MAT211 Lecture 10

Coordinates

- Definition
- •Linearity of coordinates
- •The matrix of a linear transformation •Standard matrix - B-matrix
- •Similar matrices
- -----

Review

- Linear combination
- Subspace of Rⁿ
- Span
- Basis

- Consider a basis B=(v₁, v₂,..,v_m) of a subspace V of Rⁿ and a vector x of V.
- We know that x can be written as $x=c_1v_1+c_2v_2+...+c_nv_n$
- Moreover, the coefficients $c_1, c_2, ..., c_n$ are unique.
- The scalars c_1 , c_2 ,.., c_n are the coordinates of x.
- The vector $(c_1, c_2, ..., c_n)$ is the B-coordinate of x.
- The B-coordinate of x is denoted by $[x]_B$

Example 3.4-10

If B=(-1,0,1),(-2,10) and V is the span of B, find the B-coordinates of (1,-2,-2).

Remark

Since

 $x = c_1 v_1 + c_2 v_2 + ... + c_n v_n$,

 $x = S [x]_B$, where S is the n x m matrix with columns $v_1, v_2,...,v_m$.

Theorem

If B is a basis of a subspace V or R^n , x and y are vectors in V and k is a scalar then

- $[x+y]_B = [x]_B + [y]_B$
- [k.x]_B = k.[x]_B

Definition

Consider a linear tranformation T:Rⁿ-> Rⁿ and a basis $B=(v_1, v_2,..,v_n)$ of Rⁿ.

The n x n matrix with columns

 $[\mathsf{T}(v_1)]_B,\,[\mathsf{T}(v_2)]_B,\,...,\![\mathsf{T}(v_n)]_B$

is called the B-matrix of T.

•Observe that the B-matrix of T transforms $[x]_B$ in $[T(x)]_B \text{ for every } x \text{ in } R^n$

Example 3.4-22

Find the matrix B of the linear transformation T(x)=Ax with respect to the basis B=(1,2),(-2,1), where A is

-3

4

3

-3

4

3

Theorem

Consider a linear tranformation T:Rⁿ-> Rⁿ and a basis $B = (v_1, v_2, ..., v_n)$ of Rⁿ.

Denote by B the **B**-matrix of T.

Denote A the standard matrix of T.

Denote by S the matrix with columns v_1 , v_2 ,..., v_n .

Then AS=SB, $B=S^{-1}$ AS and A =SBS⁻¹.

Example 3.4-22 Find the matrix B of the linear transformation T(x)=Ax with respect to the basis B=(1,2),(-2,1), where A is

Solve it in three different ways I. Use the formula $B=S^{-1}$ AS

- 2. Use a commutative diagra
- 3. Construct B column by column

Definition

Consider to n x n matrices A and B.

We say that A is similar to B if there exists an invertible matrix S such that AS =SB.

Example 3.4-61 Find a basis B of R² such that the B-matrix of the linear transformation given by the first matrix is the second matrix. -5 9 1 1 4 7 0 1