

Consider a sequence $\{a_n\}$. We associate with $\{a_n\}$ a new sequence $\{s_n\}$, with general term $s_n=a_1+a_2+..+a_n$, The sequence $\{s_n\}$ is called an infinite series. If the sequence $\{s_n\}$ is convergent to a number s then we write $\sum_{n=1}^{\infty} a_n = s$

The number s is called the series.

Example: give the first three terms of the series associated to the sequences below, determine whether they are convergent and if so, find the sum. a. $a_n = (-1)^n$. b. $a_n = n/(n+1)$ c. $a_n = n$ d. $a_n = 1/(n.(n+1))$. e. $a_n = 1/3^n$. Hint: Recall $(a^n - b^n) = (a - b)(a^{n-1} + a^{n-2}b + \cdot + ab^{n-2} + b^{n-1})$

The sum of a geometric series
$s_n = a + ar + ar^2 + ar^3 + \dots ar^{n-1}$ Sum of n terms
$rs_n = ar + ar^2 + ar^3 + \dots ar^n$ Multiply each term by r
$S_n - rS_n = a - ar^n$ subtract
$s_n = \frac{a - ar^n}{1 - r} = \frac{a(1 - r^n)}{1 - r}, r \neq 1$
$if r < 1, \qquad r^n \to 0 \ as \ n \to \infty.$
Geometric series converges to $s_n = \frac{a}{1-r}$, $ r < 1$
If r>1 the geometric series diverges.

8 Theorem If
$$\Sigma a_n$$
 and Σb_n are convergent series, then so are the series Σca_n
(where c is a constant), $\Sigma (a_n + b_n)$, and $\Sigma (a_n - b_n)$, and
(i) $\sum_{n=1}^{\infty} ca_n = c \sum_{n=1}^{\infty} a_n$ (ii) $\sum_{n=1}^{\infty} (a_n + b_n) = \sum_{n=1}^{\infty} a_n + \sum_{n=1}^{\infty} b_n$
(iii) $\sum_{n=1}^{\infty} (a_n - b_n) = \sum_{n=1}^{\infty} a_n - \sum_{n=1}^{\infty} b_n$

