An infinite crowd of mathematicians enters a bar The first one orders a pint, the second one a half pint, the third one a quarter pint...
"I understand", says the bartender - and pours two pints.

MAT I 32

8.7 Taylor and Maclaurin Series 8.8 Applications of Taylor Polynomials

Suppose we have a function defined by a series
$f(x)=c_{0}+c_{1}(x-a)+c_{2}(x-a)^{2} \quad \ldots$ with convergence radius $\mathrm{R}>0$.

- We know that f has derivatives of all orders on ($a-R, a+R$). Find those derivatives.
- Can you determine the values of the coefficients c_{n} in terms of f ?
- If $f(x)=\sin (x)$, can you find an expression of f as a power series centered at $n / 2$?
- The powers series representation of a function a given " a " is unique
- - If f is a function and we know that f has a representation as a power series, then the Taylor series converges to f in the interval of convergence.
- If we are given a function f (we don't know whether f has a representation as a power series,) the theorem below gives necessary conditions that imply that f has a representation as a power series:

$$
\begin{aligned}
T_{n}(x) & =\sum_{i=0}^{n} \frac{f^{(i)}(a)}{i!}(x-a)^{i} \\
& =f(a)+\frac{f^{\prime}(a)}{1!}(x-a)+\frac{f^{\prime \prime}(a)}{2!}(x-a)^{2}+\cdots+\frac{f^{(n)}(a)}{n!}(x-a)^{n}
\end{aligned}
$$

$$
R_{n}(x)=f(x)-T_{n}(x)
$$

8 Theorem If $f(x)=T_{n}(x)+R_{n}(x)$, where T_{n} is the n th-degree Taylor polynomial of f at a and

$$
\lim _{n \rightarrow \infty} R_{n}(x)=0
$$

for $|x-a|<R$, then f is equal to the sum of its Taylor series on the interval $|x-a|<R$.

Suppose we have a function defined by a series

$$
f(x)=c_{0}+c_{1} x+c_{2} x_{\ldots}^{2} \text { with convergence radius } \mathrm{R}>0 .
$$

- We know that f has derivatives of all orders on (-R,R). Find those derivatives.
- Can you determine the values of the coefficients c_{n} in terms of f ?
- If $f(x)=e^{x}$, find an expression of f as a power series. What is the radius of convergence?

5 Theorem If f has a power series representation (expansion) at a, that is, if

$$
f(x)=\sum_{n=0}^{\infty} c_{n}(x-a)^{n} \quad|x-a|<R
$$

then its coefficients are given by the formula

$$
c_{n}=\frac{f^{(n)}(a)}{n!}
$$

The series

$$
\begin{aligned}
f(x) & =\sum_{n=0}^{\infty} \frac{f^{(a)}(a)}{n!}(x-a)^{n} \\
& =f(a)+\frac{f^{\prime}(a)}{1!}(x-a)+\frac{f^{\prime \prime}(a)}{2!}(x-a)^{2}+\frac{f^{\prime \prime \prime}(a)}{3!}(x-a)^{3}+\cdots
\end{aligned}
$$

is called the Taylor series of f at a.

When $a=0$, the series (below) is called the Maclaurin series

$$
f(x)=\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^{n}=f(0)+\frac{f^{\prime}(0)}{1!} x+\frac{f^{\prime \prime}(0)}{2!} x^{2}+\cdots
$$

\qquad

```
8) Theorem If f(x)=\mp@subsup{T}{n}{}(x)+\mp@subsup{R}{n}{}(x)\mathrm{ , where }\mp@subsup{T}{n}{}\mathrm{ is the }n\mathrm{ th-degree Taylor polyno-}
mial of f}\mathrm{ at }a\mathrm{ and
\[
\lim _{n \rightarrow \alpha} R_{n}(x)=0
\]
for \(|x-a|<R\), then \(f\) is equal to the sum of its Taylor series on the interval \(|x-a|<R\).
```

$$
\begin{aligned}
T_{n}(x)= & \sum_{i=0}^{n} \frac{f^{(i)}(a)}{i!}(x-a)^{i} \\
= & f(a)+\frac{f^{\prime}(a)}{1!}(x-a)+\frac{f^{\prime \prime}(a)}{2!}(x-a)^{2}+\cdots+\frac{f^{(n)}(a)}{n!}(x-a)^{n} \\
& R_{n}(x)=f(x)-T_{n}(x)
\end{aligned}
$$

9 Taylor's Inequality If $\left|f^{(n+1)}(x)\right| \leqslant M$ for $|x-a| \leqslant d$, then the remainder $R_{n}(x)$ of the Taylor series satisfies the inequality This implies th

$$
\left|R_{n}(x)\right| \leqslant \frac{M}{(n+1)!}|x-a|^{n+1} \quad \text { for }|x-a| \leqslant d \begin{aligned}
& \text { the Taylor series } \\
& \text { converges in this } \\
& \text { case }
\end{aligned}
$$

- Find the Taylor series for $f(x)=e^{x}$ at $a=-3$.
\square Prove that $f(x)$ is equal to the series.
\square Use the series to approximate $e^{-3.1}$ correct to four decimal places. (you are given e^{-3})
- Find the Maclaurin series for $f(x)=\cos (x)$ and prove the series represents $f(x)$ for all values of x.
- Find the Maclaurin series for $f(x)=\sin (x)$ and prove the series represents $f(x)$ for all values of x.
- Find the Maclaurin series for $f(x)=$
$(1+x)^{k}$, where k is any real number.

$$
\begin{aligned}
& 17 \text { The Binomial Series If } k \text { is any real number and }|x|<1 \text {, then } \\
& (1+x)^{k}=\sum_{n=0}^{\infty}\binom{k}{n} x^{n}=1+k x+\frac{k(k-1)}{2!} x^{2}+\frac{k(k-1)(k-2)}{3!} x^{3}+\cdot
\end{aligned}
$$

- Prove that the binomial series converges when $|x|<1$.
- Use the binomial series to expand $1 /(1+x)^{0.5}$, as a power series. Use this to estimate $1 / \sqrt{ } 1.01$ correct to three decimal places.
$1-\frac{1}{2} x+\frac{1 \cdot 3}{2^{2} \cdot 2!} x^{2}-\frac{1 \cdot 3}{2^{3} \cdot 3!} x^{3}+\cdots+(-1)^{n} \frac{1 \cdot 3 \ldots(2 n-1)}{2^{n} \cdot n!} x^{n}+\ldots$

REVIEW The alternating series test

Alternating Series Estimation Theorem If $s=\Sigma(-1)^{n-1} b_{n}$ is the sum of an alternating series that satisfies

```
        (i) }\mp@subsup{b}{n+1}{}\leqslant\mp@subsup{b}{n}{}\quad\mathrm{ and (ii) }\mp@subsup{\operatorname{lim}}{n->\infty}{}\mp@subsup{b}{n}{}=
```

then
$\left|R_{n}\right|=\left|s-s_{n}\right| \leqslant b_{n+1}$

8.8.1

- Find the Taylor polynomials of $\cos (x)$ degree up to 6 centered at $\mathrm{a}=0$.
- Evaluate these polynomials at $x=0,0.1, \pi /$ $4, \pi / 2$, and n.
- Comment on how the polynomials converge to $\cos (x)$.
- 8.7.50 Use series to approximate the definite integral within the indicated accuracy
correct to four decimal places.
- Use series to evaluate the limit

Recall, given a function f , and a number a, we define $T_{n}(x)=\sum_{i=0}^{n} \frac{f^{(i)}(a)}{i!}(x-a)^{i}$

$$
=f(a)+\frac{f^{\prime}(a)}{1!}(x-a)+\frac{f^{\prime \prime}(a)}{2!}(x-a)^{2}+\cdots+\frac{f^{(n)}(a)}{n!}(x-a)^{n}
$$

- We want to approximate $f(x)$ by $T_{n}(x)$ (for some n). Thus we need to know.
- For a given n , how good is our approximation?
- If we want the "error" to be less than a given number, how large does n have to be? The reminder ("error") is $R_{n}(x)=f(x)-T_{n}(x)$.

We saw two methods for estimating $\left|R_{n}(x)\right|$ (each needs hypothesis)
\cdot •f If the series is alternating, by the Alternating Series Estimation Theorem.
-. $\mathcal{P} \cdot$ If $\left|\mathbf{f}^{(\mathrm{n})}(\mathbf{x})\right| \leq \mathbf{M}$, then $\left|R_{n}(x)\right| \leqslant \frac{M}{(n+1)!}|x-a|^{n+1} \quad$ for $|x-a| \leqslant d$

- Evaluate the integral below, correct up to two decimal places.

$$
\int_{\frac{1}{2}}^{1} \frac{\sin (x)}{x} \mathrm{~d} x
$$

