Review Midterm II

23. Use Euler's method with step size 0.1 to estimate $y(0.5)$ where $y(x)$ is the solution of the initial-value problem $y^{\prime}=y+x y, y(0)=1$.
24. A tank contains 1000 L of brine with 15 kg of dissolved salt.
7.3.45 Pure water enters the tank at a rate of $10 \mathrm{~L} / \mathrm{min}$. The solution is kept thoroughly mixed and drains from the tank at the same rate. How much salt is in the tank (a) after t minutes and (b) after 20 minutes?
25. A roast turkey is taken from an oven when its temperature has reached $185^{\circ} \mathrm{F}$ and is placed on a table in a room where the
7.4.13 temperature is $75^{\circ} \mathrm{F}$.
(a) If the temperature of the turkey is $150^{\circ} \mathrm{F}$ after half an hour, what is the temperature after 45 minutes?
(b) When will the turkey have cooled to $100^{\circ} \mathrm{F}$?

- 6.6-9 A spring has a natural length 20 cm .

Compare the work WI done in stretching the spring from 20 cm to 30 cm
with the work W2 don in stretching 30 cm to 40 cm . How are WI and W2 related.

Force: $f(x)=k x$ k depends on spring k depends on spring
x distance from natural

- 6.6-II.A heavy rope, 50 ft long, weights $0.5 \mathrm{lb} / \mathrm{ft}$ and hangs over the edge of a building 120 ft heigh.
$W=$ Force. (b-a) (for a moving from a to b) Divide rope in pieces where you can apply the formula.
a. How much work is done in pulling the rope to the top of the building?
- b. How much work is done in pulling half of the rope to the top of the
- Graph the curve and find its exact length
- $x=e^{t}-t, y=4 e^{t / 2},-8 \leq t \leq 3$.
- In a certain city, the temperature (in F) t hours after 9AM was modeled by the function $T(t)$ $=50+14 . \sin (\pi t / I 2)$. Find the average temperature during the period from 9 am to 9pm

$$
\begin{array}{l|l}
\begin{array}{l}
\text { Average of } \\
\text { function } \mathrm{f} \\
\text { on }[\mathrm{a}, \mathrm{~b}]
\end{array} & \frac{\int_{a}^{b} f(x) \mathrm{dx}}{b-a} \\
\end{array}
$$

- 7.I-9

9. A population is modeled by the differential equation

$$
\frac{d P}{d t}=1.2 P\left(1-\frac{P}{4200}\right)
$$

(a) For what values of P is the population increasing? (b) For what values of P is the population decreasing? (c) What are the equilibrium solutions?

Note tha P is always ≥ 0.
a. For the values of P for which $d P / d t>0$ (
b. For the values of P for which $d P / d t<0$.
c. These are the constant solutions so their derivative is 0 . Thus $\mathrm{P}(\mathrm{t})=0$ and $\mathrm{P}(\mathrm{t})=4200$.

Recall: Rotate curve ($x, f(x)), x$ in $[a, b]$ (on the first quadrant) about y axis. The volume is

- Use the method of cylindrical shells to find the volume generated by rotating the region bounded by the given curves about the y-axis. Sketch the region and a typical shell.
- $y=3+2 x-x^{2}, x+y=3$.

