MAT I 32

5.7- Integration tricks : Partial Fractions

We want to find the antiderivative of a quotient of polynomials $P(x) / Q(x)$, where the degree of $P(x)$ is smaller than the degree of $\mathrm{Q}(\mathrm{x})$

$$
\int \frac{x^{2}+2 x+10}{x\left(x^{2}+1\right)} d x \quad \int \frac{x^{2}+2 x+10}{x\left(x^{2}-1\right)} d x
$$

$$
\int \frac{d t}{t^{2}+4 t+4} d t \quad \int \frac{x+4}{x\left(x^{2}+4\right)} d x
$$

$\int \frac{d t}{t^{2}+4} \quad \int \frac{t^{2} d t}{t^{2}+4}$

$$
\int \frac{x+2}{x^{2}-2 x+2} d x
$$

One of the quotients does not satisfy the above requirement, which one?

Techniques of integration

* Properties of integrals
- Example: $\int(f(x)+g(x)) d x=\int f(x) d x+\int g(x) d x$
* Tables of integrals
* Rewrite
- Example: Partial fractions (today's topic)
- Example: trigonometric identities
* Substitution
- Example:Trigonometric substitution.

Always: The degree of the denominator is larger than the degree of the numerator.

We want to find the antiderivative of a quotient of polynomials $P(x) / Q(x)$, where the degree of $P(x)$ is smaller than the degree of $Q(x)$

- CASE I: $Q(x)$ is a product of non-repeating linear factors. Example: $Q(x)=x^{3}-x^{2}-2 x=x(x-2)(x+1) ; x,(x-2)$ and $(x+1)$ are linear factors
- CASE II: $Q(x)$ is a product of linear factors, some of which can repeat. Example: $\mathrm{Q}(\mathrm{x})=\mathrm{x}^{3}-\mathrm{x}^{2}-\mathrm{x}+\mathrm{I}=(\mathrm{x}+\mathrm{I})(\mathrm{x}-\mathrm{I})^{2}$
- CASE III: $\mathrm{Q}(\mathrm{x})$ is a product of non-repeating quadratic irreducible factors factors and possibly some linear factos. Example: $Q(x)=\left(x^{2}+1\right)\left(x^{2}+4\right)$
- CASE IV: $\mathrm{Q}(\mathrm{x})$ is a product of quadratic irreducible factors (some of which can repeat) Example $Q(x)=\left(x^{2}+1\right)^{2}$
Note:These are not all possible cases. We will cover Case I,II and III.
The remaining cases can be treated with a combination of the above techniques

EXAMPLE Case I: Evaluate

$$
\int \frac{d t}{t^{2}-1}
$$

$\int \frac{x-1}{x^{3}-x^{2}-2 x} d x$
I is a polynomial of degree 0 . $\mathrm{t}^{2}-1$ is a polynomial of degree 2 . $\mathrm{t}^{2}-1=(\mathrm{t}-1)(\mathrm{t}+2)$

Always: The degree of

 the denominator is larger than the degree of the numerator.- CASE I: $\mathrm{Q}(\mathrm{x})$ is a product of nonrepeating linear factors. Example: $\mathrm{Q}(\mathrm{x})$ $=x^{3}-x^{2}-2 x=x(x-2)(x+1) ; x,(x-2)$ and $(x+1)$ are linear factors

EXAMPLE: Evaluate

$$
\begin{array}{ll}
\int \frac{d t}{t^{2}-1} & \int \frac{x-1}{x^{3}-x^{2}-2 x} d x \\
-\frac{1}{2} \ln (t+1)+\frac{1}{2} \ln (t-1) & \frac{1}{6} \ln (x-2)+\frac{1}{2} \ln (x)-\frac{2}{3} \ln (x+1) \\
-\frac{1}{2(t+1)}+\frac{1}{2(t-1)} & \frac{1}{6(x-2)}-\frac{2}{3(x+1)}+\frac{1}{2 x}
\end{array}
$$

Example Case II: Find

- CASE II: $\mathrm{Q}(\mathrm{x})$ is a product of linear factors, some of which can repeat. Example: $Q(x)=x^{3}-x^{2}-x+1=(x+1)(x-1)^{2}$
$\int \frac{3 x+5}{x^{3}-x^{2}-x+1} d x$
$3 x+5$ is a polynomial of degree I. $x^{3}-x^{2}-x+1$ is a polynomial of degree 3 . $x^{3}-x^{2}-x+1=(x+1)(x-1)^{2}$

Always: The degree of
the denominator is
larger than the degree
of the numerator.

Example Case II: Find

- CASE II: $\mathrm{Q}(\mathrm{x})$ is a product of linear factors, some of which can repeat. Example: $Q(x)=x^{3}-x^{2}-x+1=(x+1)(x-1)^{2}$

$$
\int \frac{3 x+5}{x^{3}-x^{2}-x+1} d x
$$

$3 x+5$ is a polynomial of degree I. $x^{3}-x^{2}-x+1$ is a polynomial of degree 3 . $x^{3}-x^{2}-x+1=(x+1)(x-1)^{2}$

Always: The degree of
the denominator is
larger than the degree
of the numerator.

COMPARETO CASE I
$x-1$ is a polynomial of degree 1
$x^{3}-x^{2}-2 x$ is a polynomial of degree 3 . $x^{3}-x^{2}-2 x=x(x-2)(x+1)$

Example: Find

$$
\int \frac{3 x+5}{x^{3}-x^{2}-x+1} d x \quad-\frac{4}{x-1}+\frac{1}{2} \ln (x+1)-\frac{1}{2} \ln (x-1)
$$

$3 x+5$ is a polynomial of degree 1 . $x^{3}-x^{2}-x+1$ is a polynomial of degree 3 . $x^{3}-x^{2}-x+1=(x+1)(x-1)^{2}$

$$
-\frac{1}{2(x-1)}+\frac{4}{(x-1)^{2}}+\frac{1}{2(x+1)}
$$

- Error Trapezoidal rule $-f^{\prime \prime}(u)(b-a)^{3} /\left(12 n^{2}\right)$
(where n is the number of intervals, u is some point in (a, b))

- Error Simpson's rule: $\mathrm{f}^{\prime \prime \prime}(\mathrm{u})(\mathrm{b}-\mathrm{a})^{5} /\left(180 \mathrm{n}^{4}\right)$
(where n is the number of intervals, u is some point in (a,b))

Example Case III

- CASE III: $\mathrm{Q}(\mathrm{x})$ is a product of non-repeating quadratic irreducible factors factors and possibly some linear factors. Example: $\mathrm{Q}(\mathrm{x})=$ $\left(x^{2}+1\right)\left(x^{2}+4\right)$

Always: The degree of
 the denominator is
 larger than the degree

 of the numerator.$$
\int \frac{d t}{t^{2}+4}
$$

$$
\int \frac{x+4}{x\left(x^{2}+4\right)} d x
$$

COMPARETO CASE II

$3 x+5$ is a polynomial of degree I.
$x^{3}-x^{2}-x+1$ is a polynomial of degree 3 . $x^{3}-x^{2}-x+1=(x+1)(x-1)^{2}$

Example Case III

- CASE III: $\mathrm{Q}(\mathrm{x})$ is a product of non-repeating quadratic irreducible factors factors and possibly some linear
Always: The degree of
the denominator is
larger than the degree of the numerator. factors. Example: $\mathrm{Q}(\mathrm{x})=$ $\left(x^{2}+1\right)\left(x^{2}+4\right)$

$$
\int \frac{d t}{t^{2}+4}
$$

$$
\int \frac{x+4}{x\left(x^{2}+4\right)} d x
$$

Is the integral on the right in case

$$
\int \frac{t^{2} d t}{t^{2}+4}
$$

Example Case III

$$
\frac{-x+1}{x^{2}+4}+\frac{1}{x}
$$

$$
\ln (x)-\frac{1}{2} \ln \left(x^{2}+4\right)+\frac{1}{2} \arctan \left(\frac{1}{2} x\right)
$$

$\frac{1}{2} \arctan \left(\frac{1}{2} t\right)$

$$
\int \frac{x+4}{x\left(x^{2}+4\right)} d x
$$

$\int \frac{d t}{t^{2}+4}$

$$
\begin{aligned}
& t-2 \arctan \left(\frac{1}{2} t\right) \\
& \int \frac{t^{2} d t}{t^{2}+4}
\end{aligned}
$$

$$
\begin{array}{ll}
\int \frac{x^{4}+2 x^{2}}{x^{2}-2 x+1} \mathrm{~d} x & \frac{1}{3} x^{3}+x^{2}+5 x+8 \ln (x-1)-\frac{3}{x-1} \\
x^{2}+2 x+5+\frac{8}{x-1}+\frac{3}{(x-1)^{2}} \\
\int \frac{1+x}{x^{3}-2 x^{2}+5 x} \mathrm{~d} x & \frac{1}{5} \ln (x)-\frac{1}{10} \ln \left(x^{2}-2 x+5\right)+\frac{3}{5} \arctan \left(\frac{1}{2} x-\frac{1}{2}\right) \\
& \frac{1}{5 x}+\frac{1}{5} \frac{7-x}{x^{2}-2 x+5}
\end{array}
$$

To "push" the quotient into a form we can apply partial fractions

- completing the square $\int \frac{x+2}{x^{2}-2 x+2} d x$
- long division of polynomials $\int \frac{x^{4}+2 x^{2}}{x^{2}-2 x+1} \mathrm{~d} x$

Techniques of integration

* Properties of integrals
- Example: $\int(f(x)+g(x)) d x=\int f(x) d x+\int g(x) d x$ (trial an error)
* Tables of integrals (always works)
* Rewrite
- Example: Partial fractions (always works)
- Example: trigonometric identities (trial an error)
* Substitution (trial an error)
- Example:Trigonometric substitution.

EXAMPLE: Evaluate

$$
\begin{gathered}
\int \frac{x^{2}+2 x+10}{x\left(x^{2}+1\right)} d x \\
\int \frac{1}{t^{2}+4 t+4} d t \quad \int \frac{x^{2}+2 x+10}{x\left(x^{2}-1\right)} d x \\
\int \frac{x+2}{e^{x}-3 e^{3 x}} d x \\
\end{gathered}
$$

$10 \ln (x)-\frac{9}{2} \ln \left(x^{2}+1\right)+2 \arctan (x)$ $-10 \ln (x)+\frac{9}{2} \ln (x+1)+\frac{13}{2} \ln (x-1)$ $\frac{-9 x+2}{x^{2}+1}+\frac{10}{x}$ $\frac{13}{2(x-1)}+\frac{9}{2(x+1)}-\frac{10}{x}$
$\int \frac{x^{2}+2 x+10}{x\left(x^{2}+1\right)} d x$ $\int \frac{x^{2}+2 x+10}{x\left(x^{2}-1\right)} d x$
$\int \frac{1}{e^{x}-3 e^{3 x}} d x-\frac{1}{\mathrm{e}^{x}}+\frac{1}{2} \ln \left(\mathrm{e}^{x}+1\right)-\frac{1}{2} \ln \left(\mathrm{e}^{x}-1\right)$
$\int \frac{d t}{t^{2}+4 t+4} d t-\frac{1}{t+2}$

$$
\int \frac{d x}{x^{2}-2 x+2} \begin{gathered}
\frac{1}{2} \ln \left(x^{2}-2 x+2\right)+3 \arctan (x-1) \\
\arctan (x-1)
\end{gathered} \quad \frac{x+2}{x^{2}-2 x+2} d x
$$

