\square

MAT132

Directions fields and Euler's method

Problem

- Consider the differential equation $y^{\prime}=2 x$
- For each point (x_{0}, y_{0}) of the plane, draw a short piece of a line passing through ($\mathrm{x}_{0}, \mathrm{y}_{0}$) with slope $2 \mathrm{x}_{0}$

Solution of $y^{\prime}=2 x, y(0)=-4$

Problem

- Consider the differential equation $y^{\prime}=2 x$
- Suppose that $\mathrm{y}=\mathrm{y}(\mathrm{x})$ is a solution.
- What can be say about the slope of the tangent to curve $\{(\mathrm{x}, \mathrm{y}(\mathrm{x}))\}$ for different values of x ?

Problem

- Consider the differential equation $y^{\prime}=2 . x . y$
- For each point $\left(\mathrm{x}_{0}, \mathrm{y}_{0}\right)$ of the plane, draw a short piece of a line passing through $\left(\mathrm{x}_{0}, \mathrm{y}_{0}\right)$ with slope $2 \mathrm{x}_{0} \mathrm{y}_{0}$

Direction field and some solutions of $y^{\prime}=2 x y$

Direction field of $y^{\prime}=y$

Direction fields for $y^{\prime}=2 x$ and $y^{\prime}=2 x y$

Euler's method

Leonhard Euler 1707-1783

Euler method

Goal: Find an approximate solution of $y^{\prime}=2 x . y, y(1)=2$.

- Thus if x_{1} is close enough to 0 , we can approximate y (x_{1}) by the line $y_{0}+m\left(x_{1}-x_{0}\right)=2+4$ ($\mathrm{x}_{1}-1$)

Recall: The tangent line is a good approximation to a curve on a small interval.

A direction field and some solutions.

14

Euler method

Goal: Find an approximate numerical solution of $y^{\prime}=2 x \cdot y, y(1)=2$ at a point close to 1 .
First step

Recall: The tangent line is a good approximation to a curve on a small interval.
The equation of the line through ($\mathrm{x}_{0}, \mathrm{y}_{0}$) with slope m is $y=y_{0}+m\left(x-x_{0}\right)$

- We begin by approximating solution $y=y(x)$ when x is close to 1 .
- The solution $(x, y(x))$ passes through the point $(1,2)$.
- The value of y^{\prime} at $(1,2)$ is 2 . $x_{0} . y_{0}=2.1 .2=4$.
- The tangent line to the solution at the initial point $(1,2)$ is $y=2+4(x-1)$
- Thus if x_{1} is close enough to 0 , we can approximate y $\left(\mathrm{x}_{1}\right)$ by the line $\mathrm{y}_{0}+\mathrm{m}\left(\mathrm{x}_{1}-\mathrm{x}_{0}\right)=2+4\left(\mathrm{x}_{1}-1\right)$

Euler's method

Given $y^{\prime}=F(x, y), y\left(x_{0}\right)=y_{0}, h$
$y_{0}=y\left(x_{0}\right)$ initial condition Given $\left(\mathrm{x}_{\mathrm{i}}, \mathrm{y}_{\mathrm{i}}\right)$, and
h stepsize
$x_{i}=x_{0}+i . h$
$y_{1}=y_{0}+h F\left(x_{0}, y_{0}\right)$
$y_{2}=y_{1}+h F\left(x_{1}, y_{1}\right)$
....
$y_{n}=y_{n-1}+h F\left(x_{n-1}, y_{n-1}\right)$ step size h, compute the "next" point ($\mathrm{x}_{\mathrm{i}+1}, \mathrm{y}_{\mathrm{i}+1}$),

$$
y_{n}=y_{n-1}+h F\left(x_{n-1}, y_{n-1}\right)
$$

$\frac{d y}{d x}=f(x) / g(y)$
MAT132
Separable equations

Two different "windows" and some solutions of $y^{\prime}=\sin (x) \cdot y^{2}$

EXAMPLE: Find the solutions of

$$
y^{\prime}=\sin (x) \cdot y^{2}
$$

What are the equilibrium solutions of $y^{\prime}=\sin (x) \cdot y^{2}$

Consider the equation $y^{\prime}=\sin (x) \cdot y^{2}$

- write $f(x)=\sin (x), g(y)=y^{2}$
- Then $d y / d x=f(x) \cdot g(y)$ A separable differential
- $\int(1 / g(y)) d y=\int f(x) d x$ equation is a differential equation that can be written as $y^{\prime}=f(x) \cdot g(y)$

Examples of separable
differential equations

$$
\begin{gathered}
y^{\prime}=\left(x+e^{x}\right) \cos (y) \\
y^{\prime}=\sin (x) \cdot y^{2}
\end{gathered}
$$

Examples of non separable differential equations $y^{\prime}=\left(x+e^{y}\right) \cos (x . y)$ $y^{\prime}=\sin (x+y) \cdot y^{2}$

EXAMPLE: Find the solutions of $y^{\prime}=\sin (x) /\left(1+\sin (y)+y^{2}\right)$

Direction field of ${ }^{\prime}=\sin (x) /(1+\sin (y)+$ $\left.y^{2}\right)$

Example: Solve the differential equations
$2 \quad \frac{d y}{d x}=\frac{\sqrt{x}}{e^{y}}$
3. $\left(x^{2}+1\right) y^{\prime}=x y$
6. $\frac{d y}{d t}=\frac{e^{y} \sin ^{2}(t)}{y \sec (t)}$

$$
\text { 2. } \frac{d y}{d x}=\frac{\sqrt{x}}{e^{y}}
$$

$\left(x^{2}+1\right) y^{\prime}=x y$

EXAMPLE: Find an equation of the curve that satisfies dy/ $d x=4 x^{3} y$ and whose y intercept is 7 .

