MAT 132 Lecture 1: Review.

Limits and Derivatives: Incredibly fast review
-.'. Integrals: Review (also a bit fast)

Can you write down the exact value of $\sqrt{ } 2$?

- 1
- 1.4
- 1.41
- 1.414
- 1.4142
- 1.41421
-

Derivatives: Some formulae and properties (taken from the cyberspace)

```
*)
    Ma|{
```



```
(i)
```



```
```

 3. (fg)= f'g+f\mp@subsup{g}{}{\prime}-\mathrm{ -Product Rule}
    ```
```

 3. (fg)= f'g+f\mp@subsup{g}{}{\prime}-\mathrm{ -Product Rule}
 (4) (4)
    ```
```

 (4) (4)
    ```
```



```
    (ivi)\frac{t}{|}(\mp@subsup{e}{}{\prime})=\mp@subsup{e}{}{\prime}:}\quad7.\frac{d}{d(}f(g(x)))=\mp@subsup{f}{}{\prime}(g(x))\mp@subsup{g}{}{\prime}(x
```

```
    (ivi)\frac{t}{|}(\mp@subsup{e}{}{\prime})=\mp@subsup{e}{}{\prime}:}\quad7.\frac{d}{d(}f(g(x)))=\mp@subsup{f}{}{\prime}(g(x))\mp@subsup{g}{}{\prime}(x
```



```
    (xvi)}\frac{d}{|(\frac{|}{|}|
```

```
    (xvi)}\frac{d}{|(\frac{|}{|}|
```

Integration: (One of the) precursors

Arquimedes 287-212 B.C.E.

Approximating Pi (the area of a circle with radius 1)

Mathematica
Demonstration

Integration: The creators

Gottfried Wilhelm Leibniz
1646-1716

Sir Isaac Newton 1642-1727

- During the semester, I will send a few emails through Blackboard. Please make sure that your email address is updated.
- This is a large class, so from now on, there are certain email messages that I will not be able to answer, for instance:
-Messages whose answer is contained in the course website
-Asking something that you could have asked to a classmate (like "what did you cover on Monday?")
-Messages telling me something you could have told me the following day in class.
- I will answer messages about appointments to discuss my favorite subject, Math (remember to include possible meeting times) or course related question that really require a timely answer.

8

Properties of the definite integral

1: If $a=b$, th $\int_{a}^{a} f(x) d x=0$
2: $\int_{b}^{a} f(x) d x=-\int_{a}^{b} f(x) d x$
3: $\int_{a}^{b} c d x=c(b-a)$, where c is any constant
4: $\int_{a}^{b}[f(x)+g(x)] d x=\int_{a}^{b} f(x) d x+\int_{a}^{b} g(x) d x$
5: $\int_{a}^{b} c f(x) d x=c \int_{a}^{b} f(x) d x$, where c is any constant
6: $\int_{a}^{b}[f(x)-g(x)] d x=\int_{a}^{b} f(x) d x-\int_{a}^{b} g(x) d x$

7: $\int_{a}^{c} f(x) d x+\int_{c}^{b} f(x) d x=\int_{a}^{b} f(x) d x$

The Fundarnental Theoremt of Calculus Suppose f is continuous on $[a, b]$.

1. If $g(x)=\int_{a}^{x} f(t) d t$, then $g^{\prime}(x)=f(x)$.
2. $\int_{a}^{b} f(x) d x=F(b)-F(a)$, where F is any antiderivative of f, that is, $F^{\prime}=f$.

indeed, FUNDAMENTAL.
It gives a
"recipe" to compute definite integrals.
Otherwise, we would have to spent our lives
calculating Riemann sums, rectangle by rectangle.

EXAMPLE

Let $g(x)=\int_{0}^{x} \sin (t) d t, x \in[0, \pi]$.
Using only the definition of integral as the signed area under the graph.

- Evaluate $g(0)$ and $g(\pi)$.
- On what interval g is increasing?
- Does g have a maximum value?
- Sketch a graph of g.
- Sketch a graph of g'

Fundamental Theorem Of Calculus

http://www.youtube.com/watch?v=gMdh fiGZag

Maple

Table of Indefinite Integrals

\[

\]

An insane mathematician gets on a bus and starts threatening everybody: "I'll integrate you! I'll differentiate you!!!" Everybody gets scared and runs away. Only one lady stays. The guy comes up to her and says: "Aren't you scared, I'll integrate you, I'll differentiate you!!!"

The lady calmly answers: "No, I am not scared, I am ex."

EXAMPLE

- (5.3-18) Evaluate the integral

$$
\int_{0}^{5}\left(2 e^{x}+4 \cos x\right) d x
$$

- A little boy is on top of the Empire State Building and accidentally drops his teddy bear. His parents panic because he cannot sleep without his teddy bear. They can get to the street in 9 seconds. Can they reach the teddy bear before somebody else find it?
- (recall gravity imparts an acceleration of $-32 \mathrm{ft} / \mathrm{sec}^{2}$ to any object falling near the surface of the Earth.)
- Height Empire State Building:1,250 feet

The Fundarnental Theoremin of Calculus Suppose f is continuous on $[a, b]$.

1. If $g(x)=\int_{a}^{x} f(t) d t$, then $g^{\prime}(x)=f(x)$.
2. $\int_{a}^{b} f(x) d x=F(b)-F(a)$, where F is any antiderivative of f, that is, $F^{\prime}=f$.

The Fundamental Theorem of Calculus is indeed, FUNDAMENTAL.
It gives a
"recipe" to compute definite integrals.
Otherwise, we would have to spent our lives
calculating Riemann sums, rectangle by rectangle.

EXAMPLE

- (5.3-46) Evaluate the integral

$$
\int \sec t(\sec t+\cos t) d t
$$

From "How to ace calculus"

As you can imagine, it is a rare integral indeed that willingly allows itself to be integrated. Most fight with claw and threaten lawsuits. If we want to successiully trap and tame the wild integrals and teach them proper table manners, we need a variety of snares.

Integration by Substitution

- Some integrals cannot be easily solved by just applying the previous rules of integration. For instance,

$$
\begin{gathered}
\int x^{2} \cos \left(x^{3}-2\right) d x \\
\int \frac{1}{3} \cos (u) d u=\frac{1}{3} \sin (u)+C=\frac{1}{3} \sin \left(x^{3}-2\right)+C
\end{gathered}
$$

Recall the Chain Rule for derivation

We have reviewed

- Definite integral (signed area)
- Indefinite integral (all the antiderivatives)
- Riemann's sums
- Properties of integrals.
- Table of integrals of some functions.
- Fundamental Theorem of Calculus (thus we can evaluate definite integrals if we know antiderivatives)
- Substitution rule

Integration by parts

Example: $u(x)=\sin (x)$, $v(x)=x$

- Suppose that $u(x)$ and $v(x)$ are functions of x.
- We know the product rule $(u(x) \cdot v(x))^{\prime}=u^{\prime}(x) \cdot v(x)+u(x) \cdot v^{\prime}(x)$
- $\int(u(x) \cdot v(x))^{\prime} d x=\int u^{\prime}(x) \cdot v(x) d x+\int u(x) \cdot v^{\prime}(x) d x$

Sometimes we drop the $+c$ for a while to make computations neater. Put it back at the end

- $\int u . v^{\prime} d x=u . v-\int u ' . v d x$ We use this rule when the function $v d u$ is easier to integrate than the original function.

The Substitution Rule

If $u=g(x)$ is a differentiable function whose range is an interval I and f is continuous on I, then

$$
\int f(g(x)) g^{\prime}(x) d x=\int f(u) d u
$$

In the previous example

$$
\begin{aligned}
& f(x)=\cos (x) \\
& g(x)=x^{3}-2
\end{aligned} \quad \int x^{2} \cos \left(x^{3}-2\right) d x
$$

Always remember
HINT: If the function to be integrated $\left(\cos \left(x^{3}-2\right)\right)$ contains a "piece" ($x^{3}-2$) whose derivative "is" a factor of the function $\left(x^{2}\right)$, then that piece is a candidate for substitution. to go back to the original variable.

Example: Evaluate

$$
\begin{gathered}
\int_{0}^{1} \sqrt{1+7 x} d x \\
\int \frac{x+3}{\sqrt{x^{2}+6}} d x \\
\int \cos (u) \cdot \cos (\sin (u)) d u
\end{gathered}
$$

Always remember to go back to the original variable.

Integration by parts:

 Evaluate the following:
$u . d v=u . v-\int v . d u$
Integration by parts: Tricks

- Write $\mathrm{f}(\mathrm{x}) \mathrm{dx}=\mathrm{u} . \mathrm{dv}(=\mathrm{u}(\mathrm{x}) .(\mathrm{dv} / \mathrm{dx}) . \mathrm{dx}$)
- The key point is decide what is u and what is $d v$. Not all possibilities work. (You can always apply the formula, but certain choices will lead to a more complicated problem).
- dv has to be something that you know how to integrate.
- u is everything else
- $\int v$. du must be an integral you can eventually solve.
- Sometimes
- you need to apply parts a few times, (e.g., $f(x)=x^{3} . e^{x}$) to make the power of x "dissapear
- you need to take $u=\ln (x)$, so the \ln dissapears. (e.g.,$f(x)=\ln (x)$)
- you need to apply parts twice and use the signs in your favor. $(f(x)$ $\left.=\cos (\mathrm{x}) . \mathrm{e}^{\mathrm{x}}\right)$

Integration: Tricks

- Always check if your problems gets more and more complicated
- Go slow, write every step, watch signs and constants.
- And remember to go back to the original variable.
- It very important to know the techniques, and it is equally important to know which technique apply. Think before starting to compute.

Example: Evaluate

$$
\begin{gathered}
\int \arctan (x) d x \\
\int_{0}^{\ln (3)} \frac{e^{x}}{e^{x}-4} d x \\
\int_{0}^{0} 2 x^{3} e^{x^{2}} d x \\
\int_{-1}^{0} 15 x \sqrt{x+1} d x \\
\int \sin (\sqrt{x}) d x
\end{gathered}
$$

