

Recall that a curve in R^{2} is a function $F:[a, b]->R^{2}$, defined by $F(t)=(x(t), y(t))$.

The graph of the curve is the set
$\{(x(t), y(t)), \mathrm{t}$ in $[\mathrm{a}, \mathrm{b}]\}$
Example:
$F(t)=(t \cos (t), t \sin (t)) \quad[a, b]=[0,30]$
$[a, b]=[5,16]$

$F:[a, b]->R^{2}$, defined by $F(t)=(x(t), y(t))$.
The graph of the curve is the set $\{(x(t), y(t)), t$ in $[a, b]\}$

The length of the curve is
if the curve is traversed only once

- maple parametric curves
- maple arc length
- http://mathdemos.gcsu.edu/mathdemos/ catenary/catenary.html
- mathematica demo

Consider the curve $f(t)=\left(t,(1-t)^{2}\right)$, t in $[0,3]$.
Estimate the length of the graph of f

Find the length of the curve given by the parametric equations $x(t)=t^{3}$ and $y(t)=t^{2}$, t in $[0,1]$

Find the length of the graph of the function

$$
F(x)=x^{2 / 3}, x \text { in }[0,1]
$$

Example: Estimate the length of the curve given by the function $F(t)=(\cos (3 t), \sin (t)), t$ in $[0,2 \pi]$.

Find the length of the curve given by the parametric equations $x(t)=1-\cos (t)$ and $y(t)=t-$ $\sin (\mathrm{t}), \mathrm{t}$ in $[0,2 \pi]$.
What is the distance between the points at $\mathrm{t}=0$ and $\mathrm{t}=2 \pi$?

