MAT211 Lecture 18

Eigenvalues and eigenvectors

Consider the projection P on R² onto the x-axis. Find all vectors v such that P(v) is parallel to v.

Consider the reflection on R² with respect to the x-axis. Find all vectors v such that R(v) is parallel to v.

Definition

Consider an n x n matrix A.

- A vector v in Rn is an *eigenvector* if Av is a multiple of v, that is, if there exists a scalar k such that Av=kv.
- A scalar k such that Av=kv for some vector v is an *eigenvalue*.

Example

- Consider an orthogonal projection onto a plane P on R³. Find all the eigenvalues and eigenvectors.
- Consider reflection with respect to a plane P on R³. Find all the eigenvalues and eigenvectors.
- Consider reflection with respect to a line L on R³. Find all the eigenvalues and eigenvectors.

5

Example

- Consider the matrix of a rotation of angle $\pi/3$ in R². Find all the eigenvalues and eigenvectors.
- What are the eigenvalues and eigenvectors of any rotation?

Example 7.2-29

- Consider an n x n matrix A such that the sum of the entries of each row is 1. Show that the vector (1,1,...1) is an eigenvector.
- What is the corresponding eigenvalue?

7

9

Definition

Consider an n x n matrix A. The polynomial

 $P(\lambda)=det(A-\lambda I_n)$

called the characteristic polynomial of A.

Theorem

Consider an n x n matrix A. A scalar λ is an eigenvalue of A if and only if λ is a root of the characteristic polynomial of A, that is if and only if det(A- λ I_n)=0.

Example									
Find the eigenvalues									
	0	-1		1	2	-1			
	-1	0		1	0	1			
0	1			4	-4	5			
-1	0								

Example									
Find the eigenvalues and associated eigenvectors.									
			0	-1		1	2	-1	
			-1	0		1	0	1	
	0	1			I	4	-4	5	
	-1	0							

Definition:

16

• If A is a square matrix, the sum of the diagonal entries of A is called the trace of A, and denoted by tr(A).

Example									
Find the eigenvalues with their multiplicity.									
	1	1	1		0	1	0		
	1	1	1		1	0	0		
	1	1	1		0	0	1		