MAT I 32

8.6 Representation of functions as power series

Examples

1.Express $1 /\left(1+2 \mathrm{x}^{3}\right)$ as a power series and find the interval of convergence. 2.Find a power series representation for $x^{2} /(x+5)$

$$
\sum_{n=0}^{\infty} \frac{x^{n+1}}{(n+1)^{2}}
$$

Consider the power series

1. Find the radius of convergence.
2. Verify the theorem (i).
3. If f is the function defined by the power series, find the domain of f, and the domain of f'. Do f and f' have the same radius of convergence? Do they have the same interval of convergence?

Recall

A power series defines a function whose domain is the interval of convergence of the power series.

Example: The geometric series with $\mathrm{a}=1$, and $\mathrm{r}=\mathrm{x}$

$$
\sum_{n=0}^{\infty} x^{n}=1+x+x^{2} \ldots=1 /(1-x)
$$

if $|x|<1$

2 Theorem If the power series $\Sigma c_{n}(x-a)^{n}$ has radius of convergence $R>0$, then the function f defined by

$$
f(x)=c_{0}+c_{1}(x-a)+c_{2}(x-a)^{2}+\cdots=\sum_{n=0}^{\infty} c_{n}(x-a)^{n}
$$

is differentiable (and therefore continuous) on the interval ($a-R, a+R$) and
(i) $f^{\prime}(x)=c_{1}+2 c_{2}(x-a)+3 c_{3}(x-a)^{2}+\cdots=\sum_{n=1}^{\infty} n c_{n}(x-a)^{n-1}$
(ii) $\int f(x) d x=C+c_{0}(x-a)+c_{1} \frac{(x-a)^{2}}{2}+c_{2} \frac{(x-a)^{3}}{3}+\cdots$
$=C+\sum_{n=0}^{\infty} c_{n} \frac{(x-a)^{n+1}}{n+1}$
The radii of convergence of the power series in Equations (i) and (ii) are both R.

Examples

1. Express $1 /(1+x)^{2}$ as a power series.

What is the radius of convergence.
2. Find a power series representation of $f(x)$ $=\tan ^{-1}(\mathrm{x})$
3. Find a power series representation for $f(x)$ $=e^{x}$ and find the radius of convergence
4. Find a power series representation for $f(x)$ $=e^{-x}$ and find the radius of convergence
5 . Use 4. to find the value of e^{-1} correct to five decimal places.

