MAT2II Lecture 15 Gram-Schmidt Process

*The Gram-Schmidt process *QR Factorization

EXAMPLE

Perform the Gram-Schimdt process on the sequence of vectors $(1,1,1),(2,0,2),(-1,0,-1)$

Theorem (QR Factorization
Algorithm)
Consider an nx n matrix M with linearly independent columns $\mathrm{v}_{1}, \mathrm{v}_{2}, . . \mathrm{v}_{\mathrm{n}}$.
Then the columns $\mathrm{q}_{1}, \mathrm{q}_{2}, . . \mathrm{q}_{\mathrm{n}}$ of Q and the columns of R can be computed in the following order

First col of R, first column of U
Second col of R, second col of U
and so on

The Gram-Schmidt Process

Theorem (QR Factorization)

Consider an n x n matrix M with linearly
independent columns $\mathrm{v}_{1}, \mathrm{v}_{2}, . . \mathrm{v}_{\mathrm{n}}$.
Then there exists an $\mathrm{n} x \mathrm{n}$ matrix Q whose columns $\mathrm{u}_{1}, \mathrm{u}_{2}, . . \mathrm{u}_{\mathrm{n}}$ are orthonormal and an upper triangular matrix R with positive diagonal entries such that M $=\mathrm{QR}$.

The matrices Q and R are unique with the above properties. Moreover, $\mathrm{r}_{11}=\left|\left|\mathrm{v}_{1}\right|\right|\left|, \mathrm{r}_{\mathrm{ij}}=\left|\left|\mathrm{v}_{\mathrm{j}}^{\perp}\right|\right|\right.$ for $j=2 . . n$, and $r_{i j}=u_{i} . v_{j}$ for $i<j$.

EXAMPLE: Find the QR factorization of the matrix
$\left|\begin{array}{lll}1 & 2 & 1 \\ 1 & 1 & 1 \\ 1 & 0 & 2 \\ 1 & 1 & 1\end{array}\right|$

