPLE: Find a basis of the kernel and the image

$$
\left|\begin{array}{llll}
0 & 1 & 1 & 1 \\
0 & 1 & 2 & 1 \\
0 & 1 & 3 & 1 \\
0 & 2 & 2 & 2
\end{array}\right|
$$

Theorem: Consider a

 matrix A.- The columns of A that correspond to the columns of $\operatorname{rref}(A)$ containing the leading I's form a basis of A.
- $\operatorname{dim}(\operatorname{im} A)=\operatorname{rank}(A)$.
- If A is $n \times m$ then
$\operatorname{dim}(\operatorname{ker} A)+\operatorname{dim}(i m A)=m$

Recall

Consider a matrix A .
A basis of $\operatorname{im}(A)$ can be constructed by listing the columns of A and "crossing out" the redundant vectors.

Theorem

Consider a matrix A with columns v ,
$\mathrm{v}_{2}, . . \mathrm{v}_{\mathrm{n}}$.
Suppose that v_{i} is a redundant vector. Write
$\mathrm{v}_{\mathrm{i}}=\mathrm{Cl} \mathrm{V}_{1}+\mathrm{C}_{2} \mathrm{~V}_{2}+. .+\mathrm{c}_{\mathrm{i}}-\mathrm{v} \mathrm{v}_{\mathrm{i}} \mathrm{l}$ then the
following vector is in the basis of $\operatorname{ker}(\mathrm{A})$.
constructed in this
way form a basis of $\operatorname{ker}(\mathrm{A})$.
The non-redundant columns of A form a basis of im(A).

Find a basis of the kernel and the image

$$
\begin{array}{llll}
\hline 0 & 0 & - & - \\
0 & 0 & 1 & 1 \\
0 & 1 & 1 & 0 \\
0 & 1 & 0 & 0 \\
N & N & N & N \\
0 & O & 0 & 0 \\
\hline
\end{array}
$$

Theorem

The vectors $v_{1}, v_{2}, . . v_{n}$ of R^{n} form a basis of R^{n} if and only if the matrix with columns $\mathrm{v}_{1}, \mathrm{v}_{2}, . . \mathrm{v}_{\mathrm{n}}$ is invertible.

