

A sequence is a an infinite list of numbers written in order.

Examples
$\{1,1,1,1, .$.
$\{1,2,3, .$.
$\{1 / 2,-2 / 3,3 / 4,-4 / 5 \ldots\}$
$\{\sqrt{ } 2, \sqrt{ } 3, \sqrt{ } 4, \ldots\}$
$\{1,4,1,5,9,2 \ldots\}$

Find the n-th term of the above sequences.

An (infinite) sequence is a an infinite list of numbers written in order.
An (infinite) sequence is thus a function, where the domain is the set of positive integers and the range is the real numbers.

Examples

$\{1,1,1,1, .$.
$\{1,2,3, .$.
$\{1 / 2,-2 / 3,3 / 4,-4 / 5 \ldots\}$
$\{\sqrt{ } 2, \sqrt{ } 3, \sqrt{ } 4, \ldots\}$
$\{1,4,1,5,9,2 \ldots\}$

Find the n -th term of the above sequences.

In a sequence order matters and elements can be repeated. Thus sequence \neq set

A sequence is defined explicitly if there is a formula that allows you to find individual terms independently

Example: Consider the sequence given by
$a_{n}=3^{n}$.
The first, second, third and fourth terms of this sequences are

$$
a_{1}=3^{1}=3
$$

$a_{2}=3^{2}=9$,
$a_{3}=3^{3}=27$,
$a_{4}=3^{4}=81$

Example:

$$
a_{n}=\frac{(-1)^{n}}{n^{2}+1}
$$

$\begin{aligned} & \text { To find the } 100^{\text {th }} \text { term, } \\ & \text { plug } 100 \text { in for } n:\end{aligned} \quad a_{100}=\frac{(-1)^{100}}{100^{2}+1}=\frac{1}{10001}$

$$
a_{100}=\frac{(-1)^{100}}{100^{2}+1}=\frac{1}{10001}
$$

source: http://mrjosephsprecalculusblog.blogspot.com/

A sequence is defined recursively if there is a formula that relates a_{n} to previous terms. Example 1: $b_{1}=4 \quad b_{n}=b_{n-1}+2$ for all $n \geq 2$ Example 2: Fibonacci sequence $\mathrm{b}_{1}=1, \mathrm{~b}_{2}=1, \mathrm{~b}_{\mathrm{n}}=\mathrm{b}_{\mathrm{n}-1}+\mathrm{b}_{\mathrm{n}-2}$ for $\mathrm{n} \geq 3$ Example 3: Collatz sequences Example 1: $b_{1}=4$ $b_{2}=b_{1}+2=6$ $b_{3}=b_{2}+2=8$$b_{4}=b_{3}+2=10$ Can you give an explicit definition of this sequence?

Fibonacci sequence in nature

Example of sequences defined recursively: Collatz sequences

$\mathrm{f}(\mathrm{n})=\mathrm{n} / 2$ if n is even 3n+1 otherwise

Start with a positive integer, say, 10 , $\mathrm{a}_{1}=2$ $\mathrm{a}_{2}=\mathrm{f}\left(\mathrm{a}_{1}\right)=5$ $\mathrm{a}_{3}=\mathrm{f}\left(\mathrm{a}_{2}\right)=16$ and so on.

Conjecture: No matter which number you start from, the sequence

This is a recursively defined sequence. (Starting at a different number, you'll obtained a different sequence) lways reaches 1

$$
-2
$$

An arithmetic sequence is a sequence such that the difference between consecutive terms is constant.

Examples: $-5,-2,1,4,7, \ldots \quad d=3$
$\ln 2, \ln 6, \ln 18, \ln 54, \ldots \quad d=\ln 6-\ln 2=\ln \frac{6}{2}=\ln 3$

Arithmetic sequences can be defined recursively:

$$
a_{n}=a_{n-1}+d
$$

or explicitly:

$$
a_{n}=a_{1}+d(n-1)
$$

A sequence is geometric if the quotient of consecutive terms is constant. That is consecutive terms have the same ratio.

Example: 1,-2, 4, -8, 16, $\ldots \quad r=-$

$$
10^{-2}, 10^{-1}, 1,10, \ldots \quad r=\frac{10^{-1}}{10^{-2}}=10
$$

Geometric sequences can be defined recursively: $a_{n}=a_{n-1} . r$ or explicitly:

$$
\mathrm{a}_{\mathrm{n}}=\mathrm{a}_{1} \cdot \mathrm{r}^{\mathrm{n}-1}
$$

A sequence is defined explicitly if there is a formula that allows you to find individual terms independently.

Ex: $a_{n}=n /\left(n^{2}+1\right)$
Any real-valued function defined on the positive real yields a sequence (explicitly defined).

Example: $f(x)=(x+2)^{1 / 2}$
n-th of the sequence: $a_{n}=(n+2)^{1 / 2}$
A sequence is defined recursively if there is a formula that relates a_{n} to previous terms.

An arithmetic sequence has a common difference between terms.

An geometric sequence has a common ratio between terms.
$\begin{aligned} & \text { Write the first terms of } \\ & \text { the sequence }\end{aligned} \quad a_{n}=\frac{n-1}{n}$

Plot these terms on a number line

Plot the sequence as

The terms in this sequence get closer and closer to 1 . The sequence CONVERGES to 1 .

Consider the sequence
$a_{n}=\frac{(-1)^{n+1}(n-1)}{n}$

The terms in this sequence do not get close to any (single) number when n grows.

The sequence $\left\{\mathrm{a}_{\mathrm{n}}\right\}$ converges to L if we can make a_{n} as close to L as we want for all sufficiently large n. In other words, the value of the a_{n} 's approach L as n approaches infinity. We write

$$
\lim _{n \rightarrow \infty} a_{n}=L \quad \text { or } \quad a_{n} \rightarrow L \text { as } n \rightarrow \infty
$$

Otherwise, that is if $\left\{\mathrm{a}_{\mathrm{n}}\right\}$ does not converges to any number, we say that $\left\{\mathrm{a}_{\mathrm{n}}\right\}$ diverges.

EXAMPLE

The sequence $\left\{\mathrm{a}_{\mathrm{n}}\right\}$ converges to L if we can make a_{n} as close to L as we want for all sufficiently large n. In other words, the value of the a_{n} 's approach L as n approaches infinity EXAMPLE

$$
a_{n}=\frac{n-1}{n}
$$

Otherwise, that is if $\left\{\mathrm{a}_{\mathrm{n}}\right\}$ does not converges to any number, we say that $\left\{\mathrm{a}_{\mathrm{n}}\right\}$ diverges.
EXAMPLE

$$
a_{n}={\frac{(-1)^{n+1}(n-1)}{n}}_{16}
$$

A sequence is geometric if the quotient of consecutive terms is constant. That is consecutive terms have the same ratio

$$
\begin{aligned}
\text { Example: } 1,-2,4,-8,16, \ldots & r=-2 \\
10^{-2}, 10^{-1}, 1,10, \ldots & r=\frac{10^{-1}}{10^{-2}}=10
\end{aligned}
$$

Geometric sequences can be defined recursively:

$$
a_{n}=a_{n-1} \cdot r
$$

$$
\text { or explicitly: } \quad a_{n}=a_{1} \cdot r^{n-1}
$$

Can you find examples of convergent geometric
sequence? And of diverent geometric sequences?

A sequence is geometric if the quotient of consecutive terms is constant. That is consecutive terms have the same ratio.

$$
\begin{array}{rlr}
\text { Example: } 1,-2,4,-8,16, \ldots & r=-2 \\
10^{-2}, 10^{-1}, 1,10, \ldots & r=\frac{10^{-1}}{10^{-2}}=10
\end{array}
$$

Geometric sequences can $a_{n}=a_{n-1}$. r be defined recursively:

$$
\text { or explicitly: } \quad a_{n}=a_{1} \cdot r^{n-1}
$$

Can you find examples of convergent geometric sequence? And of diverent geometric sequences?

Determine whether the sequences below are convergent.
I. $a_{n}=3^{n}$,
II. $a_{n}=(1 / 2)^{n}$
III. $a_{n}=(-1)^{n}$
IV. $a_{n}=(-2)^{n}$
V. $a_{n}=(-0.1)^{\mathrm{n}}$

7 The sequence $\left\{r^{n}\right\}$ is convergent if $-1<r \leqslant 1$ and divergent for all other values of r.

$$
\lim _{n \rightarrow \infty} r^{n}= \begin{cases}0 & \text { if }-1<r<1 \\ 1 & \text { if } r=1\end{cases}
$$

Theorem If $\lim _{x \rightarrow \infty} f(x)=L$ and $f(n)=a_{n}$ when n is an integer, then
$\lim _{n \rightarrow \infty} a_{n}=L$.

- Examples: Study whether the sequences below converge using the theorem above (if possible)

$$
\begin{gathered}
a_{n}=\frac{n-1}{n} \\
a_{n}=\frac{(-1)^{n+1}(n-1)}{n}
\end{gathered}
$$

Example: The above theorem cannot be used to prove that the sequence $a_{n}=1 / n!$ converges. Why?

Example: Below is the n -th term of some sequences
Determine whether the corresponding sequences converge and if so, find the limit.
I. $a_{n}=1 / n$
II. $\mathrm{a}_{\mathrm{n}}=1 / \mathrm{n}+3(\mathrm{n}+1) / \mathrm{n}^{2}$
III. $\mathrm{b}_{\mathrm{n}}=\left(\mathrm{a}_{\mathrm{n}}\right)^{2}\left(\mathrm{a}_{\mathrm{n}}\right.$ defined in the line above).
IV. $\mathrm{a}_{\mathrm{n}}=\mathrm{n}!/(\mathrm{n}+1)$!
V. $a_{n}=(n+1)!/ n!$
VI. $a_{n}=1 / \ln (n)$.
VII. $a_{n}=n / \ln (n)$.

If $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ are convergent sequences and c is a constant, then

$$
\lim _{n \rightarrow \infty}\left(a_{n}+b_{n}\right)=\lim _{n \rightarrow \infty} a_{n}+\lim _{n \rightarrow \infty} b_{n}
$$

$\lim _{n \rightarrow \infty}\left(a_{n}-b_{n}\right)=\lim _{n \rightarrow \infty} a_{n}-\lim _{n \rightarrow \infty} b_{n}$
$\lim _{n \rightarrow \infty} c a_{n}=c \lim _{n \rightarrow \infty} a_{n} \quad \lim _{n \rightarrow \infty} c=c$
$\lim _{n \rightarrow \infty}\left(a_{n} b_{n}\right)=\lim _{n \rightarrow \infty} a_{n} \cdot \lim _{n \rightarrow \infty} b_{n}$
$\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=\frac{\lim _{n \rightarrow \infty} a_{n}}{\lim _{n \rightarrow \infty} b_{n}}$ if $\lim _{n \rightarrow \infty} b_{n} \neq 0$
$\lim _{n \rightarrow \infty} a_{n}^{p}=\left[\lim _{n \rightarrow \infty} a_{n}\right]^{p}$ if $p>0$ and $a_{n}>0$

22

If $a_{n} \leqslant b_{n} \leqslant c_{n}$ for $n \geqslant n_{0}$ and $\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} c_{n}=L$, then $\lim _{n \rightarrow \infty} b_{n}=L$.

- Example: Use the "squeeze theorem" above to determine whether the sequence $\left\{a_{n}\right\}$ defined by $a_{n}=\left(n^{2}+1\right) / n^{3}$ is converges and if so, find the limit.

Definition A sequence $\left\{a_{n}\right\}$ is called increasing if $a_{n}<a_{n+1}$ for all $n \geqslant 1$, that is, $a_{1}<a_{2}<a_{3}<\cdots$. It is called decreasing if $a_{n}>a_{n+1}$ for all $n \geqslant 1$. A sequence is monotonic if it is either increasing or decreasing.

Give examples of

- S. Increasing, convergent sequences
- ED Decreasing convergent sequences
- S. Increasing divergent sequences.
- Secreasing divergent sequences
- Convergent sequences that are not increasing and not decreasing
- CeDivergent sequences that are not increasing and not decreasing

Types of sequences
Defined explicitly Ex: $a_{n}=n /\left(n^{2}+1\right)$
Defined recursively Ex: $a_{1}=1, a_{2}=1, a_{n}=a_{n-1}+a_{n-2}, n \geq 3$
Defined by function Example: $f(x)=(x+2)^{1 / 2} \quad a_{n}=(n+2)^{1 / 2}$
Convergent $\mathrm{a}_{\mathrm{n}}=1 / \mathrm{n}$
Divergent, $a_{n}=n$ or $a_{n}=(-1)^{n}$

Arithmetic $\mathrm{a}_{\mathrm{n}}=\mathrm{a}_{1}+(\mathrm{n}-1)$. d
Geometric $\mathrm{a}_{\mathrm{n}}=\mathrm{a}_{1} . \mathrm{r}^{\mathrm{n}-1}$
Increasing $a_{n}=(1-1 / n)$
Decreasing $a_{n}=1 / n$

