MAT I 32 Series
 8.4 Other convergency tests

EXAMPLE: Determine if the series

below converge

$$
\begin{gathered}
\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n} \\
\sum_{n=1}^{\infty} \frac{(-1)^{n}(n+2)}{n(n+1)}
\end{gathered}
$$

Recall:
to check a sequence is decreasing,

1. compare terms
2. if the sequence is defined by a function, check derivative is negative.

Determine if the series below convergent, absolutely convergent or divergent.

$$
\begin{array}{lll}
\sum_{n=1}^{\infty} \frac{(-1)^{n} n}{2^{n}} & \sum_{n=1}^{\infty} \frac{(-1)^{n}}{n} & \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{(2 n-1)!} \\
& \sum_{n=1}^{\infty} \frac{(-1)^{n}(n+2)}{n(n+1)} & \sum_{n=1}^{\infty}(-1)^{n}\left(\frac{2}{3}\right)^{n}
\end{array}
$$

The Ratio Test

(i) If $\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=L<1$, then the series $\sum_{n=1}^{\infty} a_{n}$ is absolutely convergent (and therefore convergent)
(ii) If $\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=L>1$ or $\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\infty$, then the series $\sum_{n=1}^{\infty} a_{n}$ is divergent.
(iii) If $\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=1$, the Ratio Test is inconclusive; that is, no conclusion can be drawn about the convergence or divergence of $\sum a_{n}$.

The alternating series test

```
If we have a sequence \(\left\{a_{n}\right\}\),
```

where $a_{n}>0, a_{n} \geq a_{n+1}$, and $a_{n} \rightarrow 0$ when $n \rightarrow \infty$
then the series
$\sum_{n=1}^{\infty}(-1)^{n} a_{n}$
converges

Determine whether the series below are

 absolutely convergent.$$
\sum_{n=1}^{\infty} \frac{\cos \left(\frac{1}{3} n \pi\right)}{n^{2}+2}
$$

$$
\begin{gathered}
\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n} \\
\sum_{n=1}^{\infty} \frac{(-1)^{n}(n+2)}{n(n+1)}
\end{gathered}
$$

Definition A series $\sum a_{n}$ is called absolutely convergent if the series of absolute values $\Sigma\left|a_{n}\right|$ is convergent.

[^0]
Series Strategies.

- If $\left\{a_{n}\right\}$ does not converge to 0 when $n \rightarrow \infty$, then Σa_{n} diverges.
- Recall convergence of p-series and geometric series.
- If the series has a form that is similar to a p-series or a geometric series, then try the comparison tests. (Recall that the comparison tests apply only to series with positive terms.)
- Series that involve factorials or other products (including a constant raised to the n-th power) are often conveniently tested using the ratio test. (Note the ratio test does not work with the p-series)
- If the series is alternating, $\mathrm{a}_{\mathrm{n}}>0, \mathrm{a}_{\mathrm{n}} \leq \mathrm{a}_{\mathrm{n}+1}$, and $\mathrm{a}_{\mathrm{n}} \rightarrow 0$ wher $\sum_{n=1}^{\infty}(-1)^{n} a_{n}$ $n \rightarrow \infty$)
- If $a_{n}=f(n), f(x)>0$ for all $x \geq 1, f$ is continuous, and decreasing and the integral $\int f(x) d x$ is easily evaluated, then try the integral test.

Example

- Approximate the series $\sum_{n=1}^{\infty} \frac{1}{n^{2}}$ by using the first 4 terms.
- Estimate the error of the approximation.
- How many terms are required to ensure that the sum is accurate to within 0.0001 ?

3. Remainder Estimate for the Integral Test Suppose $f(k)=a_{k}$, where f is a
continuous, positive, decreasing function for $x \geqslant n$ and Σa_{n} is convergent. If
continuous, positive, decreasing function for $x \geqslant n$ and $\sum a_{n}$ is convergent. If $R_{n}=s-s_{n}$, then
$\int_{n+1}^{\infty} f(x) d x \leqslant R_{n} \leqslant \int_{n}^{\infty} f(x) d x$

A power series is in this form:

$\sum_{n=0}^{\infty} c_{n} x^{n}=c_{0}+c_{1} x+c_{2} x^{2}+c_{3} x^{3}+\infty x+c_{n} x^{n}+\infty \times x$
or
$\sum_{n=0}^{\infty} c_{n}(x-a)^{n}=c_{0}+c_{1}(x-a)+c_{2}(x-a)^{2}+c_{3}(x-a)^{3}+x x+c_{n}(x-a)^{n}+\infty$
The coefficients $c_{0}, c_{1}, c_{2} \ldots$ are constants.
The center " a " is also a constant.
(The first series would be centered at the origin if you graphed it. The second series would be shifted left or right " a " is the new center.)

A power series in x is a series that can be expressed as
$c_{0}+c_{1} x+c_{2} x^{2}+\cdots+c_{n} x^{n} \cdots$

The coefficients $c_{0}, c_{1}, c_{2} \ldots$ are constants.

We also use the notation below

$$
\sum_{n=0}^{\infty} c_{n} x^{n}=c_{0}+c_{1} x+c_{2} x^{2}+\cdots+c_{n} x^{n} \cdots
$$

$c_{0}+c_{1} x+c_{2} x^{2}+\cdots+c_{n} x^{n} \cdots$

- When we studied infinite series (of constant terms), the key question was..

EXAMPLE: Find the values of x for which each of the power series is convergent

$$
\begin{array}{ll}
\sum_{n=0}^{\infty} 3 x^{n} & \sum_{n=0}^{\infty} \frac{(-1)^{n} 2^{n} x^{n}}{n 3^{n}} \\
\sum_{n=0}^{\infty} \frac{x^{n}}{n!} & \sum_{n=0}^{\infty} n!x^{n}
\end{array}
$$

3 Theorem For a given power series $\sum_{n=0}^{\infty} c_{n}(x-a)^{n}$ there are only three possibilities:
(i) The series converges only when $x=a$.
(ii) The series converges for all x.
(iii) There is a positive number R such that the series converges if $|x-a|<R$ and diverges if $|x-a|>R$.

Which of the possibilities of the theorem above hold for each of the power series?

$$
\sum_{n=0}^{\infty} 3 x^{n}
$$

$$
\sum_{n=0}^{\infty} \frac{(-1)^{n} 2^{n} x^{n}}{n 3^{n}}
$$

$$
\sum_{n=0}^{\infty} \frac{x^{n}}{n!} \quad \sum_{n=0}^{\infty} n!x^{n}
$$

EXAMPLE: Find the values of x for which each of the power series is convergent

$$
\sum_{n=0}^{\infty} \frac{(-1)^{n} 2^{n}(x+2)^{n}}{n 3^{n}}
$$

$$
\sum_{n=0}^{\infty} 3(x-1)^{n}
$$

```
Theorem For a given power series }\sum=\mp@subsup{c}{n}{}(x-a\mp@subsup{)}{}{n}\mathrm{ there are only three possibilities:
(i) The series converges only when \(x=a\)
(ii) The series converges for all \(x\).
(iii) There is a positive number \(R\) such that the series converges if \(|x-a|<R\) and diverges if \(|x-a|>R\).
```

- The number R in (iii) is called the radius of convergence of the power series.
- By convention, $\mathrm{R}=0$ in (i) and $\mathrm{R}=\infty$ in (ii)
- The interval of convergence is the set of all values of x for which the power series converges.
- There are four possibilities for a power series centered at a.

$$
\bullet(a-R, a+R)
$$

- $[\mathrm{a}-\mathrm{R}, \mathrm{a}+\mathrm{R})$
- $(a-R, a+R]$
- $[\mathrm{a}-\mathrm{R}, \mathrm{a}+\mathrm{R}]$

EXAMPLE: Find the radius of convergence and the interval of convergence

$$
\sum_{n=0}^{\infty} \frac{(-1)^{n} 2^{n}(x+2)^{n}}{n 3^{n}}
$$

$$
\sum_{n=0}^{\infty} 3(x-1)^{n}
$$

[^0]: 1 Theorem If a series $\sum a_{n}$ is absolutely convergent, then it is convergent.

