

Find the length of the curve given by the parametric
equations
$$x(t)=t^3$$
 and $y(t)=t^2$, t in [0,1]
 $\frac{1}{27} (9t^2+4)^{3/2}$
 $\frac{13}{27} \sqrt{13} - \frac{8}{27}$

$\frac{ds}{dt} \frac{d}{y(t)}$	F:[a,b]->R ² , defined by F(t)=(x(t),y(t)). The length of the curve is	
$\frac{\mathrm{d}}{\mathrm{d}t}x(t)$	$\int_{a}^{b} \sqrt{\left(\frac{\mathrm{d}}{\mathrm{d}t}x(t)\right)^{2} + \left(\frac{\mathrm{d}}{\mathrm{d}t}y(t)\right)^{2}} \mathrm{d}t$	if the curve is traversed only once
	f[a h]->R	
ds dx dy	The length of the graph of f is $\int_{a}^{b} \sqrt{\left(\frac{d}{dx}f(x)\right)^{2} + 1} dx$	

Find the length of the curve given by the parametric equations $x(t)=1-\cos(t)$ and $y(t)=t-\sin(t)$, t in $[0,2\pi]$. What is the distance between the points at t=0 and t= 2π ?