MAT I32

The average value of a function

After explaining to a student through various lessons and examples that:

$$
\operatorname{Lim}_{x \rightarrow 8} \frac{1}{x-8}=\infty
$$

I tried to check if she really understood that, so I gave her a different example.

This was the result:
$\operatorname{Lim}_{x \rightarrow 5} \frac{1}{x-5}=\mathrm{n}$

The homework grades of a student are 6, 6, 7, 8, 10. Find the average homework score.

average $=$ sum of grades/ number of hw

The temperature of a room is 70 degrees Fahrenheit at 10AM, 72 degrees Fahrenheit at 11:05AM and 74 at 11:30AM. Use these data to estimate the average temperature.

What if we want to make a more accurate estimation of the average temperature?

$$
\begin{aligned}
f_{\text {average }} & \approx \frac{f\left(x_{1}\right)+f\left(x_{2}\right)+\ldots+f\left(x_{n}\right)}{n} \\
& =\frac{\Delta x}{b-a}\left[f\left(x_{1}\right)+f\left(x_{2}\right)+\ldots f\left(x_{n}\right)\right]
\end{aligned}
$$

Since $\quad \Delta x=(b-a) / n$

Taking limits $\frac{1}{b-a} \int_{a}^{b} f(x) d x$

Demo

- How high would the water level be if the waves all settled?

If the temperature is given by a function $\mathrm{f}, \mathrm{f}(\mathrm{x})=$ temperature at time x, x in $[\mathrm{a}, \mathrm{b}]$.
We want to estimate the average value of f.
Divide [a, b] into n equal intervals.
$\Delta x=(b-a) / n$
x_{i} is a number the i-th interval
We estimate for the average value:

$$
f_{\text {average }} \approx \frac{f\left(x_{1}\right)+f\left(x_{2}\right)+\ldots+f\left(x_{n}\right)}{n}
$$

Example

- If $f(x)=x^{2}$, find the average value of f on the interval $[1,3]$ and interpret the result geometrically.
- http://www.calculusapplets.com/aveval.html
- Distance and Average Velocity for Piecewise Trajectory (Demo) http:// demonstrations.wolfram.com/ DistanceAndAverageVelocityForPiecewiseTra jectory/
- The temperature of a room is 70 degrees Fahrenheit at 10AM, 72 degrees Fahrenheit at 11:05AM and 74 at 11:30AM. Use these data to estimate the average temperature.
- The equation below gives the temperature $T(t)$ of a room after t minutes.

$$
T(t)=\frac{8}{14625} t^{2}-\frac{14}{2925} t+70
$$

- What is the average temperature during the first 90 minutes?
- What is the average temperature during the first 30 seconds?
- How high would the water level be if the waves all settled?

The speed of an object is given by the equation $v(t)=12 t-t^{2}$ where v is in meters $/ \mathrm{sec}$ and t is in seconds.
Determine the average speed of the object between $t=2 \mathrm{~s}$ and $\mathrm{t}=\| \mathrm{l}$.

Area $A=$ total distance

Two ways of visualizing the total distance (Area A and Area B)

Area B =
average speed . time elapsed
Average speed = total distance/ time elapsed

To determine the average value, we find a horizontal line such that the area under this horizontal line is equal to the area under the curve between two specified values of t.

Two ways of visualizing the total distance travelled.
area=
average speed . time elapsed
Av speed =
total distance/ time

The mean value theorem for integrals

Find the average value of the function $f(x)=\sin (x)$ in the interval $[0, \pi]$.
Also, find the smallest value of x at which the average occurs.
Describe the geometric interpretation of the results.

