

f(x)?	Equations
	For each equation find x (or (x,y) when appropriate) such that
R	$x^{2} + x - 2 = 0$ $x^{3} + x + 1 = 0$
()	$x\sin(y) + e^x = 0$
~ ~	$x\sin(y) + e^x = 2y$
For e	each equation, find a function f such that
	$\int f(x) dx = x^3 \qquad \text{or such that}$
	$f(x)+x.f'(x)+x^2=0$
	$x^2 + x$

Compare the following two problems

Find a number x such that x²-3x+1=0

 In other words, find a <u>number</u> with certain properties.

- Find a function f such that f'(x)=3f(x) for all x in R.
 - In other words, find a <u>function</u> with certain properties.

A differential equation

• Find a function f such that f'(x)=3f(x) for all x in R.

Adding constrains

- Find a function f such that f'(x)=3f(x) for all x in R and f(1) = 3
- Find a function f such that f'(x)=3f(x) for all x in R and f(1) = 3 and f(0)=1.

Definition

• An (ordinary) *differential equation* is an equation in which the unknown is a function and where one or more of the derivatives of this function appears.

Examples

 $y' = y^2 + 1 + \sin(x)$

 $\frac{d^2f}{dt^2} + 3t\frac{df}{dt} = t^5f$

Definition The <u>order</u> of a differential equation is the order of the highest derivative of the unknown function. EXAMPLES: $y' = y^2 + 1 + \sin(x), \quad order = 1,$ x is the independent variable y=y(x) is the dependent variable $\frac{d^2f}{dt^2} + 3t\frac{df}{dt} = t^5 f \quad order = 2,$ t is the independent variable f=f(t) is the dependent variable

 $\frac{d^2 f}{dt^2} = -f$, $y = a\cos(t) + b\sin(t)$, a and b are

real numbers

Given a differential equation with unknown function y, an *initial condition* is an equation of the form $y(t_0)=x_0$, where t_0 and x_0 are numbers

EXAMPLE

• Which of the following functions are solutions of the differential equation y"+y=sin(x)?

a. $y = \sin(x)$ b. $y = \cos(x)$ c. $y = x \sin(x)/2$ d. $y = -x \cos(x)/2$ EXAMPLE: Solve the following differential equations

y' = 3, y(1) = 4 y' = 3 + x, y(1) = 4 y' = y, y(0) = 2 y' = xy xy' = 0, y(0) = 7 $xy' = \frac{1}{x}y$

Mathematical models

- The goal is not to produce an identical copy of the real object but give a representation of some aspect of the object.
- We can make a model by simplifying assumptions and combining aspects that may or may not belong together.
- Once the model is build, one should compare predictions of the model with data.

Modeling via differential equations

Quantities

- independent variable (almost always time in our course)
- & dependent variable (function of the independent variable)
- > parameters (quantities which do not change with time. They can be adjusted).
- 1. State assumptions. This assumptions should describe relationships between quantities.
- 2. Describe variables and parameters used in the model.
- Use assumptions in 1. to derive equations involving variables and parameters in 2. Key words are for instance: "rate of change of..." or "reate of increase of...", "velocity", "acceleration", "proportional to"

