MAT2II Lecture IO
 Coordinates

-Definition

- Linearity of coordinates
-The matrix of a linear transformation
- Standard matrix - B-matrix
- Similar matrices

Review

- Linear combination
- Subspace of R^{n}
- Span
- Basis
- Consider a basis $\boldsymbol{B}=\left(\mathrm{v}_{1}, \mathrm{v}_{2}, ., \mathrm{v}_{\mathrm{m}}\right)$ of a subspace V of R^{n} and a vector x of V.
- We know that x can be written as $x=c_{1} v_{1}+c_{2} v_{2}+\ldots+c_{n} v_{n}$
- Moreover, the coefficients $\mathrm{c}_{1}, \mathrm{c}_{2}, . ., \mathrm{c}_{\mathrm{n}}$ are unique.
- The scalars $c_{1}, c_{2}, . ., c_{n}$ are the coordinates of x.
- The vector $\left(c_{1}, c_{2}, . ., c_{n}\right)$ is the B-coordinate of x.
- The B-coordinate of x is denoted by $[x]_{B}$

Example 3.4-I0

If $B=(-1,0, I),(-2, I 0)$ and V is the span of B, find the B -coordinates of $(1,-2,-2)$.

Remark

Since

$x=c_{1} v_{1}+c_{2} v_{2}+\ldots+c_{n} v_{n}$,
$x=S[x]_{B}$, where S is the $n \times m$ matrix with columns $\mathrm{v}_{\mathrm{l}}, \mathrm{v}_{2}, ., \mathrm{v}_{\mathrm{m}}$.

Theorem

If B is a basis of a subspace V or R^{n}, x and y are vectors in V and k is a scalar then

- $[x+y]_{B}=[x]_{B}+[y]_{B}$
- $[k . x]_{B}=k .[x]_{B}$

Definition

Consider a linear tranformation T: $R^{n}->R^{n}$ and a basis $B=\left(v_{1}, v_{2}, \ldots, v_{n}\right)$ of R^{n}.

The $n \times n$ matrix with columns
$\left[T\left(v_{1}\right)\right]_{B},\left[T\left(v_{2}\right)\right]_{B}, \ldots,\left[T\left(v_{n}\right)\right]_{B}$
is called the B-matrix of T .

- Observe that the B -matrix of T transforms $[\mathrm{x}]_{\mathrm{B}}$ in $[T(x)]_{B}$ for every x in R^{n}

Theorem

Consider a linear tranformation $T: R^{n}->R^{n}$ and a basis $B=\left(v_{1}, v_{2}, . ., v_{n}\right)$ of R^{n}.

Denote by B the \boldsymbol{B}-matrix of T .
Denote A the standard matrix of T.
Denote by S the matrix with columns $v_{1}, v_{2}, \ldots, v_{n}$.
Then $A S=S B, B=S^{-1} A S$ and $A=S B S^{-1}$.

Definition

Consider to $\mathrm{n} \times \mathrm{n}$ matrices A and B .
We say that A is similar to B if there exists an invertible matrix S such that $A S=S B$.

Example 3.4-6I

Find a basis B of R^{2} such that the B-matrix of the linear transformation given by the first matrix is the second matrix.

