

MAT I32 8.2-Series

Consider a sequence $\left\{a_{n}\right\}$. We associate with $\left\{a_{n}\right\}$ a new sequence $\left\{s_{n}\right\}$, with general term $\mathrm{s}_{\mathrm{n}}=\mathrm{a}_{1}+\mathrm{a}_{2}+. .+\mathrm{a}_{\mathrm{n}}$,
The sequence $\left\{s_{n}\right\}$ is called an infinite series.
If the sequence $\left\{s_{n}\right\}$ is convergent to a number s then we write

$$
\sum_{n=1}^{\infty} a_{n}=s
$$

The number s is called the sum of the series.

Consider the sequence defined explicitely by the formula $a_{n}=1 / 2^{n}$.
Define a new sequence:
$\mathrm{s}_{\mathrm{I}}=\mathrm{a}_{\mathrm{l}}$,
$s_{2}=a_{1}+a_{2}$,
$s_{2}=a_{1}+a_{2}+a_{3}$,
$s_{n}=a_{1}+a_{2}+. .+a_{n}$,
Is $\left\{s_{n}\right\}$ convergent?

Example: give the first three terms of the series associated to the sequences below, determine whether they are convergent and if so, find the sum.
a. $a_{n}=(-I)^{n}$.
b. $a_{n}=n /(n+l)$
c. $a_{n}=n$
d. $a_{n}=I /(n .(n+l))$.
e. $a_{n}=1 / 3^{n}$.

Hint: Recall
$\left(a^{n}-b^{n}\right)=(a-b)\left(a^{n-1}+a^{n-2} b+\cdot+a b^{n-2}+b^{n-1}\right)$
$\sum_{n=1}^{\infty} a r^{n-1} \begin{aligned} & \text { Determine whether the each of the series } \\ & \text { below is a geometric series. If is, find a }\end{aligned}$ formula for the general term and a formula for the sum.

$$
\begin{array}{ll}
\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\ldots & \sum_{n=1}^{\infty} \frac{1}{2}\left(\frac{1}{2}\right)^{n-1} \\
\frac{3}{5}-\frac{12}{25}+\frac{48}{125}-\frac{192}{625}+\ldots & \sum_{n=1}^{\infty} \frac{3}{5}\left(-\frac{4}{5}\right)^{n-1} \\
\frac{2}{3}+\frac{4}{3}+\frac{8}{3}+\frac{16}{3}+\ldots & \sum_{n=1}^{\infty} \frac{2}{3}(2)^{n-1}
\end{array}
$$

The sum of a geometric series

$s_{n}=a+a r+a r^{2}+a r^{3}+\ldots a r^{n-1} \quad$ Sum of n terms
$r s_{n}=a r+a r^{2}+a r^{3}+\ldots a r^{n} \quad$ Multiply each term by r
$s_{n}-r s_{n}=a-a r^{n} \quad$ subtract
$s_{n}=\frac{a-a r^{n}}{1-r}=\frac{a\left(1-r^{n}\right)}{1-r}, r \neq 1$
if $|r|<1, \quad r^{n} \rightarrow 0$ as $n \rightarrow \infty$.
Geometric series converges to $s_{n}=\frac{a}{1-r},|r|<1$
If $r>1$ the geometric series diverges.

Find, if possible, the sum of the geometric series below.
$\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\ldots \quad \sum_{n=1}^{\infty} \frac{1}{2}\left(\frac{1}{2}\right)^{n-1}$
$\frac{3}{5}-\frac{12}{25}+\frac{48}{125}-\frac{192}{625}+\ldots \quad \sum_{n=1}^{\infty} \frac{3}{5}\left(-\frac{4}{5}\right)^{n-1}$
$\frac{2}{3}+\frac{4}{3}+\frac{8}{3}+\frac{16}{3}+\ldots \quad \sum_{n=1}^{\infty} \frac{2}{3}(2)^{n-1}$
Recall: An geometric sequence has the form $a_{n}=a_{1} \cdot r^{n-1}$

- Write the number $3.12 \overline{234}$ as a ratio of integers.

Important example.

- The series associated with the sequence $a_{n}=1 / n$ is called the harmonic series.
- Determine whether the harmonic series is convergent.

```
8 Theorem If \Sigma }\mp@subsup{a}{n}{}\mathrm{ and }\Sigma\mp@subsup{b}{n}{}\mathrm{ are convergent series, then so are the series }\Sigmac\mp@subsup{a}{n}{
(where c is a constant), \Sigma(an}+\mp@subsup{b}{n}{})\mathrm{ , and }\Sigma(\mp@subsup{a}{n}{}-\mp@subsup{b}{n}{})\mathrm{ , and
    (i) }\mp@subsup{\sum}{n=1}{\infty}c\mp@subsup{a}{n}{}=c\mp@subsup{\sum}{n=1}{\infty}\mp@subsup{a}{n}{
    (ii) }\mp@subsup{\sum}{n=1}{\infty}(\mp@subsup{a}{n}{}+\mp@subsup{b}{n}{})=\mp@subsup{\sum}{n=1}{\infty}\mp@subsup{a}{n}{}+\mp@subsup{\sum}{n=1}{\infty}\mp@subsup{b}{n}{
    (iii) }\mp@subsup{\sum}{n=1}{x}(\mp@subsup{a}{n}{}-\mp@subsup{b}{n}{})=\mp@subsup{\sum}{n=1}{x}\mp@subsup{a}{n}{}-\mp@subsup{\sum}{n=1}{\infty}\mp@subsup{b}{n}{
```

Find the area and the perimeter of the Koch Snowflake

