Definition

MAT2II Lecture I2

Linear Transformations and isomorphisms

- Linear transformations, image, rank, nullity
- Isomorphism and isomorphic spaces
-Theorem: Coordinate transformations are isomorphisms
- Properties of isomorphisms
- Consider two linear spaces V and W.
- A function T from V to W is called a linear function if for every pair of elements f and g in V, and every scalar k,
- $T(f+g)=T(f)+T(g)$
- $T(k . f)=k . T(f)$

EXAMPLE: Find out whether the
following transformations from $R^{2 \times 2}$ to $\mathrm{R}^{2 \times 2}$ are linear.

- $T(M)=M^{2}$
- $T(M)=7 M$
- $T(M)=P M P^{-1}$ where P is

Definition

- The image of a linear transformation T from V to W, denoted by $\operatorname{lm} T$, is the subset of W \{T(f) : fin V\}.
- The kernel of a linear transformation T from V to W, denoted by ker T, is the

Definiton

- If the image of a linear transformation T is finite dimensional, then the dimension of im T is called the rank of T .
- If the kernel of a linear transformation T is finite dimensional then the dimension of kernel of T is called nullity of T.

EXAMPLE: Find rank, image, kernel and nullity of the following transformation from $R^{2 \times 2}$ to R^{3}.

- $T(M)=(a, b, 0)$ where M is

$$
\left|\begin{array}{ll}
\mathrm{a} & \mathrm{~b} \\
\mathrm{c} & \mathrm{~d}
\end{array}\right|
$$

EXAMPLE

- Find out if the transformations from P_{2} to R defined by $\mathrm{T}(\mathrm{f}(\mathrm{t}))=\int^{3} \mathrm{P}(\mathrm{t}) \mathrm{dt}$ is linear.
-2
- Find image, rank, kernel and nullity.

Theorem

- A linear transformation T from V to W is an isomorphism if and only if $\operatorname{ker}(T)=\{0\}$ and $\operatorname{im}(T)=W$.

EXAMPLE

- Find kernel and nullity of the transformations of $T, T(M)=M A-A M$, where A is the matrix

Definition

- An invertible linear transformation is called an isomorphism.
- Two linear spaces V and W are isomorphic if there exists an isomorphism T from V to W.

EXAMPLE

- Is the transformation $T(M)=M A-A M$ from $R^{2 \times 2}$ to $R^{2 \times 2}$ an isomorphism? A is the matrix

$|$| 1 | 2 |
| :--- | :--- |
| 0 | 1 |

EXAMPLE

- Find out if the transformations from P_{2} to R defined by $T(f(t))=\int^{3} P(t) d t$ is linear.
-2
- Find image, rank, kernel and nullity.
- Is it an isomorphism?

Theorem

If $B=\left(f_{1}, f_{2}, \ldots, f_{n}\right)$ is a basis of a vector space V, then the coordinate transformation $L_{B}(f)=[f]_{B}$ from V to R is an isomorphism.

Hence, any n-dimensional vector space is isomorphic to R^{n}.

Theorem: If V and W are finite dimensional linear spaces then

- If V is isomorphic to W then $\operatorname{dim}(V)=\operatorname{dim}(W)$.
- If T is a linear transformation from V to W and $\operatorname{ker}(\mathrm{T})=0$, and $\operatorname{dim}(\mathrm{V})=\operatorname{dim}(\mathrm{W})$ then T is an isomorphism.
- If T is a linear transformation from V to W and $\operatorname{im}(T)=W$, and $\operatorname{dim}(V)=\operatorname{dim}(W)$ then T is an isomorphism.

EXAMPLE

- Consider the linear transformation T from P_{2} to P_{1} given byT $(p(t))=p^{\prime}(t)$.
- Is it an isomorphism?
- Find rank, nullity, image and kernel.

EXAMPLE

Find a basis of the linear space of 2×2 matrices annd find the coordinate transformation for that basis.

