MAT I 32 Series

8.3 Some convergency tests and estimating sums

Theorem

If we have a sequence defined
by a function, $a_{k}=f(k)(k=1$,
$2, \ldots$) where the function f is positive, continuous, decreasing for $\mathrm{x} \geq 1$

Then

$$
\sum_{k=1}^{\infty} a_{k} \text { and } \int_{1}^{\infty} f(x) d x
$$

both converge or both diverge

$$
g(x)=1 /\left(x^{2}+1\right)
$$

both converge
$y-2 \operatorname{coserati)}$
$f(x)=20 x /\left(x^{2}+1\right)$
both diverge

Consider the sequences $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ defined by functions $a_{n}=20 n /\left(n^{2}+1\right)$ and $b_{n}=1 / n^{2}$
Are the series associated with each of these sequences convergent or divergent?

Important Example

Use the integral test to determine wether the p -series

$$
\sum_{n=1}^{\infty} \frac{1}{n^{p}}
$$

is convergent or divergent.

```
1 The p-series \sum}\mp@subsup{\sum}{n=1}{\infty}\frac{1}{\mp@subsup{n}{}{p}}\mathrm{ is convergent if }p>1\mathrm{ and divergent if }p\leqslant1\mathrm{ .
```

Cathedral of Florence and the Cupola of Brunelleschi

Since the harmonic series diverges, one could build arbitrarily large cupola whose stability is based on this fact. Prime example of a large cupola is the cupola of the cathedral of Florence. This cupola was designed by Brunelleschi. The cupola was completed in 1436. The shape and the width of the cupola of Brunelleschi suggest, however, that its stability is not based on the divergence of the harmonic series.

Examples to remember:

- The p-series $\sum_{n=1}^{\infty} \frac{1}{n^{p}}$ is convergent if $\mathrm{p}>1$.
- The p-series $\sum_{n=1}^{\infty} \frac{1}{n^{p}}$ is divergent if $\mathrm{p} \leq 1$.
- The geometric series $\sum_{n=1}^{\infty} a r^{n}$ is convergent if $-1<r<1$.
- The geometric series $\sum_{n=1}^{\infty} a r^{n}$ i is convergent if $-1<r<1$.

Example Determine whether the series below are convergent or divergent.

$$
\begin{aligned}
& \sum_{n=1}^{\infty} \frac{1}{3^{n}+2} \\
& \sum_{n=1}^{\infty} \frac{1}{n \sqrt{\ln (n)}} \\
& \sum_{n=1}^{\infty} \frac{\cos \left(\frac{1}{3} n \pi\right)}{n^{2}+\pi}
\end{aligned}
$$

Definition of the remainder after k

 terms.- If an infinite series is convergent and the sum is S, then the remainder after k terms, obtained by approximating the sum of the series by the k-th partial sum S_{k}, is denoted by R_{k} and is $R_{k}=S-s_{k}$.
- Example: Find R_{3} for the geometric series $\sum_{n=1}^{\infty} \frac{4}{5^{n}}$
If we approximate the series by s_{3},

Example

- Approximate the series $\sum_{n=1}^{\infty} \frac{1}{n^{2}}$ by using the first 4 terms.
- Estimate the error of the approximation.
- How many terms are required to ensure that the sum is accurate to within 0.0001 ?

```
3 Remainder Estimate for the Integral Test Suppose f(k)=a
continuous, positive, decreasing function for }x\geqslantn\mathrm{ and }\sum\mp@subsup{a}{n}{}\mathrm{ is convergent. If 
R R}=s-\mp@subsup{s}{n}{},\mathrm{ then
```


