MAT2II Lecture II

-Definition Linear Spaces

- Examples
- Subspaces
- Span, linear independence, basis, coordinates
-Coordinate transformation
- Dimension
-Differential equation - Solution space

Definition (cont) for each f and g in V

$$
(f+g)+h=f+(g+h)
$$

$\mathrm{f}+\mathrm{g}=\mathrm{g}+\mathrm{f}$
There exists a unique element in V , denoted by $\mathbf{0}$ and called the neutral element such that $f+$ $\mathbf{0}=\mathbf{0}+\mathrm{f}=\mathrm{f}$
For each f in V there exists a unique element in V denoted by $-f$ such that $f+(-f)=0$.

Definition

A linear (or vector) space V is a set of elements endowed with two operations

- + addition: for each f and g in $V, f+g$ is an element in V .
- . multiplication: For each f in V and each k in R, k.v is an element in V.

Moreover, these operation satisfy the following properties:

Definition (cont) for each f and g in V, each c and k in R,
k. $(f+g)=k . f+k . g$
$(c+k) . f=c . f+k . f$
c. $(k . f)=(c . k) . f$
I. $f=f$

EXAMPLES of Linear Spaces:

- R^{n}.
- The set of all $m \times n$ matrices

| - The space of 2×2 matrices |
| :--- | :--- |
| such that $a+d=0$ |\(\left|\begin{array}{ll}a \& b

c \& d\end{array}\right|\)

- The set of all polynomials.

Questions: What is,.,$+ \mathbf{0}$, if v is in the linear space, what is $-v$?

MORE EXAMPLES of Linear Spaces:

- The set of all infinite sequences of real numbers. (addition and mult. are defined term by term)
- $F(R, R)$ the set of all functions from R to R.
- The set of all polynomials of degree n at most n .
- Set of geometric vectors in plane.

Question: What is + ,., $\mathbf{0}$, if v is in the linear space, what is -v ?

Definition

We say that an element f of a linear space V is a linear combination of the elements $f_{1}, f_{2}, \ldots, f_{n}$ of V if there exists scalars such that
$f=c_{1} f_{1}+c_{2} f_{2}+\ldots+c_{n} f_{n}$

EXAMPLE

Is the polynomial $x^{2}+x+1$ a linear combination of $x^{2}+1, x^{2}-1$ and $3 x+3$?

EXAMPLE

Let V be the space all of 2×2 matrices
Show that subset W of all
the matrices

such that $\mathrm{a}+\mathrm{d}=0$ is a subspace of V .

EXAMPLE:

Show that the subset of $F(R, R)$ of all functions such that $f(0)=0$ is a subspace of $F(R, R)$

EXAMPLE

- Is the set of all 2×2 invertible matrices a subspace of the linear space formed by all 2 $\times 2$ matrices?
- Denote by P_{n} the set of all polynomials of degree at most n. Is P_{2} a subspace of P_{n} ?
- Is the subset of all polynomials of degree 2 a subset of P_{n} ?

Definition: Consider the elements f_{f},

$$
\mathrm{f}_{2}, \ldots, \mathrm{f}_{\mathrm{n}} \text { in } \mathrm{V}
$$

- $f_{1}, f_{2}, \ldots, f_{n}$ span V if every element in V is a linear combination of the elements $f_{1}, f_{2}, \ldots, f_{n}$.
- f_{i} is redundant if it a linear combination of $t f_{l}$, f_{2}, \ldots, f_{i-1}
- $f_{1}, f_{2}, \ldots, f_{n}$ are linearly independent if none of them is redundant.
- $f_{1}, f_{2}, \ldots, f_{n}$ form a basis if they are linearly independent and span V.

Example

Consider the linear space M of all matrices 2×3.
Find a finite set that span M
Find a basis of M.
Can you find a basis that does not span?
Can you find a subset that span but it is not a basis? If so, indicate the redundant vectors.

Suppose that the elements $f_{1}, f_{2}, \ldots, f_{n}$ are a basis of a vector space V.

Then any element f in V can be written as $c_{1} f_{1}+c_{2}$ $f_{2}+\ldots+c_{n} f_{n}$ for some scalars $c_{1}, c_{2}, \ldots, c_{n}$
The coefficients $c_{1}, c_{2}, \ldots, c_{n}$ are called the coordinates of f with respect to the basis $B=\left(f_{l}\right.$, f_{2}, \ldots, f_{n})
The vector $\left[c_{1}, c_{2}, \ldots, c_{n}\right]$ in R^{n} is called the coordinate vector of f and denoted by $[f]_{B}$

EXAMPLE

Find a basis B of P_{2}. Find the coordinates of the polynomial $(x-I)(x+I)$ with respect to B.

Suppose that the elements $f_{1}, f_{2}, \ldots, f_{n}$ are a basis of a vector space V.

The vector $\left[c_{1}, c_{2}, \ldots, c_{n}\right]$ in R^{n} is called the coordinate vector of f and denoted by $[f]_{B}$

The transformation $L: V->R^{n}$, defined by $L(f)=[f]$ is called the B-coordinate transformation.
If f and g are in V and k is a scalar then
$L(f+g)=L(f)+L(g)$ and $L(k \cdot f)=k L(f)$.

EXAMPLE

For the basis of P_{2} we find in the previous example, describe the transformation
$\mathrm{L}: \mathrm{P}_{2} \rightarrow \mathrm{R}^{\mathrm{n}}$.
If $f=(x-1)(x+1)$ and $g=x^{2}-3 x+\pi$, check that

- $L(f+g)=L(f)+L(g)$
- $L(k . f)=k . L(f)$.

EXAMPLE: Find a basis and determine the dimension:

- The linear space of all 2×2 matrices.
- The space of all 2×2 matrices such that $a+d=0$.
- P_{2}, the space of all polynomials of degree at most 2 .
- The space of all 2×2 matrices that commute with $\left|\begin{array}{ll}0 & 1 \\ 1 & 1\end{array}\right|$

Theorem

If a basis of a vector space has n elements then all basis of a linear space have the n elements.

Definition: If a linear space V has a basis with n elements we say that the dimension of V is n , and that V is finite dimensional.

Theorem

If a basis of a vector space has n elements then all basis of a linear space have the n elements.

Definition: If a linear space V has a basis with n elements we say that the dimension of V is n.

EXAMPLE: Find a basis and determine the dimension:

- The space of all polynomials.

EXAMPLE

Find a basis of the linear space W of all the matrices

$$
\left|\begin{array}{ll}
\mathrm{a} & \mathrm{~b} \\
\mathrm{c} & \mathrm{~d}
\end{array}\right|
$$

such that $a+d=0$.

