

The alternating series test	
If we have a sequence { a_n }, where $a_n > 0$, $a_n \ge a_{n+1}$, and $a_n \rightarrow 0$ when n- then the series $\sum_{n=1}^{\infty} (-1)^n a_n$ converges	→∞
	.5 Mart 30 50 30 0.5

A power series in (x-a) is a series that can be expressed as	
$\sum_{n=0}^{\infty} c_n (x-a) x^n = c_0 + c_1 (x-a) x + c_2 (x-a) x^2 + \dots + c_n (x-a)$	ⁿ
The <u>coefficients</u> c_0, c_1, c_2 are constants.	
"a" is also a constant	
	R

3 Theorem For a given power series $\sum_{n=0}^{\infty} c_n (x-a)^n$ there are only three possibilities: (i) The series converges only when $x = a$	
(i) The series converges for all x.	
(iii) There is a positive number R such that the series converges if $ x - a < R$ and diverges if $ x - a > R$.	
• The number R in (iii) is called the <u>radius of convergence</u> of the power series.	
• By convention, R=0 in (i) and $R=\infty$ in (ii)	
• The <u>interval of convergen</u> ce is the set of all values of x for which the power series converges.	
• There are four possibilities for a power series centered at a.	
●(a-R,a+R)	
●[a-R,a+R)	
●(a-R,a+R]	

