MAT2II Lecture 18

Eigenvalues and eigenvectors

Consider the reflection on R^{2}
with respect to the x-axis.
Find all vectors v such that
$R(v)$ is parallel to v.

Example

- Consider an orthogonal projection onto a plane P on R^{3}. Find all the eigenvalues and eigenvectors.
- Consider reflection with respect to a plane P on R^{3}. Find all the eigenvalues and eigenvectors.
- Consider reflection with respect to a line L on R^{3}. Find all the eigenvalues and eigenvectors.

Consider the projection P on R^{2} onto the x -axis.
Find all vectors v such that $P(v)$ is parallel to v.

Definition

Consider an $n \times n$ matrix A.

- \cdot. $\cdot \mathrm{A}$ vector v in Rn is an eigenvector if Av is a multiple of v, that is, if there exists a scalar k such that $A v=k v$.
- §. \cdot A scalar k such that $A v=k v$ for some vector v is an eigenvalue.

Example

- Consider the matrix of a rotation of angle $\pi / 3$ in R^{2}. Find all the eigenvalues and eigenvectors.
- What are the eigenvalues and eigenvectors of any rotation?

Example 7.2-29

- Consider an $\mathrm{n} \times \mathrm{n}$ matrix A such that the sum of the entries of each row is 1 . Show that the vector $(1,1, \ldots 1)$ is an eigenvector.
- What is the corresponding eigenvalue?

Definition

Consider an $\mathrm{n} \times \mathrm{n}$ matrix A . The polynomial
$P(\lambda)=\operatorname{det}\left(A-\lambda I_{n}\right)$
called the characteristic polynomial of A.

Definition:

$$
\operatorname{det}\left(A-\lambda I_{n}\right)=0
$$

is called the characteristic equation ofA.

Consider the matrix A

1	1
-2	4

Find all eigenvalues and eigenvectors

Theorem

Consider an $\mathrm{n} \times \mathrm{n}$ matrix A. A scalar λ is an eigenvalue of A if and only if λ is a root of the characteristic polynomial of A, that is if and only if $\operatorname{det}\left(A-\lambda I_{n}\right)=0$.

Theorem

- If λ is an eigenvalue of an $n \times n$ matrix A , then the associated eigenvectors form the kernel of the transformation ($\mathrm{A}-\lambda \mathrm{I}_{n}$).
- In other words, v is an eigenvector with eigenvalue λ if an only if

$$
\left(A-\lambda I_{n}\right) \cdot v=0
$$

Definition

- Consider an eigenvalue λ of an $n \times n$ matrix A. The kernel of the matrix (A- λI_{n}) is called the eigenspace associated with λ and denoted by $\mathrm{E}_{\mathrm{\lambda}}$. In symbols,

$$
E_{\lambda}=\operatorname{ker}\left(A-\lambda I_{n}\right)=\left\{v \text { in } R^{n}: A v=\lambda v\right\}
$$

Example 7.1-41

- Find a basis of the linear space V of all 2×2 matrices A for which $(0,1)$ is an eigenvector
- Find a basis of the linear space V of all 2×2 matrices A for both $(1,1)$ and $(1,2)$ are eigenvectors.
- IN both cases, determine the dimension of V .

Example

Find the eigenvalues and associated eigenvectors.
\(\left.\left|\begin{array}{cc}0 \& -1

0 \& 1

-1 \& 0\end{array}\right|\)| 1 | 2 | -1 |
| :---: | :---: | :---: |
| 1 | 0 | 1 |
| 4 | -4 | 5 | \right\rvert\,

Review: Consider $\mathrm{n} \times \mathrm{n}$ matrix A .

Eigenvalues: solutions λ in R of $\operatorname{det}\left(A-\lambda I_{n}\right)=0$

Eigenvectors: v in R^{n}
solution of $\left(A-\lambda I_{n}\right) . v=0$
Eigenspace subspace of R^{n} $\mathrm{E}_{\lambda}=\operatorname{ker}\left(\mathrm{A}-\lambda \mathrm{I}_{\mathrm{n}}\right)$

Definition:

- If A is a square matrix, the sum of the diagonal entries of A is called the trace of A, and denoted by $\operatorname{tr}(A)$.

Example

- Find the trace of the identity m

Theorem:

- If A is an $n \times n$ matrix then the characteristic polynomial of A has the form

$$
(-\lambda)^{n}+\operatorname{tr}(A)(-\lambda)^{n-1}+\ldots+\operatorname{det}(A)
$$

In particular, if $\mathrm{n}=2$ then the characteristic polynomial of A is

$$
\lambda^{2}-\operatorname{tr}(\mathrm{A}) \lambda+\operatorname{det}(\mathrm{A})
$$

Example

Find the trace of the following matrices.
$\left|\begin{array}{cc}0 & -1 \\ -1 & 0\end{array}\right|\left|\begin{array}{ccc}1 & 2 & -1 \\ 1 & 0 & 1 \\ 4 & -4 & 5\end{array}\right|$

Example. 7.2-15

- Consider the matrix A, where k is an arbitrary constant. For which values of k does A have two distinct real eigenvalues? When is there no real eigenvalue?
-

Definition

An eigenvalue λ_{0} of an $n x n$ matrix A has algebraic multiplicity k if it is a root of multiplicity k of the characteristic polynomial of A. In symbols, if
$\operatorname{det}\left(A-\lambda I_{n}\right)=\left(\lambda_{0}-\lambda\right)^{k} g(\lambda)$
for some polynomial $g(\lambda)$ such that $g\left(\lambda_{0}\right) \neq 0$

Example

Find the eigenvalues with their multiplicity.
$\left|\begin{array}{lll}1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1\end{array}\right|\left|\begin{array}{lll}0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1\end{array}\right|$

