

Techniques of integration

- * Properties of functions (Odd, even)
- * Rewrite
 - Partial fractions: When there is a quotient of polynomials.
 - Trigonometric identities (cos² x +sin² x = 1, cos and sin of double angle): Example: to find ∫ cosⁿ x dx (n odd or even)
- * Parts: (to "remove" integer powers of x or functions which do not appear as integrand in the table) Example $\int \ln(x)dx$, $\int xe^{x}dx$, $\int x \cos(x) dx$.
- * Substitution
 - Example: Trigonometric substitution. The integrand contains an expression of the form $(a^2 \cdot x^2)^{\prime_2} , (a^2 + x^2)^{\prime_2} , (x^2 \cdot a^2)^{\prime_2}$ where a is a positive number.

Chapter 7,8

5-6 Solve the differential equation. and solve the IVP with y(0)=1

5.
$$2ye^{y^2}y' = 2x + 3\sqrt{x}$$

20. A tank contains 100 L of pure water. Brine that contains 0.1 kg of salt per liter enters the tank at a rate of 10 L/min. The solution is kept thoroughly mixed and drains from the tank at the same rate. How much salt is in the tank after 6 minutes? Mixing problems key point: Q(t)=amount of salt (or other) in the tank at time t. Model rate of change of Q(t)

Series Strategies.

- If $\{a_n\}$ does not converge to 0 when $n \rightarrow \infty$, then $\sum a_n$ diverges.
- Recall convergence of p-series and geometric series.
- If the series has a form that is similar to a p-series or a geometric series, then try the comparison tests. (Recall that the comparison tests apply only to series with positive terms.)
- Series that involve factorials or other products (including a constant raised to the n-th power) are often conveniently tested using the ratio test. (Note the ratio test does not work with the p-series)
- If the series is alternating, $a_n > 0$, $a_n \le a_{n+1}$, and $a_n \to 0$ when $\sum_{n=1}^{\infty} (-1)^n a_n \to \infty$)
- If $a_n = f(n)$, f(x)>0 for all $x \ge 1$, f is continuous, and decreasing and the integral $\int f(x) dx$ is easily evaluated, then try the integral test.

series that sat	ishes
	(i) $b_{n+1} \leq b_n$ and (ii) $\lim_{n \to \infty} b_n = 0$
then	$ R_n = s - s_n \leq b_{n+1}$
3 Remaind	ar Estimate for the Integral Test Suppose $f(k) = a_k$, where f is a positive, decreasing function for $x \ge n$ and $\sum a_k$ is convergent. If
$R_n = s - s_n,$	then
	$\int_{n+1}^{\infty} f(x) dx \leqslant R_n \leqslant \int_n^{\infty} f(x) dx$
9 Taylor's In $R_n(x)$ of the Taylor	$\int_{n+1}^{\infty} f(x) dx \le R_n \le \int_n^{\infty} f(x) dx$ equality If $ f^{(n+1)}(x) \le M$ for $ x - a \le d$, then the remainder ylor series satisfies the inequality

3 Theorem For a given power series $\sum_{n=0}^{\infty} c_n (x - a)^n$ there are only three possibilities:		
(i) The series converges only when $x = a$.		
(ii) The series converges for all x.		
(iii) There is a positive number <i>R</i> such that the series converges if $ x - a < R$ and diverges if $ x - a > R$.		
• The number R in (iii) is called the <u>radius of convergence</u> of the power series.		
• By convention, R=0 in (i) and $R=\infty$ in (ii)		
• The <u>interval of convergen</u> ce is the set of all values of x for which the power series converges.		
• There are four possibilities for a power series centered at a.		
●(a-R,a+R)		
●[a-R,a+R)		
•(a-R,a+R]		
•[a-R,a+R] 17		

21. The height of a monument is 20 m. A horizontal cross-section at a distance *x* meters from the top is an equilateral triangle with side $\frac{1}{4}x$ meters. Find the volume of the monument.

37–44 Find the Maclaurin series for f and its radius of convergence. You may use either the direct method (definition of a Maclaurin series) or known series such as geometric series, binomial series, or the Maclaurin series for e^x , sin x, and $\tan^{-1}x$. **37.** $f(x) = \frac{x^2}{1+x}$ **38.** $f(x) = \tan^{-1}(x^2)$ **39.** $f(x) = \ln(4-x)$ **40.** $f(x) = xe^{2x}$ **41.** $f(x) = \sin(x^4)$ **42.** $f(x) = 10^x$ **46.** Use series to approximate $\int_0^1 \sqrt{1+x^4} dx$ correct to two decimal places. **49.** Use series to evaluate the following limit. $\lim_{x \to 0} \frac{\sin x - x}{x^3}$