MAT 132

8.4 Power Series

EXAMPLES

$$
\begin{array}{ll}
\sum_{n=0}^{\infty} 3 x^{n} & \sum_{n=0}^{\infty} \frac{(-1)^{n} 2^{n} x^{n}}{n 3^{n}} \\
\sum_{n=0}^{\infty} \frac{x^{n}}{n!} & \sum_{n=0}^{\infty} n!x^{n}
\end{array}
$$

$c_{0}+c_{1} x+c_{2} x^{2}+\cdots+c_{n} x^{n} \cdots$

- When we studied infinite series (of constant terms), the key question was..

If we replace " x " by a number, a powers series becomes an infinite series. Thus, in the case of power series we ask:

For what values of
"x" does the power series
converge?

EXAMPLE: Find the values of x for which each of the power series is convergent

$$
\begin{array}{lc}
\sum_{n=0}^{\infty} 3 x^{n} & \sum_{n=0}^{\infty} \frac{(-1)^{n} 2^{n} x^{n}}{n 3^{n}} \\
\sum_{n=0}^{\infty} \frac{x^{n}}{n!} & \sum_{n=0}^{\infty} n!x^{n}
\end{array}
$$

A power series in ($\mathrm{x}-\mathrm{a}$) is a series that can be expressed as
$\sum_{n=0}^{\infty} c_{n}(x-a) x^{n}=c_{0}+c_{1}(x-a) x+c_{2}(x-a) x^{2}+\cdots+c_{n}(x-a)^{n} \cdots$

The coefficients $c_{0}, c_{1}, c_{2} \ldots$ are constants.
"a" is also a constant

EXAMPLE: Find the values of x for which each of the power series is convergent

$$
\begin{gathered}
\sum_{n=0}^{\infty} \frac{(-1)^{n} 2^{n}(x+2)^{n}}{n 3^{n}} \\
\sum_{n=0}^{\infty} 3(x-1)^{n}
\end{gathered}
$$

EXAMPLE: Find the radius of convergence and the interval of convergence

$\sum_{n=0}^{\infty} \frac{(-1)^{n} 2^{n}(x+2)^{n}}{n 3^{n}}$
$\sum_{n=0}^{\infty} 3(x-1)^{n}$

