

A sequence is a an infinite list of numbers written in order.

$$\{a_n\} = \{a_1, a_2, a_3, \dots, a_n, \dots\}$$

Examples {1,1,1,1,..} {1,2,3,..} {1/2,-2/3,3/4,-4/5...} $\{\sqrt{2}, \sqrt{3}, \sqrt{4}, \dots\}$ {1,4,1,5,9,2...}

Find the n-th term of the above sequences.

An (infinite) sequence is a an infinite list of numbers written in order.

An (infinite) sequence is thus a function, where the domain is the set of positive integers and the range is the real numbers.

$$\{a_n\} = \{a_1, a_2, a_3, \dots, a_n, \dots\}$$

nth term

Examples {1,1,1,1,..} (1,2,3,..) {1/2,-2/3,3/4,-4/5...} $\{\sqrt{2}, \sqrt{3}, \sqrt{4}, \dots\}$ {1,4,1,5,9,2...}

Find the n-th term of the above sequences.

In a sequence order matters and elements can be repeated. Thus sequence \neq set

A sequence is defined explicitly if there is a formula that allows you to find individual terms independently

Example: Consider the sequence given by

$$a_n = 3^n$$
.

The first, second, third and fourth terms of this sequences are

$$a_1 = 3^1 = 3$$
,

$$a_2 = 3^2 = 9$$
,

$$a_3 = 3^3 = 27$$
,

$$a_4 = 34 = 81$$

Example:

$$a_n = \frac{\left(-1\right)^n}{n^2 + 1}$$

To find the 100th term, plug 100 in for *n*:
$$a_{100} = \frac{\left(-1\right)^{100}}{100^2 + 1} = \frac{1}{10001}$$

Challenge: Find the 100-th term of the sequence below.

source: http://mrjosephsprecalculusblog.blogspot.com/

A sequence is defined recursively if there is a formula that relates a_n to previous terms.

 $b_n = b_{n-1} + 2$ for all $n \ge 2$ **Example 1**: $b_1 = 4$

Example 2: Fibonacci sequence b₁=1,b₂=1,b_n=b_{n-1}+b_{n-2}

for $n \ge 3$

Example 3: Collatz sequences

Example 1: $b_1 = 4$

 $b_4 = b_3 + 2 = 10$

 $b_2 = b_1 + 2 = 6$

Can you give an explicit definition of this sequence?

 $b_3 = b_2 + 2 = 8$

Example of sequences defined recursively: Collatz sequences

f(n) = n/2 if n is even 3n+1 otherwise

Start with a positive integer, say, 10, from, the sequen always reaches 1

 $a_1=2$

 $a_2 = f(a_1) = 5$

 $a_3 = f(a_2) = 16$

and so on.

This is a recursively defined sequence. All numbers up to 5.4×10^{18} (Starting at a different number, you'll obtained a different sequence)

Conjecture: No matter which number you start from, the sequence

> 2009: The Collatz algorithm has been tested and found to always reach 1 for

> > 10

An arithmetic sequence is a sequence such that the difference between consecutive terms is constant.

Examples: $-5, -2, 1, 4, 7, \dots$ d = 3

 $\ln 2$, $\ln 6$, $\ln 18$, $\ln 54$, ... $d = \ln 6 - \ln 2 = \ln \frac{6}{2} = \ln 3$

Arithmetic sequences can be defined recursively:

or explicitly:

 $a_n = a_1 + d(n-1)$

A sequence is **geometric** if the quotient of consecutive terms is constant. That is consecutive terms have the same ratio.

Example: 1,-2, 4, -8, 16, ...

 10^{-2} , 10^{-1} , 1, 10, ... $r = \frac{10^{-1}}{10^{-2}} = 10$

Geometric sequences can be defined recursively:

 $a_n = a_{n-1}$. r

or explicitly:

 $a_n = a_1 \cdot r^{n-1}$

A sequence is defined explicitly if there is a formula that allows you to find individual terms independently.

Ex: $a_n = n/(n^2 + 1)$

Any real-valued function defined on the positive real yields a sequence (explicitly defined).

Example: $f(x)=(x+2)^{\frac{1}{2}}$

n-th of the sequence: $a_n=(n+2)^{\frac{1}{2}}$

A sequence is defined recursively if there is a formula that relates a_n to previous terms.

An arithmetic sequence has a common difference between terms.

An geometric sequence has a common ratio between terms.

Write the first terms of the sequence

 $a_n = \frac{n-1}{n}$

Plot these terms on a number line

The terms in this sequence get closer and closer to 1. The sequence CONVERGES to 1.

Consider the sequence $a_n = \frac{(-1)^{n+1} (n-1)}{n}$ $a_n = (-1)^{n+1} (\frac{n-1}{n})$ Neither the ϵ -interval about 1 nor the ϵ -interval about $\alpha_n = (-1)^{n+1} (\frac{n-1}{n})$ Neither $\alpha_n = (-1)^{n+1} (\frac{n-1}{n})$

The terms in this sequence do not get close to any (single) number when n grows.

The sequence $\{a_n\}$ <u>converges to L</u> if we can make a_n as close to L as we want for all sufficiently large n. In other words, the value of the a_n 's approach L as n approaches infinity. EXAMPLE

$$a_n = \frac{n-1}{n}$$

Otherwise, that is if $\{a_n\}$ does not converges to any number, we say that $\{a_n\}$ *diverges*. EXAMPLE

$$a_n = \frac{(-1)^{n+1}(n-1)}{n}$$

The sequence $\{a_n\}$ converges to L if we can make a_n as close to L as we want for all sufficiently large n. In other words, the value of the a_n 's approach L as n approaches infinity. We write

$$\lim_{n \to \infty} a_n = L \quad \text{or} \quad a_n \to L \text{ as } n \to \infty$$

17

Otherwise, that is if $\{a_n\}$ does not converges to any number, we say that $\{a_n\}$ <u>diverges</u>. EXAMPLE

A sequence is **geometric** if the quotient of consecutive terms is constant. That is consecutive terms have the same **ratio**.

Example: 1,-2, 4, -8, 16, ...
$$r = -2$$
 10^{-2} , 10^{-1} , 1, 10, ... $r = \frac{10^{-1}}{10^{-2}} = 10$

$$a_n = a_{n-1} \cdot r$$

or explicitly:

$$a_n = a_1 \ . \ r^{n\text{-}1}$$

Can you find examples of convergent geometric sequence? And of diverent geometric sequences?

A sequence is geometric if the quotient of consecutive terms is constant. That is consecutive terms have the same ratio.

Example: 1,-2, 4, -8, 16, ...
$$r = -2$$
 10^{-2} , 10^{-1} , 1, 10, ... $r = \frac{10^{-1}}{10^{-2}} = 10$

Geometric sequences can be defined recursively:

$$a_n = a_{n-1} \cdot r$$

or explicitly:

$$a_n = a_1 \cdot r^{n-1}$$

Can you find examples of convergent geometric sequence? And of diverent geometric sequences?

Determine whether the sequences below are convergent.

I.
$$a_n = 3^n$$
,

II.a_n =
$$(\frac{1}{2})^n$$

III.
$$a_n = (-1)^n$$

$$IV.a_n = (-2)^n$$

$$V.a_n = (-0.1)^n$$

7 The sequence $\{r^n\}$ is convergent if $-1 < r \le 1$ and divergent for all other values of r.

$$\lim_{n \to \infty} r^n = \begin{cases} 0 & \text{if } -1 < r < 1 \\ 1 & \text{if } r = 1 \end{cases}$$

2 Theorem If $\lim_{x\to\infty} f(x)=L$ and $f(n)=a_n$ when n is an integer, then $\lim_{n\to\infty} a_n=L$.

 Examples: Study whether the sequences below converge using the theorem above (if possible)

$$a_n = \frac{n-1}{n}$$

$$a_n = \frac{(-1)^{n+1}(n-1)}{n}$$

Example: The above theorem cannot be used to prove that the sequence a_n=1/n! converges. Why?

21

23

If $\{a_n\}$ and $\{b_n\}$ are convergent sequences and c is a constant, then

$$\lim_{n\to\infty} (a_n + b_n) = \lim_{n\to\infty} a_n + \lim_{n\to\infty} b_n$$

$$\lim_{n\to\infty} (a_n - b_n) = \lim_{n\to\infty} a_n - \lim_{n\to\infty} b_n$$

$$\lim ca_n = c \lim a_n$$

$$\lim_{n\to\infty} (a_n b_n) = \lim_{n\to\infty} a_n \cdot \lim_{n\to\infty} b_n$$

$$\lim_{n\to\infty}\frac{a_n}{b_n}=\frac{\lim_{n\to\infty}a_n}{\lim_{n\to\infty}b_n}\quad\text{if }\lim_{n\to\infty}b_n\neq0$$

$$\lim_{n\to\infty} a_n^p = \left[\lim_{n\to\infty} a_n\right]^p \text{ if } p>0 \text{ and } a_n>0$$

22

 $\lim_{n\to\infty} c = c$

Example: Below is the n-th term of some sequences

Determine whether the corresponding sequences converge and if so, find the limit.

I.
$$a_n = 1/n$$

II.a_n =
$$1/n + 3(n+1)/n^2$$

III. $b_n = (a_n)^2$ (a_n defined in the line above).

$$IV.a_n = n!/(n+1)!$$

$$V.a_n = (n+1)!/n!$$

$$VI.a_n = 1/ln(n).$$

VII.
$$a_n = n/\ln(n)$$
.

If $a_n \le b_n \le c_n$ for $n \ge n_0$ and $\lim_{n \to \infty} a_n = \lim_{n \to \infty} c_n = L$, then $\lim_{n \to \infty} b_n = L$.

• Example: Use the "squeeze theorem" above to determine whether the sequence $\{a_n\}$ defined by $a_n = (n^2+1)/n^3$ is converges and if so, find the limit.

24

Definition A sequence $\{a_n\}$ is called **increasing** if $a_n < a_{n+1}$ for all $n \ge 1$, that is, $a_1 < a_2 < a_3 < \cdots$. It is called **decreasing** if $a_n > a_{n+1}$ for all $n \ge 1$. A sequence is **monotonic** if it is either increasing or decreasing.

Give examples of

- decreasing
- · Divergent sequences that are not increasing and not decreasing

25

Types of sequences

Defined explicitly Ex: $a_n=n/(n^2+1)$

Defined recursively Ex: $a_1=1$, $a_2=1$, $a_n=a_{n-1}+a_{n-2}$, $n\ge 3$

Defined by function Example: $f(x)=(x+2)^{\frac{1}{2}}$ $a_n=(n+2)^{\frac{1}{2}}$

Convergent a_n=1/n

Divergent, $a_n=n$ or $a_n=(-1)^n$

Arithmetic $a_n=a_1+\ (n-1)$. d Geometric $a_n=a_1.\ r^{n-1}$

Increasing $a_n=(1-1/n)$

Decreasing a_n=1/n