MAT I 32 Review

In each of the cases below, decide which method apply. Evaluate 32.

Chapter 5
23. $\int_{0}^{5} \frac{x}{x+10} d x$
24. $\int_{0}^{5} y e^{-0.6 y} d y$
25. $\int_{-\pi / 4}^{\pi / 4} \frac{t^{4} \tan t}{2+\cos t} d t$
26. $\int_{1}^{4} \frac{d t}{(2 t+1)^{3}}$
27. $\int_{1}^{4} x^{3 / 2} \ln x d x$
28. $\int \sin x \cos (\cos x) d x$
29. $\int \frac{d t}{t^{2}+6 t+8}$
30. $\int \frac{x}{\sqrt{1-x^{4}}} d x$
31. $\int e^{\sqrt[3]{x}} d x$
32. $\int \tan ^{-1} x d x$

55-60 Evaluate the integral or show that it is divergent.
55. $\int_{1}^{\infty} \frac{1}{(2 x+1)^{3}} d x$
56. $\int_{0}^{\infty} \frac{\ln x}{x^{4}} d x$
57. $\int_{-\infty}^{0} e^{-2 x} d x$
58. $\int_{0}^{1} \frac{1}{2-3 x} d x$
59. $\int_{1}^{e} \frac{d x}{x \sqrt{\ln x}}$
60. $\int_{2}^{6} \frac{y}{\sqrt{y-2}} d y$

Table of Indefinite Integrals

$$
\begin{array}{ll}
\int k d x=k x+C \\
\int x^{n} d x=\frac{x^{n+1}}{n+1}+C & (n \neq-1) \\
\int e^{x} d x=e^{x}+C & \int \frac{1}{x} d x=\ln |x|+C \\
\int \sin x d x=-\cos x+C & \int a^{x} d x=\frac{a^{x}}{\ln a}+C \quad a \neq 1 \\
\int \sec ^{2} x d x=\tan x+C & \int \cos x d x=\sin x+C \\
\int \sec x \csc x d x=-\cot x+C \\
\int \frac{1}{x^{2}+1} d x=\tan ^{-1} x+C & \int \csc x \cot x d x=-\csc x+C \\
& \int \frac{1}{\sqrt{1-x^{2}}} d x=\sin ^{-1} x+C
\end{array}
$$

Techniques of integration

* Properties of functions (Odd, even)
* Properties of integrals
- Example: $\int(f(x)+g(x)) d x=\int f(x) d x+\int g(x) d x$ (trial an error)
* Tables of integrals (always works)
* Rewrite
- Example: Partial fractions (always works)
- Example: trigonometric identities (trial an error)
* Parts: (trial an error)
* Substitution (trial an error)
- Example:Trigonometric substitution.

Techniques of integration

* Properties of functions (Odd, even)
* Rewrite
- Partial fractions:When there is a quotient of polynomials.
- Trigonometric identities $\left(\cos ^{2} x+\sin ^{2} x=1, \cos\right.$ and \sin of double angle): Example: to find $\int \cos ^{n} x d x$ (n odd or even)
* Parts: (to "remove" integer powers of x or functions which do not appear as integrand in the table) Example $\int \ln (x) d x, \int x e^{x} d x, \int x \cos (x)$ dx .
* Substitution
- Example:Trigonometric substitution. The integrand contains an expression of the form $\left(a^{2}-x^{2}\right)^{1 / 2},\left(a^{2}+x^{2}\right)^{1 / 2},\left(x^{2}-a^{2}\right)^{1 / 2}$ where a is a positive number.

6. Find the volume of the solid obtained by rotating about the x-axis the region bounded by the curves $y=e^{-2 x}$, $y=1+x$, and $x=1$.
7. The height of a monument is 20 m . A horizontal crosssection at a distance x meters from the top is an equilateral triangle with side $\frac{1}{4} x$ meters. Find the volume of the monument.
8. A tank full of water has the shape of a paraboloid of revolution as shown in the figure; that is, its shape is obtained by weights $62.5 \mathrm{lb} / \mathrm{ft}^{3}$) rotating a parabola about a vertical axis.
(a) If its height is 4 ft and the radius at the top is 4 ft , find the work required to pump the water out of the tank.
(b) After $4000 \mathrm{ft}-\mathrm{lb}$ of work has been done, what is the of the water remaining in the tank?

9. Find the volume of the solid obtained by rotating about
the x-axis the region bounded by the curves $y=e^{-2 x}$
$y=1+x$, and $x=1$.
Chapter 6

Recall disk, washer, shells
29. A tank full of water has the shape of a paraboloid of revolution as shown in the figure; that is, its shape is obtained by
rotating a parabola about a vertical axis
(a) If its height is 4 ft and the radius at the top is 4 ft , find the
work required to pump the water out of the tank
(b) After 4000 ft -lb of work has been done, what is the of the water remaining in the tank?
 conquer"

5-6 Solve the differential equation. and solve the IVP with $y(0)=1$
5. $2 y e^{y^{2}} y^{\prime}=2 x+3 \sqrt{x}$
20. A tank contains 100 L of pure water. Brine that contains 0.1 kg of salt per liter enters the tank at a rate of $10 \mathrm{~L} / \mathrm{min}$. The solution is kept thoroughly mixed and drains from the
 in the tank at time t. Model rate of change of $O(t)$ tank at the same rate. How much salt is in the tank after

Chapter 7, 8 6 minutes?

Series Strategies

- If $\left\{a_{n}\right\}$ does not converge to 0 when $n \rightarrow \infty$, then Σa_{n} diverges.

Recall convergence of p-series and geometric series.

- If the series has a form that is similar to a p-series or a geometric series, then try the comparison tests. (Recall that the comparison tests apply only to series with positive terms.)
- Series that involve factorials or other products (including a constant raised to the n-th power) are often conveniently tested using the ratio test. (Note the ratio test does not work with the p -series)
IIf the series is alternating, $a_{n}>0, a_{n} \leq a_{n+1}$, and $a_{n} \rightarrow 0$ wher $\sum_{n=1}^{\infty}(-1)^{n} a_{n}$ $\mathrm{n} \rightarrow \infty$)
If $a_{n}=f(n), f(x)>0$ for all $x \geq 1, f$ is continuous, and decreasing and the integral $\int f(x) d x$ is easily evaluated, then try the integral test.

The Integral Test Suppose f is a continuous, positive, decreasing function on $[1, \infty)$ and let $a_{n}=f(n)$. Then the series $\Sigma_{n=1}^{\infty} a_{n}$ is convergent if and only if the improper integral $\sum_{1}^{\infty} f(x) d x$ is convergent. In other words:
(a) If $\int_{1}^{\infty} f(x) d x$ is convergent, then $\sum_{2=1}^{\infty} a_{n}$ is convergent.
(b) If $\int_{1}^{\infty} f(x) d x$ is divergent, then $\sum_{n=1}^{\infty} a_{n}$ is divergent.
$1717 m$

The Comparison Test Suppose that $\sum a_{n}$ and $\sum b_{n}$ are series with positive terms (a) If $\sum b_{n}$ is convergent and $a_{n} \leqslant b_{n}$ for all n, then $\sum a_{n}$ is also convergent. (b) If $\sum b_{n}$ is divergent and $a_{n} \geqslant b_{n}$ for all n, then $\sum a_{n}$ is also divergent.

The Limit Comparison Test Suppose that $\sum a_{n}$ and $\sum b_{n}$ are series with positive terms. If

$$
\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=c
$$

where c is a finite number and $c>0$, then either both series converge or both diverge.

> The Ratio Tes
> (i) If $\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=L<1$, then the series $\sum_{n=1}^{\infty} a_{n}$ is absolutely convergent (and therefore convergent).
> (ii) If $\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=L>1$ or $\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\infty$, then the series $\sum_{n=1}^{\infty} a_{n}$
> is divergent.
> (iii) If $\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=1$, the Ratio Test is inconclusive; that is, no conclusion can
> be drawn about the convergence or divergence of Σa_{n}.

1 Theorem If a series $\sum a_{n}$ is absolutely convergent, then it is convergent.

5 Theorem If f has a power series representation (expansion) at a, that is, if

$$
f(x)=\sum_{n=0}^{\infty} c_{n}(x-a)^{n} \quad|x-a|<R
$$

then its coefficients are given by the formula

$$
c_{n}=\frac{f^{(n)}(a)}{n!}
$$

3 Theorem For a given power series $\sum_{n=0}^{\infty} c_{n}(x-a)^{n}$ there are only three possibilities:
(i) The series converges only when $x=a$
(ii) The series converges for all x.
(iii) There is a positive number R such that the series converges if $|x-a|<R$ and diverges if $|x-a|>R$.

- The number R in (iii) is called the radius of convergence of the power series.
- By convention, $\mathrm{R}=0$ in (i) and $\mathrm{R}=\infty$ in (ii)
- The interval of convergence is the set of all values of x for which the power series converges.
- There are four possibilities for a power series centered at a.
- (a-R,a+R)
- $(a-R, a+R)$
- $(a-R, a+R]$
- $[a-R, a+R]$

Alternating Series Estimation Theorem If $s=\Sigma(-1)^{n-1} b_{n}$ is the sum of an alternating series that satisfies

$$
\begin{array}{ll}
\text { (i) } b_{n+1} \leqslant b_{n} & \text { and }
\end{array} \quad \text { (ii) } \lim _{n \rightarrow \infty} b_{n}=0
$$

then

$$
\left|R_{n}\right|=\left|s-s_{n}\right| \leqslant b_{n+1}
$$

3 Remainder Estimate for the Integral Test Suppose $f(k)=a_{k}$, where f is a continuous, positive, decreasing function for $x \geqslant n$ and $\sum a_{n}$ is convergent. If $R_{n}=s-s_{n}$, then

$$
\int_{n+1}^{\infty} f(x) d x \leqslant R_{n} \leqslant \int_{n}^{\infty} f(x) d x
$$

9 Taylor's Inequality If $\left|f^{(n+1)}(x)\right| \leqslant M$ for $|x-a| \leqslant d$, then the remainder $R_{n}(x)$ of the Taylor series satisfies the inequality

$$
\left|R_{n}(x)\right| \leqslant \frac{M}{(n+1)!}|x-a|^{n+1} \quad \text { for }|x-a| \leqslant d
$$

5 Theorem If f has a power series representation (expansion) at a, that is, if

$$
f(x)=\sum_{n=0}^{\infty} c_{n}(x-a)^{n} \quad|x-a|<R
$$

then its coefficients are given by the formula

$$
c_{n}=\frac{f^{(n)}(a)}{n!}
$$

2 Theorem If the power series $\sum c_{n}(x-a)^{n}$ has radius of convergence $R>0$, then the function f defined by

$$
f(x)=c_{0}+c_{1}(x-a)+c_{2}(x-a)^{2}+\cdots=\sum_{n=0}^{\infty} c_{n}(x-a)^{n}
$$

is differentiable (and therefore continuous) on the interval $(a-R, a+R)$ and
(i) $f^{\prime}(x)=c_{1}+2 c_{2}(x-a)+3 c_{3}(x-a)^{2}+\cdots=\sum_{n=1}^{\infty} n c_{n}(x-a)^{n-1}$
(ii) $\int f(x) d x=C+c_{0}(x-a)+c_{1} \frac{(x-a)^{2}}{2}+c_{2} \frac{(x-a)^{3}}{3}+\cdots$

$$
=C+\sum_{n=0}^{\infty} c_{n} \frac{(x-a)^{n+1}}{n+1}
$$

The radii of convergence of the power series in Equations (i) and (ii) are both R.
21. The height of a monument is 20 m . A horizontal crosssection at a distance x meters from the top is an equilateral triangle with side $\frac{1}{4} x$ meters. Find the volume of the monument.

9-18 Determine whether the series is convergent or divergent.
9. $\sum_{n=1}^{\infty} \frac{n}{n^{3}+1}$
10. $\sum_{n=1}^{\infty} \frac{n^{2}+1}{n^{3}+1}$
11. $\sum_{n=1}^{\infty} \frac{n^{3}}{5^{n}}$
12. $\sum_{n=1}^{n}=\frac{(-1)^{n}}{\sqrt{n+1}}$
13. $\sum_{n=2}^{\infty} \frac{1}{n \sqrt{\ln n}}$
14. $\sum_{n=1}^{\infty} \ln \left(\frac{n}{3 n+1}\right)$

37-44 Find the Maclaurin series for f and its radius of conver-
gence. You may use either the direct method (definition of a
Maclaurin series) or known series such as geometric series,
binomial series, or the Maclaurin series for $e^{x}, \sin x$, and $\tan ^{-1} x$.
37. $f(x)=\frac{x^{2}}{1+x}$
38. $f(x)=\tan ^{-1}\left(x^{2}\right)$
39. $f(x)=\ln (4-x)$
40. $f(x)=x e^{2 x}$
41. $f(x)=\sin \left(x^{4}\right)$
42. $f(x)=10^{x}$
46. Use series to approximate $\int_{0}^{1} \sqrt{1+x^{4}} d x$ correct to two decimal places.
49. Use series to evaluate the following limit.

$$
\lim _{x \rightarrow 0} \frac{\sin x-x}{x^{3}}
$$

