An infinite crowd of mathematicians enters a bar. The first one orders a pint, the second one a half pint, the third one a quarter pint... "I understand", says the bartender - and pours two pints.

MAT 132

8.7 Taylor and Maclaurin Series 8.8 Applications of Taylor Polynomials Suppose we have a function defined by a series

 $f(x) = c_0 + c_1 x + c_2 x_{\cdots}^2$ with convergence radius R>0.

- We know that f has derivatives of all orders on (-R,R). Find those derivatives.
- Can you determine the values of the coefficients c_n in terms of f?
- If f(x)=e^x, find an expression of f as a power series. What is the radius of convergence?

Suppose we have a function defined by a series
f(x) = c₀ + c₁ (x - a) + c₂ (x - a)² ... with convergence radius R>0.
We know that f has derivatives of all orders on (a-R,a+R). Find those derivatives.
Can you determine the values of the coefficients c_n in terms of f?
If f(x)=sin(x), can you find an expression of f as a power series centered at π/2?

5 Theorem If f has a power series representation (expansion) at a, that is, if $f(x) = \sum_{n=0}^{\infty} c_n (x - a)^n \qquad |x - a| < R$ then its coefficients are given by the formula $c_n = \frac{f^{(n)}(a)}{n!}$ The series $f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (x - a)^n$ $= f(a) + \frac{f'(a)}{1!} (x - a) + \frac{f''(a)}{2!} (x - a)^2 + \frac{f'''(a)}{3!} (x - a)^3 + \cdots$ is called the Taylor series of f at a. When a=0, the series (below) is called the Maclaurin series $f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n = f(0) + \frac{f'(0)}{1!} x + \frac{f''(0)}{2!} x^2 + \cdots$

- Find the Taylor series for f(x)=e^x at a=-3.
 Prove that f(x) is equal to the series.
 - Use the series to approximate e^{-3.1} correct to four decimal places.(you are given e⁻³)
 Find the Mapleouting couries for f(u), eac(u)
- Find the Maclaurin series for f(x)=cos(x) and prove the series represents f(x) for all values of x.
- Find the Maclaurin series for f(x)=sin(x) and prove the series represents f(x) for all values of x.

REVIEW The alternating series test	t
If we have a sequence { a_n }, where $a_n > 0$, $a_n \ge a_{n+1}$, and $a_n \rightarrow 0$ when $n \rightarrow \infty$	
then the series $\sum_{n=1}^{\infty} (-1)^n a_n$	
converges	
	<u>10-30 60 90</u>
Alternating Series Estimation Theorem If $s = \Sigma (-1)^{a-1} b_a$ is the sum of an al series that satisfies	Iternating
(i) $b_{n+1} \leq b_n$ and (ii) $\lim_{n \to \infty} b_n = 0$	
then $ R_n = s - s_n \leq b_{n+1}$	

8.8.1

- Find the Taylor polynomials of cos(x) degree up to 6 centered at a=0.
- Evaluate these polynomials at x=0,0.1, π / 4, π /2, and π .
- Comment on how the polynomials converge to cos(x).

$\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n = 1 + x + x^2 + x^3 + \cdots$	R = 1
$e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!} = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots$	$R = \infty$
$\sin x = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!} = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \cdots$	$R = \infty$
$\cos x = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!} = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \cdots$	$R = \infty$
$\tan^{-1}x = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{2n+1} = x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} + \cdots$	R = 1
$\ln(1+x) = \sum_{n=1}^{\infty} (-1)^{n-1} \frac{x^n}{n} = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \cdots$	R = 1
$(1+x)^k = \sum_{n=0}^{\infty} \binom{k}{n} x^n = 1 + kx + \frac{k(k-1)}{2!} x^2 + \frac{k(k-1)(k-2)}{3!} x^3 + \cdots$	R = 1

Recall, given a function f, and a number a, we define $T_n(x) = \sum_{a}^{n} \frac{f^{(i)}(a)}{i!} (x - a)^i$

$$= f(a) + \frac{f'(a)}{1!} (x - a) + \frac{f''(a)}{2!} (x - a)^2 + \dots + \frac{f^{(n)}(a)}{n!} (x - a)^n$$

- $\bullet~$ We want to approximate f(x) by $T_n(x)$ (for some n).Thus we need to know.
- For a given n, how good is our approximation?
- If we want the "error" to be less than a given number, how large does n have to be? The reminder ("error") is $R_n(x)=f(x)-T_n(x)$.

We saw two methods for estimating $\left|R_n(x)\right|$ (each needs hypothesis)

 $* \overleftarrow{\mathcal{E}}^*$ If the series is alternating, by the Alternating Series Estimation Theorem.

• \mathcal{F} . If $|\mathbf{f}^{(n)}(\mathbf{x})| \leq \mathbf{M}$, then $|R_n(x)| \leq \frac{M}{(n+1)!} |x-a|^{n+1}$ for $|x-a| \leq d$

