MAT2II Lecture I3

The matrix of a linear transformation
-The B-matrix of a linear transformation

- The columns of the B-matrix of a linear transformation
-Change of basis matrix
-Change of basis in a subspace of R^{n}
-Change of basis for the matrix of a linear transformation

Overview

\mathbf{A} and \mathbf{B} basis of linear space V , T a linear transformation from V to V.

- Coordinate Transformation from V to $\mathrm{R}^{\mathrm{n}} \mathrm{L}(\mathrm{f})=$ [f] ${ }_{B}$
- B-matrix of T is $L_{B} \circ T \circ L_{B}{ }^{-1}$
- Change of basis from B to $A, S_{B->A}=L_{A} \circ\left(L_{B}\right)^{-1}$
- If B is \mathbf{B}-matrix of T and A is \mathbf{A}-matrix of T, S the change of basis from B to $A, \quad A S=S B$

EXAMPLE

- Consider the space U of upper triangular 2×2 matrices and the linear transformation T from U to U defined by $T(M)=A M$ where A is

$\left\lvert\,$| 1 | -2 |
| :---: | :---: |
| 0 | 3 | | For each element z of U, |
| :---: |
| find $[T(z)]_{B, \text { where } B}$ is |
| the standard basis |\right.

Definition

- Consider a linear transformation T from V to V where V is an n -dimensional linear space. Let \mathbf{B} denote a basis of V.
- The matrix B of the transformation from R^{n} to R^{n} defined by $L_{B} \circ T \circ L_{B}{ }^{-1}$ is called the B-matrix of T.

EXAMPLE

- Consider the space U of upper triangular 2×2 matrices and the linear transformation T from U to U defined by $\begin{array}{cc}T(M)=A M \text { where } A \text { is } \\ 1 & -2 \\ 0 & 3\end{array} \quad \begin{aligned} & \text { Find the } \mathbf{B} \text {-matrix of } T \text { where } \\ & \mathbf{B} \text { is the standard basis of } U .\end{aligned}$

Theorem

- Consider a linear transformation T from V to V . Let B be matrix of T with respect to a basis $\mathbf{B}=\left(b_{1}, b_{2}, \ldots, b_{n}\right)$
- Then columns of B are the B-coordinate vectors $\left.\left.\left[T\left(b_{1}\right)\right]_{\mathbf{B}}, T\left(b_{2}\right)\right]_{\mathbf{B}}, . ., T\left(b_{n}\right)\right]_{\mathbf{B}}$

EXAMPLE

- Give the matrix of the linear transformation $T(f)=f^{\prime \prime}+2 f^{\prime}$ from P_{2} to P_{2} with respect to the basis $\left(1, t, t^{2}\right)$.
- Find basis of the kernel and the image and compute rank and nullity of T.

EXAMPLE

- Find the change of basis matrix S from the standard basis \mathbf{B} to basis \mathbf{A} of $U^{2 \times 2}$ where \mathbf{A} is

$$
\text { is }\left|\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right|\left|\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right|\left|\begin{array}{ll}
0 & 1 \\
0 & 1
\end{array}\right|
$$

Find the change of basis matrix from \mathbf{A} to \mathbf{B}.

Remarks

- If A and B are two basis of a vector space then $S_{\mathbf{B}->\mathbf{A}}$ is an invertible matrix and
- $S_{B->A}=\left(S_{A->B}\right)^{-1}$

Definition

- Consider two basis \mathbf{A} and \mathbf{B} of an ndimensional vector space V.
- The matrix $S=S_{B->A}$ of the linear transformation
- $L_{A} \circ\left(L_{B}\right)^{-1}$
- from R^{n} to R^{n} is called the change of basis matrix from B to A.
$\mathrm{Se}_{\mathrm{I}}=\left[\mathrm{b}_{1}\right]_{\mathrm{A}}, \mathrm{Se}_{2}=\left[\mathrm{b}_{2}\right]_{\mathrm{A}}, \ldots, \mathrm{Se}_{n}=\left[\mathrm{b}_{\mathrm{n}}\right]_{\mathrm{A}}$
- If f is in V then $[f]_{\mathbf{A}}=S[f]_{\mathbf{B}}$ where S is the change of basis matrix from \mathbf{B} to \mathbf{A}
- If $\mathbf{B}=\left(b_{1}, b_{2}, . ., b_{n}\right)$ then the columns of S are $\mathrm{Se}_{\mathrm{l}}, \mathrm{Se}_{2}, \ldots, \mathrm{Se}_{\mathrm{n}}$ and

Remarks

EXAMPLE (4.3-60)

- In the plane V defined by the equation $2 x+y$ $2 z=0$ consider the basis
- $A=((1,2,2),(2,-2, I))$ and $B=((1,2,2),(3,0,3))$
I. Find the change of basis matrix from B to A

2. Find the change of basis matrix from A to B
3. Write an equation relating the matrices $\left[a_{1}, a_{2}\right]$ and $\left[b_{1}, b_{2}\right]$ where $A=\left(a_{1}, a_{2}\right)$ and $B=\left(b_{1}, b_{2}\right)$

Theorem

- Consider a linear space V and two basis of $V, \mathbf{A}=\left(a_{1}, a_{2}, . ., a_{n}\right)$ and $\mathbf{B}=\left(b_{1}, b_{2}, . ., b_{n}\right)$. Let T be a linear transformation from V to V, and let A and B be the \mathbf{A}-matrix and the \mathbf{B} matrix of T, respectively. Then A is similar to B and
- $A S=S B$
- where S is the change of basis matrix from \mathbf{B} to \mathbf{A}.
\mathbf{A} and \mathbf{B} basis of linear space V, T a linear
- B-matrix of T is $L_{B} \circ T \circ L_{B}{ }^{-1}$
- Change of basis from B to $A, S_{B->A}=L_{\mathbf{A}} \circ\left(L_{\mathbf{B}}\right)^{-1}$
- If B is \mathbf{B}-matrix of T and A is \mathbf{A}-matrix of T, $S_{B->A} A=S_{A->B} B$
transformation from V to V .
- Coordinate Transformation from V to $\mathrm{R}^{\mathrm{n}} \mathrm{L}(\mathrm{f})=$ $[f]_{B}$

Verify the formula $S B=A S(A$ is the \mathbf{A}-matrix of T, B is the \mathbf{B}-matrix of T)
Find the change of basis matrix from \mathbf{A} to \mathbf{B}.

