MAT211 Lecture 17

Determinants.

Recall that a 2 x 2 matrix A

a b c d

is invertible If and only if a.d-b.c \neq 0. The number a.d-b.c is the the determinant of A.

Example

- Find all possible patterns in 2x2 matrices
- Find all possible patterns in 3x3 matrices.
- How many patterns are there in 4x4 matrices? And in n x n matrices?

Definition The entries of a pattern P of a matrix A are inverted if one of them is located right and above the other in A. The signature of a pattern P of a matrix A, denoted by sgn(P) is (-1)^(number of pairs of inverted entries in P)

EXAMPLE

• Find the signature of the pattern of a 3 x 3 matrix A,

a₃₁, a₂₂, a₁₃

Definition

The determinant a square matrix A, denoted by det A is ∑sgn(P).product(elements in P)

where the sum is taken over all patterns P.

EXAMPLE

Using the definition, compute the determinant of 2x2 and 3x3 matrices.

Sarus rule.

Theorem: Consider square matrices A and B.

- If A is upper triangular then det(A) is the product of the diagonal entries of A.
- det(A)=det(A^t)
- det(A.B) = det(A).det(B)
- If A and B are similar, det(A)=det(B).
- If A is invertible det(A⁻¹)=1/det(A).

Definition

• Consider a linear space V and a linear transformation T from V to V. The determinant of T is the determinant of the matrix of T with respect to any basis of V.

13

EXAMPLE

Find the determinant of the transformations

 From P₂ to P₂, T(f)=2f- 3f'
 From U^{2x2} to U^{2x2} T(M)=AM, where A is
 -1 -10

0 -100

Algorithm: Using Gauss-Jordan to compute determinant

 Consider a square matrix A. Suppose that in the process of computing rref(A) one arrives to a matrix B by swaping rows s times and dividing columns by scalars k₁, k₂,..,k_r. Then

 $det(A) = k_1. K_2...k_r. det(B).$

In particular, if B=rref(A) det(A) = k_1 . K_2 k_r .

EXAM	PLE	Ξ 5.	2-9			
 Compute the determinant using gaussian elimination 	1	1	1	1	1	
	1	2	2	2	2	
	1	1	3	3	3	
	1	1	1	4	4	
	1	1	1	1	5	

Theorem

- Consider row columns v_1 , v_2 , ... v_{i-1} , v_i $_{+1}$, ... v_n with n entries. The function from R^n to R,

 $T(x) = det(v_1 v_2 ... v_{i-1} x v_{i+1} ... v_n)$ is linear.

Theorem (for math curious students)

- The determinant is the only function from $(R^n)^n$ to R such that
 - It is linear on each rows (fixing the all the other rows).
 - It is alternating (swapping rows changes sign)

19

- It has value 1 on the identity matrix.

Theorem

If A is an n x n matrix with orthogonal columns v₁, v₂, ...v_n then
 |det A| = ||v₁ || .||v₂ || || v_n || .

If B is an n x n matrix $|\det B| = ||v_1|| . ||v_2^{\perp}|| .|| ... || v_n^{\perp}||$, where v_i^{\perp} is the component of v_i perpendicular to span($v_1, ..., v_{i-1}$).

Definition

• Consider vectors $v_1, v_2, ..., v_m$ in \mathbb{R}^n . The m-parallelepiped defined by the vectors $v_1, v_2, ..., v_m$ is the set of all vectors of the form $c_1 v_1 + c_2 v_2 + ..., + c_m v_m$ where $c_1, c_2, ..., c_m$ are scalars such that $0 \le c_i \le 1$.

Theorem

- Consider vectors v_1 , v_2 v_m in \mathbb{R}^n . The volume of the m-parallelepiped defined by v_1 , v_2 v_m is $\sqrt{A^t}$. A where A is the matrix with columns v_1 , v_2 v_m .
- If m=n then the volume is |detA|.

