

Example (2.2-7)

L be the line in R that consists of all scalar multiples of $(2,1,2)$. Find the reflection of the vector $(1, I, I)$ about the line L.

Name	Formula	Notation	Matrix
Reflection about a plane V in R^{3}	$x-2(u . x) \mathrm{u}$	$\operatorname{ref}_{v}(x)$	
Orthogonal projection onto a line L in R^{3}	(u.x)u	$\operatorname{projL}(x)$	
Orthogonal projection onto a plane V in R^{3}	$x-(u . x) \mathrm{u}$	$\operatorname{projv}(x)$	
Reflection about a line L in R^{3}	$2(u . x) u-x$	$\operatorname{ref}(x)$	

Exercise: Find the matrices
L is a line through the origin, u is vector in L, $u . u=1$
V is a plane through the origin, orthogonal to L

Example

- Interpret geometrically the following linear transformation

L is a line through the origin, u is vector in $\mathrm{L}, \mathrm{u} . \mathrm{u}=1$			
Name	Formula	Notation	Matrix
Scaling (dilation if $\mathrm{k}>1$; contraction if $\mathrm{k}<\mathrm{l}$)	$\begin{gathered} \text { k.x } \\ \text { k scalar } \end{gathered}$		
Orthogonal projection onto a line L in R^{2}	(u.x) u	projı(x)	
Reflection about a line L in R^{2}	2(u.x)u-x	refl(x)	
Rotation through a fixed angle θ			$\cos \theta$ $\sin \theta$ $\cos \theta$

L is a line through the origin, u is vector in $L, u . u=1$

$$
T(x, y)=(x-\sqrt{3} y, \sqrt{3} x+y)
$$

Example (2.2-8 and 9)

$$
\left(\begin{array}{cc}
0 & -1 \\
-1 & 0
\end{array}\right)
$$

- Interpret geometrically the following linear transformations.
- Consider the transformation from R^{3} to R^{2} defined by $\mathrm{f}\left(\mathrm{X}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}\right)=\quad x_{1}\binom{10}{2}+x_{3}\binom{1}{-2}$
- Determine whether this transformation is linear
- Determine whether this transformation is invertible.

Overview

Function	
Linear Transformations	$\mathrm{f}(\mathrm{x})=\mathrm{A} \cdot \mathrm{x}$
Compositiom of timear transformations	Product of matrices
Invertible linear transformations Inverse of a linear transformation	Invertible matrices
A-1	

- Let A be an $m \times n$ matrix and B a $p \times q$ matrix. The product $A . B$ is defined if and only if $n=q$.
- Let A be an $m \times p$ matrix and B a $p \times q$ matrix. The product $A . B$ is the matrix of the linear transformation $T(x)=A(B x)$. The product $A . B$ is an $m \times q$ transformation.
- Let B be an $n \times p$ matrix and let A be a $p \times$ m matrix with columns $v_{1}, v_{2}, . ., v_{m}$. Then the product B.A is equal to the matrix

$$
\left(\begin{array}{cccc}
\mid & \mid & \cdots & \mid \\
B v_{1} & B v_{2} & \cdots & B v_{m} \\
\mid & \mid & \cdots & \mid
\end{array}\right)
$$

- Let B be an $n \times p$ matrix and let A be a $p \times m$ matrix with columns $v_{\mathrm{I}}, \mathrm{v}_{2}, . ., \mathrm{v}_{\mathrm{m}}$. Then the product i j entry (row i , column j) of the product B.A is given by

$$
b_{i 1} a_{1 j}+b_{i 2} a_{2 j}+\cdots+b_{i p} a_{p j}
$$

Compute the products $A=\left(\begin{array}{cc}3 & 2 \\ 1 & 10\end{array}\right)$
A.B and B.A.

$$
B=\left(\begin{array}{cc}
0 & 2 \\
1 & -1
\end{array}\right)
$$

- The product of matrices is not commutative. This is, in general $A . B \neq B . A$.
- The product of matrices is associative: (A.B).C=A.(B.C).
- The distributive law holds for matrices A. $(B+C)=A . B+A . C$
- The identity matrix I_{n} of size n is the matrix

$$
\left(\begin{array}{cccc}
1 & 0 & \cdots & 0 \\
0 & 1 & \cdots & 0 \\
\vdots & \vdots & & \vdots \\
0 & 0 & \cdots & 1
\end{array}\right)
$$

Multiply the matrices, whenever is possible

$$
\begin{array}{ll}
A=\left(\begin{array}{ccc}
1 & 4 & 0 \\
0 & 3 & -1
\end{array}\right) \quad B=\left(\begin{array}{cc}
3 & -1 \\
5 & 1
\end{array}\right) \\
C & =\left(\begin{array}{cc}
1 & 4 / 5 \\
3 & -1 \\
5 & 1
\end{array}\right)
\end{array}
$$

Recall

- A function $f: X ~->Y$ is invertible if for every element y in Y, the equation $f(x)=y$ has a unique solution.
- The inverse of an invertible function f is denoted by f^{-1}

Definition

- A matrix A is invertible if it is square (that is of size $n \times n$) and the associated linear transformation is invertible.
- If a linear transformation $T(x)=A x$ is invertible, the associated matrix of the inverse T^{-1} is denoted by A^{-1}
- Prove the following facts
- The 2×2 matrix $\mathrm{A}=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ is invertible if and only if ad-cb $\neq 0$.
- Find the inverse of A.

EXAMPLE(2.4-60)

- Show that the following matrix is invertible.
- Interpret geometrically the associated linear transformation.

$$
\left(\begin{array}{rr}
-0.8 & 0.6 \\
0.6 & 0.8
\end{array}\right)
$$

Theorem

- To find the inverse of a matrix A of size n $x \mathrm{n}$, compute the reduced row echelon form of the matrix $\left(A \mid I_{n}\right)$
- If $\operatorname{rref}\left(A \mid I_{n}\right)=\left(I_{n} \mid B\right)$ for some matrix B, then A is invertible and $B=A^{-1}$
- Otherwise, A is not invertible.

Find the inverse

$\left(\begin{array}{lll}1 & 1 & 1 \\ 1 & 2 & 3 \\ 1 & 3 & 6\end{array}\right)$

Theorem

- If A is an invertible matrix of size $n \times n$ then $A^{-1} \cdot A=I_{n}$ and $A \cdot A^{-1}=I_{n}$
- If A and B are invertible matrix then the matrix $A . B$ is invertible and $(A . B)^{-1}=B^{-1} A^{-1}$
- If A and B are two matrices of size $n \times n$ such that $B A=I_{n}$ then A and B are invertible, $A=B^{-1}$ and $B=A^{-1}$.

EXAMPLE (2.4=29)

- For which values of the constant k is the following matrix invertible?

$$
\left(\begin{array}{ccc}
1 & 1 & 1 \\
1 & 2 & k \\
1 & 4 & k^{2}
\end{array}\right)
$$

