MAT2II Lecture 17

Determinants.

Recall that a 2×2 matrix A

is invertible
If and only if a.d-b.c $\neq 0$.
The number a.d-b.c is the the determinant of
A.

Example

- Find all possible patterns in 2×2 matrices
- Find all possible patterns in 3×3 matrices.
- How many patterns are there in $4 x 4$ matrices? And in $\mathrm{n} \times \mathrm{n}$ matrices?

EXAMPLE

- Find the signature of the pattern of a 3×3 matrix A,

$$
a_{31}, a_{22}, a_{13}
$$

Definition

The determinant a square matrix A , denoted by $\operatorname{det} A$ is
$\sum \operatorname{sgn}(P)$.product(elements in P)
where the sum is taken over all patterns P.

Example

Compute the determinant of

$$
\left|\begin{array}{ll}
1 & 10 \\
0 & 0
\end{array}\right| \quad\left|\begin{array}{ccc}
1 & 10 & 2 \\
-1 & 0 & 4 \\
5 & 6 & 6
\end{array}\right|
$$

Example

- Compute the determinant of the inverse of
$\left|\begin{array}{ccccc}1 & 10 & 0 & 3 & 1 \\ 0 & -1 / 6 & 0 & 5 & 45 \\ 0 & 0 & 6 & 5 & 99 \\ 0 & 0 & 0 & 5 & 8 \\ 0 & 0 & 0 & 0 & 2\end{array}\right|$

EXAMPLE

Using the definition, compute the determinant of 2×2 and 3×3 matrices.

Sarus rule.

Theorem: Consider square

 matrices A and B.- If A is upper triangular then $\operatorname{det}(\mathrm{A})$ is the product of the diagonal entries of A.
- $\operatorname{det}(\mathrm{A})=\operatorname{det}\left(\mathrm{A}^{\mathrm{t}}\right)$
- $\operatorname{det}(\mathrm{A} . \mathrm{B})=\operatorname{det}(\mathrm{A}) \cdot \operatorname{det}(\mathrm{B})$
- If A and B are similar, $\operatorname{det}(A)=\operatorname{det}(B)$.
- If A is invertible $\operatorname{det}\left(\mathrm{A}^{-1}\right)=1 / \operatorname{det}(\mathrm{A})$.

Theorem: Elementary row operations and determinants

- If B is obtained from A by multiplying a r of A by a scalar k then

$$
\operatorname{det}(\mathrm{B})=\mathrm{k} \cdot \operatorname{det}(\mathrm{~A})
$$

- If B is obtained from A by swaping two rows then $\operatorname{det}(B)=-\operatorname{det}(A)$
- If B is obtained from A by adding a multiple of a row to another row then $\operatorname{det}(B)=\operatorname{det}(A)$.

Definition

- Consider a linear space V and a linear transformation T from V to V . The determinant of T is the determinant of the matrix of T with respect to any basis of V .

Example:

Of an 4×4 matrix A with columns $\mathrm{v}_{1}, \mathrm{v}_{2}$, $\mathrm{V}_{3}, \mathrm{~V}_{4}$ and determinant 4 .
Compute the determinant of the matrices
$\left(v_{1},-30 v_{2}, v_{3}, v_{4}\right)$
$\left(v_{2}, v_{3}, v_{1}, v_{4}\right)$
$\left(v_{1}, v_{1}+v_{2}, v_{1}+v_{2}+v_{3}, v_{1}+v_{2}+v_{3}+v_{4}\right)$

EXAMPLE

- Find the determinant of the transformations
- From P_{2} to $\mathrm{P}_{2}, \mathrm{~T}(\mathrm{f})=2 \mathrm{f}-3 \mathrm{f}^{\prime}$
- From $U^{2 \times 2}$ to $U^{2 \times 2} T(M)=A M$, where A is

$$
\left|\begin{array}{cc}
-1 & -10 \\
0 & -100
\end{array}\right|
$$

Algorithm: Using Gauss-Jordan to compute determinant

- Consider a square matrix A. Suppose that in the process of computing $\operatorname{rref}(\mathrm{A})$ one arrives to a matrix B by swaping rows s times and dividing columns by scalars $\mathrm{k}_{1}, \mathrm{k}_{2}, \ldots, \mathrm{k}_{\mathrm{r}}$. Then $\operatorname{det}(A)=k_{1} \cdot K_{2} \ldots k_{r} \cdot \operatorname{det}(B)$.
In particular, if $B=\operatorname{rref}(A)$

$$
\operatorname{det}(A)=k_{1} \cdot K_{2} \ldots k_{r} .
$$

EXAMPLE 5.2-9

- Compute the determinant using gaussian elimination
$\left|\begin{array}{lllll}1 & 1 & 1 & 1 & 1 \\ 1 & 2 & 2 & 2 & 2 \\ 1 & 1 & 3 & 3 & 3 \\ 1 & 1 & 1 & 4 & 4 \\ 1 & 1 & 1 & 1 & 5\end{array}\right|$

Theorem

- Consider row columns $\mathrm{v}_{1}, \mathrm{v}_{2}, . . \mathrm{v}_{\mathrm{i}-1}, \mathrm{v}_{\mathrm{i}}$ ${ }_{+1}, . . v_{n}$ with n entries. The function from R^{n} to R,
$T(x)=\operatorname{det}\left(v_{1} v_{2} . . v_{i-1} x v_{i+1} . . v_{n}\right)$ is linear.

Theorem (for math curious students)

- The determinant is the only function from $\left(R^{n}\right)^{n}$ to R such that
- It is linear on each rows (fixing the all the other rows).
- It is alternating (swapping rows changes sign)
- It has value 1 on the identity matrix.

Definition

- Consider vectors $v_{1}, v_{2} \ldots v_{m}$ in R^{n}. The m -parallelepiped defined by the vectors $v_{1}, v_{2} \ldots v_{m}$ is the set of all vectors of the form $c_{1} v_{1}+c_{2} v_{2}+\ldots+c_{m} v_{m}$ where $\mathrm{c}_{1}, \mathrm{c}_{2} \ldots \mathrm{c}_{\mathrm{m}}$ are scalars such that $0 \leq c_{i} \leq 1$.

Theorem

- If A is an $\mathrm{n} \times \mathrm{n}$ matrix with orthogonal columns $v_{1}, v_{2}, \ldots v_{n}$ then
$|\operatorname{det} A|=\left\|v_{1}\right\| .\left\|v_{2}\right\| \ldots\left\|v_{n}\right\|$.

If B is an $n x n$ matrix
$|\operatorname{det} B|=\left\|v_{1}\right\| .\left\|v_{2} \perp\right\| .\|\ldots\| v_{n} \perp \|$, where $v_{i} \perp$ is the component of v_{i} perpendicular to $\operatorname{span}\left(\mathrm{v}_{1}, \ldots, \mathrm{v}_{\mathrm{i}-1}\right)$.

Theorem

- Consider vectors $\mathrm{v}_{1}, \mathrm{v}_{2} \ldots . \mathrm{v}_{\mathrm{m}}$ in R^{n}. The volume of the m-parallelepiped defined by $v_{1}, v_{2} \ldots v_{m}$ is $\sqrt{ } A^{t}$. A where A is the matrix with columns $\mathrm{v}_{1}, \mathrm{v}_{2} \ldots \mathrm{v}_{\mathrm{m}}$.
- If $m=n$ then the volume is $|\operatorname{det} A|$.

Example

- Find the volume

