

MAT I 32

Differential Equations

Compare the following two

 problems- Find a number x such that $x^{2}-3 x+1=0$
-In other words, find a number with certain properties.
- Find a function f such that $f^{\prime}(x)=3 f(x)$ for all x in R.
-In other words, find a function with certain properties.

Adding constrains

- Find a function f such that $f^{\prime}(x)=3 f(x)$ for all x in R and $f(1)=3$
- Find a function f such that $f^{\prime}(x)=3 f(x)$ for all x in R and $f(1)=3$ and $f(0)=1$.

A differential equation

- Find a function f such that $f^{\prime}(x)=3 f(x)$ for all x in R.

Definition

- An (ordinary) differential equation is an equation in which the unknown is a function and where one or more of the derivatives of this function appears.
- Examples

$$
\begin{aligned}
& y^{\prime}=y^{2}+1+\sin (x) \\
& \frac{d^{2} f}{d t^{2}}+3 t \frac{d f}{d t}=t^{5} f
\end{aligned}
$$

Question:

- In the second equation, f is differentiated with respect to t .
- In the first question, what does y' mean?

$$
\begin{aligned}
& y^{\prime}=y^{2}+1+\sin (x) \\
& \frac{d^{2} f}{d t^{2}}+3 t \frac{d f}{d t}=t^{5} f
\end{aligned}
$$

Definition The order of a differential equation is the order of the highest derivative of the unknown function.

EXAMPLES:

$$
y^{\prime}=y^{2}+1+\sin (x), \quad \text { order }=1,
$$

x is the independent variable
$y=y(x)$ is the dependent variable
$\frac{d^{2} f}{d t^{2}}+3 t \frac{d f}{d t}=t^{5} f \quad$ order $=2$,
t is the independent variable
$\mathrm{f}=\mathrm{f}(\mathrm{t})$ is the dependent variable

Definition: The solution of a differential equation is a function f which satisfies the equation.

EXAMPLES OF SOLUTIONS

$y^{\prime}=3 x^{2} y, \quad y=C \mathrm{e}^{\mathrm{x}^{3}}, \mathrm{C}$ is a real number
$\frac{d^{2} f}{d t^{2}}=-f, \quad y=a \cos (t)+b \sin (t), \mathrm{a}$ and b are real numbers

EXAMPLE

- Which of the following functions are solutions of the differential equation $y^{\prime \prime}+y=\sin (x)$?
a. $y=\sin (x)$
b. $y=\cos (x)$
c. $y=x \sin (x) / 2$
d. $y=-x \cos (x) / 2$

Given a differential equation with unknown function y , an initial condition is an equation of the form $\mathrm{y}\left(\mathrm{t}_{0}\right)=\mathrm{x}_{0}$, where t_{0} and x_{0} are numbers

EXAMPLE: Solve the following differential equations

$$
\begin{aligned}
& y^{\prime}=3, y(1)=4 \\
& y^{\prime}=3+x, y(1)=4 \\
& y^{\prime}=y, y(0)=2 \\
& y^{\prime}=x y \\
& x y^{\prime}=0, y(0)=7 \\
& x y^{\prime}=\frac{1}{x} y
\end{aligned}
$$

Mathematical models

- The goal is not to produce an identical copy of the real object but give a representation of some aspect of the object.
- We can make a model by simplifying assumptions and combining aspects that may or may not belong together.
- Once the model is build, one should compare predictions of the model with data.

An elementary model of population growth

Assumption: The number of individuals in a population grows at a rate proportional to the size of this population.

\bullet	P
\bullet	k
\bullet	Example of a differential equation.
- It is a first order (only first derivatives)	
\bullet	It is an ordinary differential equation (no partial
derivatives)	

AnOther model Of
Assumption: The number of individuals
in a population grows at a rate
proportional to the size of this
population when the number of
individuals is small, but decreases
when surpasses a certain number.

This equation "fits" the
above assumption but it
is not the only equation
with that property. (The
assumption does not
give the decreasing
rate)

dP/dt = k $\mathrm{P}(1-\mathrm{P} / \mathrm{M})$

