NAME: RECITATION: SOLAR ID: LECTURE:

Problem	1	2	3	4	Total
Score					
Total Score	20	20	20	20	80

MAT 132 - Calculus II, Midterm 1

March 2nd, 2011

- (1) Show all work and explain reasoning whenever possible to get full credit; a correct answer with incorrect or no justification will not get credit.
- (2) You have 90 minutes to complete this exam.
- (3) You may NOT use any book, notes, calculators. or electronic devices.
- (4) CROSS OUT THE WORK YOU DO NOT WANT TO BE GRADED.
- (5) Square or highlight your final answers.

Table of Integrals

$$\int x^n dx = \frac{1}{n+1} x^{n+1}, n \neq -1.+C \quad \int e^x dx = e^x + C \qquad \int \sec x \tan x dx = \sec x + C$$

$$\int \frac{1}{x} dx = \ln x + C \qquad \int \sin x dx = -\cos x + C \qquad \int \csc^2 x dx = -\cot x + C$$

$$\int \frac{1}{1+x^2} dx = \tan^{-1} x + C \qquad \int \sec^2 x dx = \tan x + C \qquad \int \csc x \cot x dx = \csc x + C$$

- (1) Evaluate each of the following indefinite integrals. Each is worth 5 points.
 - (a) $\int \frac{x^2 2x + 1}{x^3 + x} dx$.
 - (b) $\int \cos^3(x) \sin(x) dx$.
 - (c) $\int (x^2 + 16)^{-3/2} dx$.
 - (d) $\int e^x \cos x dx$ EXTRA CREDIT: $\int e^{2x} \cos(e^x) dx$
- (2) For each of the following improper integrals:
 - (i) determine whether or not it converges.
 - (ii) Evaluate those that converge.

(a)
$$\int_0^4 x(16-x^2)^{-3/2} dx$$
.

- (a) $\int_0^4 x(16 x^2)^{-3/2} dx.$ (b) $\int_1^\infty \frac{\ln(x)}{x} dx.$ (CORRECTED)
- (3) The curves $y = x^3 6x^2 + 8x$ and $y = x^2 4x$ bounds two regions in the plane. Denote by R the region containing the point (1,0). (NOTE: There was a previous version of this sample exam asking for the area of the two regions. You "use" the two regions problem as extra credit).
 - (a) Express the area of R as a definite integral.
 - (b) Evaluate the definite integral of part (a).
- (4) The region bounded by the curves $y = x^2$ and $x = y^2$ is rotated about the x axis.
 - (a) Express the volume of the solid generated as a definite integral.
 - (b) Compute the volume.