

When a force moves an object, we say the force does work. If the force $F$ is constant, the work done is given by the equation $=\mathrm{F} . \mathrm{d}$, where $d$ is the distance moved.

$$
\text { work }=\text { force } \mathrm{x} \text { distance }
$$

Example: A constant force of $F$ pounds acts in the direction of motion of an object moving to the right along the x axis from point A to point B .

If $B-A$ is the number of feet in the distance the object moves, and $W$ is the number of foot-pound of work done by the force, then $\quad W=F(B-A)$

When a force moves an object, we say the force does work. If the force $F$ is constant, the work done is given by the equation $W=F$. d, where $d$ is the distance moved.

$$
\text { work }=\text { force } \times \text { distance }
$$



W (work) gives a measure of the "effort" of the force $F$ in moving an object a certain distance.

- W gives a measure of the "effort" in moving an object from a point a to a point b.


## work $=$ force x distance

Example: Find the work done by lifting a $70-\mathrm{lb}$ weight to a height of 3 ft .

$$
W=F(b-a)
$$

Suppose that an object moves along the $x$ axis, in the positive direction, from $x=a$ to $\mathrm{x}=\mathrm{b}$.
At each point $x$ in $[a, b]$, the force $f(x)$ acts on the object. (Note that the force is not necessarily constant).

If $\Delta x=(b-a) / n$ and $x_{i}=a+i \Delta x$, the work done on the interval $\left[\mathrm{x}_{\mathrm{i}-1}, \mathrm{x}_{\mathrm{i}}\right]$ can be approximated by $W_{i}=f\left(x_{i}^{*}\right) \Delta x$, where $x_{i}^{*}$ is in $\left[\mathrm{x}_{\mathrm{i}-1}, \mathrm{x}_{\mathrm{i}}\right]$
Thus, the work on $[\mathrm{a}, \mathrm{b}], \quad W \approx \sum_{i=1}^{n} f\left(x_{i}^{*}\right) \Delta x$

If an object moves along the x axis from $\mathrm{x}=\mathrm{a}$ to $\mathrm{x}=\mathrm{b}$, and the force at each point is $f(x)$ then the work is


## EXAMPLE

- A spring can by compressed by 4 in. from its natural length of 12in. when a force of 6 lb . is applied. How much work is done in compressing the spring this distance?


## Hooke's Law

- The force required to hold a spring stretched $x$ meters beyond its natural length is $f(x)=k x$ where $k$ is a constant that depends on the spring.

Computing work with "big" objects.

- Find a "wise" location of the x-axis and the origin.
- Divide the object in $n$ pieces. These pieces should be such that one can approximate the work for each of them, with the formula $\mathrm{W}=\mathrm{F} . \mathrm{d}$.
- Add the work of each part. This yields a Riemann sum, and therefore, an integral.
Note that not all the problems in this section are direct application of the formula

[^0]
## EXAMPLE:

- A particle is moved along the $x$-axis by a force that measures $10 /(1+x)^{2}$ pounds at a point $x$ feet from the origin.
- Find the work done in moving the particle from the origin to a distance of 9 ft (in the positive direction).


## Guidelines

- $W=F . d . F$ is measured in pounds or kilograms. Many times, $F$ is the weight
- If you are given the mass, you need to compute the weight by the formula $F=m a$, where a is the gravity $\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$
- If you are given the volume and density, then you compute mass = density x volume, and with the mass, compute $F$.


## EXAMPLE

- A spring has a natural length of 20 cm . If a $25-\mathrm{N}$ force is required to keep it stretched to a length of 30 cm , how much work is required to stretch it from 20 cm to 25 cm .?

Find the volume of the solid obtained by revolting the
$x^{2}+(y-1)^{2}=1$ about the $x$-axis
What happens if we revolt the circle about the $y$-axis?

## EXAMPLE

- A 1600lb elevator is suspended by a $200-\mathrm{ft}$ cable that weighs $10 \mathrm{lb} / \mathrm{ft}$. How much work is required to raise the elevator from the basement to the third floor, a distance of 30ft?


## Newton's second Law of Motion

- Consider an object that moves in a straight line, with position function $s(t)$ and mass $m$. Then the force $F$ on the object (in the same direction).
$F=m \cdot a(t)$, where $a=\frac{d^{2} s}{d t^{2}}$



[^0]:    $W=\int f(x) d x$

