MAT I 32

More review and the cylindrical shells method

One of the solutions of $y=3 x-x^{3}(x$ as a function of y.)

$$
\frac{1}{2}\left(-4 y+4 \sqrt{-4+y^{2}}\right)^{1 / 3}+\frac{2}{\left(-4 y+4 \sqrt{-4+y^{2}}\right)^{1 / 3}}
$$

1-12 Find the volume of the solid obtained by rotating the region bounded by the given curves about the specified line Sketch the region, the solid, and a typical disk or washer.
11. $y=1+\sec x, y=3 ; \quad$ about $y=1$
12. $y=x, y=\sqrt{x} ; \quad$ about $x=2$
(for practice, find also the volume the solid obtained by rotating about the x-axis in II. and about the y-axis in

I2.)
(2) For each of the following improper integrals:
(i) determine whether or not it converges.
(ii) Evaluate those that converge.
(a) $\int_{0}^{4} x\left(16-x^{2}\right)^{-3 / 2} \mathrm{dx}$.
(b) $\int_{1}^{\infty} \frac{\ln (x)}{x} \mathrm{dx}$. (CORRECTED)
I. Consider the region R bounded by the x axis and the graph of $y=4 x-x^{2}$ about the y axis. Find the volume of the solid obtained by rotating R about the y-axis

Note:

We rotate about the y-axis
The variable in the integrand is x. Demo

The volume of a thin, hollow cylinder is (lateral surface area of cylinder).(thickness)= (2. π. x. heigh (x).thickness)=
2.T. $x . f(x) . d x$

Find the volume of the solid obtained by revolting about the y-axis, the region bounded by $y=x^{2}+1$, the y axis and $x=2$

Shell Method (compute the volume of a solid obtained by revolting a region R in the first quadrant about the y-axis)

- Draw the region R.
- Sketch a line segment (in R) parallel to the y-axis.
- Label: segment length (shell heigh) and distance from the y-axis (shell radius).
- Determine the limits of integration.
- Integrate 2π (shell radius)(shell heigh)=T.x.f(x) over the limits of integration you found.

Find the volume of the solid generated by revolving about the y-axis the region bounded by the curve $y=\sin \left(x^{2}\right)$, the x-axis and the lines $x=\sqrt{ } \pi / 2$ and $x=\sqrt{ } \pi$.

- Find the volume of the solid obtained by rotating about the y-axis the region bounded by $y=2 x^{2}-x^{3}$ and $y=0$.

