MAT211 Lecture 15 Gram-Schmidt Process

* The Gram-Schmidt process *QR Factorization

EXAMPLE

Perform the Gram-Schimdt process on the sequence of vectors (1,1,1),(2,0,2),(-1,0,-1)

The Gram-Schmidt Process

Theorem (QR Factorization)

Consider an n x n matrix M with linearly independent columns v_1 , v_2 ,... v_n .

Then there exists an n x n matrix Q whose columns $u_1, u_2, ... u_n$ are orthonormal and an upper triangular matrix R with positive diagonal entries such that M = Q R.

The matrices Q and R are unique with the above properties. Moreover, $r_{11} = | | v_{1|} | |, r_{jj} = | | v_{j^{\perp}} | |$ for j=2..n, and $r_{ij} = u_i \cdot v_j$ for $i \leq j$.

Theorem (QR Factorization Algorithm)

Consider an n x n matrix M with linearly independent columns v_1 , v_2 ,... v_n .

Then the columns $q_1, q_2, ... q_n$ of Q and the columns of R can be computed in the following order

First col of R, first column of U

Second col of R, second col of U

and so on

EXAMPLE: Find the QR factorization of the matrix

