
Math 132 Final Exam Practice Problems
Harrison Pugh
Fall 2014

(1) Evaluate the integral
∫

(ln(x))3 dx.

Let u = (ln(x))3 and dv = dx. Then du = 3(ln(x))2 1
xdx and v = x. Integrate by parts:∫

(ln(x))3 dx = uv −
∫
v du

= x(ln(x))3 −
∫
x3(ln(x))2

1

x
dx

= x(ln(x))3 − 3

∫
(ln(x))2 dx.

Now let u = (ln(x))2, and dv = dx. Then du = 2(ln(x)) 1
xdx and v = x. Integrate by

parts again: ∫
(ln(x))2 dx = x(ln(x))2 −

∫
x2(ln(x))

1

x
dx

= x(ln(x))2 − 2

∫
ln(x) dx.

Finally, let u = ln(x) and dv = dx. Then du = 1
xdx and v = x. Integrate by parts:∫

ln(x) dx = x ln(x)−
∫
x

1

x
dx = x ln(x)−

∫
dx = x ln(x)− x+ C.

Now put it all together:∫
(ln(x))3 dx = x(ln(x))3 − 3

∫
(ln(x))2 dx

= x(ln(x))3 − 3

(
x(ln(x))2 − 2

∫
ln(x) dx

)
= x(ln(x))3 − 3

(
x(ln(x))2 − 2(x ln(x)− x+ C)

)
= x(ln(x))3 − 3x(ln(x))2 + 6x ln(x)− 6x+ C.

(2) Evaluate the integral
∫

cos4(3x) dx.

We use the power reduction formula cos2(θ) = 1+cos(2θ)
2 . This gives∫

cos4(3x) dx =

∫ (
1 + cos(6x)

2

)2

dx

=
1

4

∫
1 + 2 cos(6x) + cos2(6x) dx

=
1

4

∫
dx+

1

2

∫
cos(6x) dx+

1

4

∫
cos2(6x) dx

=
1

4
x+

1

12
sin(6x) +

1

4

∫
cos2(6x) dx.

1
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Applying the power reduction formula again, we get

1

4
x+

1

12
sin(6x) +

1

4

∫
cos2(6x) dx =

1

4
x+

1

12
sin(6x) +

1

4

∫
1 + cos(12x)

2
dx

=
1

4
x+

1

12
sin(6x) +

1

8

∫
1 + cos(12x) dx

=
1

4
x+

1

12
sin(6x) +

1

8

∫
dx+

1

8

∫
cos(12x) dx

=
1

4
x+

1

12
sin(6x) +

1

8
x+

1

8 · 12
sin(12x) + C.

(3) Evaluate the integral
∫ π
0
ex sin(π − x) dx.

We solve the indefinite integral first. Let u = sin(π − x) and dv = exdx. Then du =
− cos(π − x)dx and v = ex. Integrate by parts:∫

ex sin(π − x) dx = ex sin(π − x) +

∫
ex cos(π − x) dx.

Now let u = cos(π − x) and dv = exdx. Then du = sin(π − x)dx and v = ex. Integrate by
parts again: ∫

ex cos(π − x) dx = ex cos(π − x)−
∫
ex sin(π − x) dx.

Putting these together, we get∫
ex sin(π − x) dx = ex sin(π − x) + ex cos(π − x)−

∫
ex sin(π − x) dx.

Adding
∫
ex sin(π − x) dx to both sides and dividing by two gives∫

ex sin(π − x) dx =
ex sin(π − x) + ex cos(π − x)

2
.

Thus the definite integral is∫ π

0

ex sin(π − x) dx =
ex sin(π − x) + ex cos(π − x)

2

∣∣∣∣π
0

=
eπ(0) + eπ(1)

2
− e0(0) + e0(−1)

2

=
eπ + 1

2
.

(4) Evaluate the integral
∫

x
(2x+5)(x−2) dx.

We use partial fractions.

x

(2x+ 5)(x− 2)
=

A

2x+ 5
+

B

x− 2
.

So, A(x− 2) +B(2x+ 5) = x, giving

A+ 2B = 1

−2A+ 5B = 0.
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Therefore, B = 2
5A, and A+ 4

5A = 1. Thus, A = 5
9 and B = 2

9 . So the integral is∫
x

(2x+ 5)(x− 2)
dx =

∫
5/9

2x+ 5
+

2/9

x− 2
dx

=
5

9

∫
1

2x+ 5
dx+

2

9

∫
1

x− 2
dx

=
5

18
ln |2x+ 5|+ 2

9
ln |x− 2|+ C.

(5) Evaluate integral
∫

arctan(1/x) dx.

Let u = arctan(1/x) and dv = dx. Then du = 1
1+(1/x)2

−1
x2 dx and v = x. Integrate by

parts: ∫
arctan(1/x) dx = x arctan(1/x)−

∫
x

1

1 + (1/x)2
−1

x2
dx

= x arctan(1/x)−
∫

−x
x2(1 + (1/x)2)

dx

= x arctan(1/x) +

∫
x

x2 + 1
dx.

Now do u-substitution: let u = x2 + 1. Then du = 2xdx. So the integral becomes∫
arctan(1/x) dx = x arctan(1/x) +

1

2

∫
1

u
du

= x arctan(1/x) +
1

2
ln |u|+ C

= x arctan(1/x) +
1

2
ln |x2 + 1|+ C.

(6) Evaluate the integral
∫
xe−3x dx.

Let u = x, dv = e−3xdx. Then du = dx and v = − 1
3e
−3x. Integrate by parts:∫

xe−3x dx = −x
3
e−3x +

∫
1

3
e−3x dx

= −x
3
e−3x − 1

9
e−3x + C.

(7) Evaluate the integral
∫

cos5(3x) dx.

Using the Pythagorean theorem, write the integral as
∫

(1 − sin2(3x))2 cos(3x) dx. Now
apply u-substitution: Let u = sin(3x). Then du = 3 cos(3x) dx, so the integral becomes∫

(1− sin2(3x))2 cos(3x) dx =
1

3

∫
(1− u2)2 du

=
1

3

∫
1− 2u2 + u4 du

=
1

3

(
u− 2

3
u3 +

1

5
u5
)

+ C

=
1

3

(
sin(3x)− 2

3
sin3(3x) +

1

5
sin5(3x)

)
+ C.

In general, if you want to compute the integral of an even power of sin or cos, you will apply
the power reduction formula like in problem (2). Odd powers of sin and cos are integrated
as in this problem.
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(8) Prove that the area of a circle with radius r is πr2.
The circle of radius r about the origin is given by the formula x2 + y2 = r2, so the top

half of the circle is given by the function

y =
√
r2 − x2.

The area of the circle of radius r is then given by

A = 2

∫ r

−r

√
r2 − x2 dx.

We use trigonometric substitution. Let x = r sin θ. Then dx = r cos θdθ. If x = −r, then
sin θ = −1, so θ = −π/2. If x = r, then sin θ = 1, so θ = π/2. The integral becomes

A = 2

∫ π/2

−π/2

√
r2 − (r sin θ)2r cos θ dθ

= 2

∫ π/2

−π/2
r
√

1− sin2 θr cos θ dθ

= 2

∫ π/2

−π/2
r2 cos2 θ dθ.

We then apply the power reduction formula to get

A = 2r2
∫ π/2

−π/2

1 + cos(2θ)

2
dθ

= r2
∫ π/2

−π/2
dθ + r2

∫ π/2

−π/2
cos(2θ) dθ

= r2 θ|π/2−π/2 +
r2

2
sin(2θ)

∣∣∣∣π/2
−π/2

= r2(π/2− (−π/2)) +
r2

2
(sin(π)− sin(−π))

= r2π +
r2

2
(0− 0)

= πr2.

Alternatively, you can use polar coordinates and the area formula: In polar coordinates,
the circle of radius r0 is given by the function r(θ) = r0. The area formula then gives

A =
1

2

∫ 2π

0

r20 dθ

=
r20
2

∫ 2π

0

dθ

=
r20
2
θ|2π0

=
r20
2

(2π − 0)

= πr20.
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(9) Evaluate the integral
∫ √

16−x2

x2 dx.
We use trig substitution. Let x = 4 sin θ. Then dx = 4 cos θdθ. So the integral becomes∫ √

16− x2
x2

dx =

∫ √
16− 16 sin2 θ

16 sin2 θ
4 cos θ dθ

=

∫
4 cos θ

16 sin2 θ
4 cos θ dθ

=

∫
cot2 θ dθ.

Dividing both sides of of sin2 θ+ cos2 θ = 1 by sin2 θ gives 1 + cot2 θ = csc2 θ, so the integral
becomes ∫

csc2 θ − 1 dθ = − cot θ − θ + C.

Now we put the answer back in terms of x. Since sin θ = x
4 , we have the following right

triangle:

θ
√

16− x2

x
4

So, − cot θ − θ + C = −
√
16−x2

x − arcsin(x/4) + C.

(10) Consider a real number p. Find the values of p for which the integral
∫∞
2
xp dx converges,

and evaluate the integral for those values of p.
Since the integral is improper, we need to write it as a limit:∫ ∞

2

xp dx = lim
t→∞

∫ t

2

xp dx.

If p 6= −1, the integral is

lim
t→∞

∫ t

2

xp dx = lim
t→∞

1

p+ 1
xp+1

∣∣∣∣t
2

= lim
t→∞

tp+1 − 2p+1

p+ 1

=
limt→∞ tp+1

p+ 1
− 2p+1

p+ 1
.

If p > −1, then limt→∞ tp+1 =∞ and the integral is divergent. If p < −1, then limt→∞ tp+1 =

0, and the integral is convergent, and the value is − 2p+1

p+1 .

This leaves the case where p = −1. In this case,

lim
t→∞

∫ t

2

xp dx = lim
t→∞

∫ t

2

1

x
dx

= lim
t→∞

ln(x)|t2
= lim
t→∞

ln(t)− ln(2)

=∞.
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So, in summary, the integral converges for all −∞ < p < −1, and diverges otherwise.

When it converges, the value is − 2p+1

p+1 .

(11) Evaluate the integral or show it is divergent
(a)

∫∞
2

2
(2x+3)4 dx.

We use the comparison test, comparing the function to 2
x4 . Since (2x + 3)4 ≥ x4, it

follows that

0 ≤ 2

(2x+ 3)4
≤ 2

x4
.

Since
∫∞
2

2
x4 dx = 2

∫∞
2

1
x4 dx converges (p-test for p = −4, or problem (10),) So too

does
∫∞
2

2
(2x+3)4 dx.

(b)
∫ 0

−∞ e−3x dx.

You can use the comparison test, comparing e−3x to the function y = −x, or try to
compute the integral directly:∫ 0

−∞
e−3x dx = lim

t→−∞

∫ 0

t

e−3x dx

= lim
t→∞

−e−3x

3

∣∣∣∣0
−t

= lim
t→∞

−1

3
+
e3t

3
=∞.

So, the integral diverges.

(c)
∫ 1

−10
x√
x+10

dx.

Let us compute the integral directly. There’s an asymptote at x = −10, which is why
the integral is improper. We have:∫ 1

−10

x√
x+ 10

dx = lim
t→−10+

∫ 1

t

x√
x+ 10

dx.

Let u =
√
x+ 10. Then du = dx

2
√
x+10

, and x = u2 − 10. If x = t, then u =
√
t+ 10. If

x = 1, then u =
√

11. So, the integral is

lim
t→−10+

∫ 1

t

x√
x+ 10

dx = lim
t→−10+

2

∫ √11

√
t+10

(u2 − 10) du

= lim
t→−10+

2

(
u3

3
− 10u

)√11

√
t+10

= lim
t→−10+

2

(√
11

3

3
− 10

√
11

)
− 2

(√
t+ 10

3

3
− 10

√
t+ 10

)

= 2

(√
11

3

3
− 10

√
11

)

=
−8
√

11

3
.

(d)
∫ e
1

1
x ln
√
x
dx.
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The asymptote occurs at x = 1. Let us try to evaluate the integral directly:

∫ e

1

1

x ln
√
x
dx = lim

t→1+

∫ e

t

1

x ln
√
x
dx

= lim
t→1+

∫ e

t

1

x 1
2 lnx

dx

= 2 lim
t→1+

∫ e

t

1

x lnx
dx.

Let u = lnx. Then du = dx/x, so the integral becomes

2 lim
t→1+

∫ e

t

1

x lnx
dx = 2 lim

t→1+

∫ ln e

ln t

1

u
du

= 2 lim
t→1+

ln(u)|ln eln t

= 2 lim
t→1+

ln(ln e)− ln(ln t)

=∞,

since as t→ 1, we have ln t→ 0, and so ln(ln t)→ −∞. Thus, the integral is divergent.

(12) Find the length of the polar curve r = e2θ, 0 ≤ θ ≤ 2π.
Since dr

dθ = 2e2θ, the length of the polar curve is given by the integral

∫ 2π

0

√
r2 +

(
dr

dθ

)2

dθ =

∫ 2π

0

√
(e2θ)

2
+ (2e2θ)

2
dθ

=

∫ 2π

0

√
e4θ + 4e4θ dθ

=
√

5

∫ 2π

0

e2θ dθ

=
√

5
e2θ

2

∣∣∣∣2π
0

=
e4π − 1

2

√
5.

(13) Find the area of the region that lies inside the curve r = 2(
√

2 + sin θ) and outside the curve

r = 3
√

2. (note the corrected typos)

The two curves intersect when 3
√

2 = 2(
√

2 + sin θ), i.e. when
√
2
2 = sin θ, i.e. when

θ = π/4 and θ = 3π/4. The value of 2(
√

2 + sin θ) is larger than 3
√

2 when π/4 < θ < 3π/4,

so this is the interval on which the curve r = 2(
√

2 + sin θ) lies outside the curve r = 3
√

2.
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The desired area is therefore

A =

∫ 3π/4

π/4

1

2

(
2(
√

2 + sin θ)
)2

dθ −
∫ 3π/4

π/4

1

2

(
3
√

2
)2

dθ

=

∫ 3π/4

π/4

(4 + 4
√

2 sin θ + 2 sin2 θ) dθ −
∫ 3π/4

π/4

4 dθ

= 4
√

2

∫ 3π/4

π/4

sin θ dθ + 2

∫ 3π/4

π/4

sin2 θ dθ

= −4
√

2 cos θ|3π/4π/4 +

∫ 3π/4

π/4

(1− cos(2θ)) dθ

= −4
√

2 (cos(3π/4)− cos(π/4)) +

(
θ − sin(2θ)

2

)∣∣∣∣3π/4
π/4

= −4
√

2

(
−
√

2

2
−
√

2

2

)
+

(
θ − sin(2θ)

2

)∣∣∣∣3π/4
π/4

= −4
√

2
(
−
√

2
)

+

(
3π/4− sin(3π/2)

2

)
−
(
π/4− sin(π/2)

2

)
= 8 +

(
3π/4 +

1

2

)
−
(
π/4− 1

2

)
= 9 + π/2.

(14) Find the area of the region bounded by the given curves y = 1/x, y = x3, y = 0, and x = 2.
First, draw the region. The two curves y = 1/x and y = x3 intersect at x = 1, so the area

of the region is given by∫ 1

0

x3 dx+

∫ 2

1

dx

x
=
x4

4

∣∣∣∣1
0

+ ln(x)|21

=
1

4
+ ln(2).

(15) Find the area of the region bounded by the given curves x+ y = 0 and x = y2 + 3y.
The first curve is a line through the origin with slope −1, and the second is a sideways

parabola with roots y = 0 and y = −3. To find where the two curves intersect, plug x = −y
into the equation for the parabola: −y = y2 + 3y, i.e. y2 + 4y = 0, i.e. y = 0 or y = −4.
Thus, the area of the region is given by∫ 0

−4
(−y)− (y2 + 3y) dy =

∫ 0

−4
−y2 − 4y dy

=

(
−y3

3
− 2y2

)∣∣∣∣0
−4

= −
(
−(−4)3

3
− 2(−4)2

)
= −

(
64

3
− 32

)
=

32

3
.
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(16) Plot the curve given by the parametric equations x = 2t− sin(t), y = 2− cos(t), 0 ≤ t ≤ 2π
and set up (but do not evaluate) an integral expressing its length.

First, draw the graphs of x = sin(t) and x = 2t on the same (x, t) coordinate plane. Notice
that the difference 2t− sin(t) is always positive, and that it is increasing as t gets larger (the
derivative 2− cos(t) is strictly positive.) So, the graph of the parametrized curve is actually
the graph of a function since it will satisfy the vertical line rule. Now draw the graphs
of y = cos(t) and y = 2 together on a (y, t) coordinate plane. Notice that the difference
2 − cos(t) is always positive, but that it oscillates, starting at 1, increasing to 3, and then
going back to 1. The curve is thus a function with a “hump” in the middle:

0 2.5 5 7.5 10 12.5

5

Figure 1. The parameterized curve

To find the arc length, we compute dx
dt = 2− cos(t) and dy

dt = sin(t). So, the arc length is
given by the integral∫ 2π

0

√(
dx

dt

)2

+

(
dy

dt

)2

dt =

∫ 2π

0

√
(2− cos(t))

2
+ (sin(t))

2
dt.

(17) Consider the region R bounded by the lines y = x+ 1, x = 0.5, and y = 1. Set up integrals
representing the volume of the solid obtained by rotating R about the x-axis and about the
y-axis. Can you find two different integrals for the rotation about each axis?

Using washers to rotate about the x-axis, we get

V =

∫ 1/2

0

π(1 + x)2 − π dx.

Using shells about the y-axis, we get

V =

∫ 1/2

0

2πx((1 + x)− 1) dx =

∫ 1/2

0

2πx2 dx

Now the “awkward” way: In terms of y, the line y = x+1 is x = y−1, and its intersection
with x = 1/2 occurs at y = 3/2. So rotating about the y-axis using washers, we get

V =

∫ 3/2

1

π(1/2)2 − π(y − 1)2 dy.

Rotating about the x-axis and using shells, we get

V =

∫ 3/2

1

2πy(1/2− (y − 1)) dy.



10

(18) A paraboloid of revolution is the shape obtained by rotating a parabola of the form y = ax2,
(where as a constant) about the y axis. A tank full of water has the shape of a paraboloid of
revolution, generated by the curve y = x2/2 and has height 18ft. (Assume that the density
of the water is 62.5lb/ft3)
(a) Find the work required to pump the water out of the tank.

I am going to assume we are pumping the water out of the top of the tank.
The radius of the tank at height y is r(y) =

√
2y. Thus, the area A at height y is

A(y) = π(r(y))2 = 2πy. Thus, the infinitesimal volume at height y is given by

dV = 2πy dy.

We’re using the silly American unit “lb” which already incorporate the acceleration due
to gravity, so F is the force density 62.5 times volume V , so

dF = 62.5 · dV = 62.5 · 2πy dy.

Finally, work W is distance times force. The distance we need to move a slice at height
y is 18− y, so the infinitesimal work dW is given by

dW = (18− y)dF = (18− y)62.5 · 2πy dy.

Therefore, the total work is given by

W =

∫ 18

0

dW

=

∫ 18

0

(18− y)62.5 · 2πy dy

= 62.5 · 2π
∫ 18

0

(18y − y2) dy

= 125π

(
9y2 − y3

3

)∣∣∣∣18
0

= 125π

(
9(18)2 − 183

3

)
= 125π · 972.

(b) After 5000 ft-lb work has been done, what is the depth of the water remaining in the
tank?
We find the required depth d by solving the equation

5000 =

∫ 18

d

(18− y)62.5 · 2πy dy.

Note that the bounds are d to 18, not 0 to d. Simplifying, this becomes

5000 = 62.5 · 2π
∫ 18

d

(18− y)y dy

= 125π

(
9y2 − y3

3

)∣∣∣∣18
d

= 125π

(
972−

(
9d2 − d3

3

))
.
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Simplifying, we have the following cubic polynomial:

−1

3
d3 + 9d2 +

40

π
− 972 = 0.

I’m not about to solve for the roots of a cubic polynomial, and neither will you be
expected to do so on your final. I just used a calculator and got a reasonable root
d ' 16.8 This makes sense. The top of the tank has a radius of 6 ft. The top foot of
water in the tank weighs roughly 7000 lbs. Water is very heavy.

(19) A force of 20N is required to maintain a spring stretched from its natural length of 12cm to
a length of 15cm. Find how much work is done in stretching the spring from 12cm to 20cm.

We need to find the spring constant k used in Hooke’s law: we have 20 = k(15 − 12), so
k = 20/3. Thus, the work required to stretch the spring from 12cm to 20cm is∫ 8

0

20

3
x dx =

640

3
,

the units being N-cm.
(20) For the differential equation y′ = (y − 1)(y − 3)(y − 5),

(a) Sketch a direction field.
First, notice that the direction field will be independent of x. The slope only depends
on the height y. The function (y−1)(y−3)(y−5) is a cubic which has been factored for
us, with roots at y = 1, y = 3 and y = 5. So the slope is zero for those values, negative
below y = 1, positive between y = 1 and y = 3, negative between y = 3 and y = 5, and
positive again above y = 5.

(b) Sketch the graphs of the solutions with initial conditions y(0) = 3, y(0) = 4 and y(0) = 6.

-0.25 0 0.25 0.5 0.75 1 1.25 1.5 1.75 2 2.25

2.5

5

7.5

Figure 2. The direction field, with the three IVP solutions superimposed. I
couldn’t get my graphing program to show this, but the IVP solutions should extend
in the −x direction, too.
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(c) If the initial condition is y(0) = r, for which values of r is limt→∞ y(t) finite?
If we start above the value y(0) = 5, or below the value y(0) = 1, then the limit will
not be finite. Otherwise, the graph of y(t) will be trapped between the values y = 1
and y = 5 since it can never cross those two lines (if it did cross, it would need to do so
with non-zero slope, but we know the slope at those levels is zero.)

(21) Sketch the direction field for the differential equation y′ = y−x. Then use the direction field
to sketch four solutions that satisfy the initial conditions y(0) = 0, y(0) = 1, y(0) = −3 and
y(0) = 3.

To sketch the direction field, notice that the slope y′ is zero along the line y = x. in the
region above that line (where y > x,) the slope y′ is positive, and below the line it’s negative.
Along the line y = x + 1, the slope y′ = 1. Any solution starting above this line will go off
to infinity, and any solution starting below the line will go to negative infinity.

0 5 10 15 20 25 30 35

-10

-5

5

10

Figure 3. The direction field with the solutions superimposed. They should also
extend in the −x direction, but my grapher doesn’t show this.

(22) Solve the differential equation 3y2ey
3

y′ = 4x3 − 3
√
x.

The differential equation is separable. Separating the variables and integrating, we get∫
3y2ey

3

dy =

∫
(4x3 − 3

√
x) dx.

The left hand integral is solved using u-substitution: let u = y3. Then du = 3y2dy. So
we get ∫

3y2ey
3

dy =

∫
eu du = eu + C = ey

3

+ C.

The right hand integral is solved using the power rule. we get∫
(4x3 − 3

√
x) dx = x4 − 2x3/2 + C.
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Setting the two sides equal (and combining the +C’s,) we get

ey
3

= x4 − 2x3/2 + C.

Now we solve for y: take ln of both sides, then take a cube root:

y = (ln(x4 − 2x3/2 + C))1/3.

(23) Solve the initial value problem y′ = y(3x+ 1), y(0) = 5.
The differential equation is separable. Separating the variables and integrating, we get∫

dy

y
=

∫
(3x+ 1) dx.

The left hand side integrates to ln(y) + C. The right hand side integrates to 3
2x

2 + x + C.
So,

ln(y) =
3

2
x2 + x+ C,

or exponentiating both sides,

y = e
3
2x

2+x+C .

The initial condition y(0) = 5 means that 5 = e
3
2 (0)

2+0+C = eC . In other words, C = ln(5).
So the solution to the IVP is

y = e
3
2x

2+x+ln(5) = 5e
3
2x

2+x.

(24) Solve the initial value problem y′′ + 2y′ + y = 0, y(0) = 5, y′(0) = 3. (note there’s a typo in
the problem: the +1 should be a +y.)

We first find the roots of the associated polynomial r2 +2r+1. Factoring, we get (r+1)2,
so there’s one repeated real root at r = −1. Thus, the general solution to the differential
equation is

y = C1e
−x + C2xe

−x.

Its derivative is
y′ = −C1e

−x + C2e
−x − C2xe

−x.

The initial condition y(0) = 5 means that

5 = C1e
−0 + C2(0)e−0 = C1.

The initial condition y′(0) = 3 means that

3 = −C1e
−0 + C2e

−0 − C2(0)e−0 = −C1 + C2.

We conclude that C1 = 5 and C2 = 3 + C1 = 8. Thus the solution to the IVP is

y = 5e−x + 8xe−x.

(25) Solve the initial value problem y′′ + 4y = 0, y(0) = 1, y′(0) = 3.
The roots of the associated polynomial r2 + 4 are 2i and −2i. So, the general solution to

the differential equation is

y = C1 cos(2x) + C2 sin(2x).

Thus,
y′ = −2C1 sin(2x) + 2C2 cos(2x).

The initial value y(0) = 1 means that

1 = C1 cos(2(0)) + C2 sin(2(0)) = C1.

The initial value y′(0) = 3 means that

3 = −2C1 sin(2(0)) + 2C2 cos(2(0)) = 2C2.
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Thus, C1 = 1 and C2 = 3/2, and the solution to the IVP is

y = cos(2x) +
3

2
sin(2x).

(26) Solve the initial value problem y′′ − 4y = 0, y(0) = 1, y′(0) = −1.
The roots of the associated polynomial r2−4 are r1 = 2, r2 = −2. So, the general solution

to the differential equation is

y = C1e
2x + C2e

−2x.

Thus,

y′ = 2C1e
2x − 2C2e

−2x.

The initial value y(0) = 1 means that

1 = C1e
2(0) + C2e

−2(0) = C1 + C2.

The initial value y′(0) = −1 means that

−1 = 2C1e
2(0) − 2C2e

−2(0) = 2C1 − 2C2

. So, we have the system of equations

C1 + C2 = 1

2C1 − 2C2 = −1.

Multiply the top row by 2 and add it to the second row. We get

4C1 = 1,

So C1 = 1/4 and C2 = 3/4, and the solution to the IVP is

y =
1

4
e2x +

3

4
e−2x.

(27) The state game commission releases 100 dear into a game preserve. During the first 5 years
the population increases to 450 deer. Find a model for the population growth assuming
logistic growth with a limit of 5000 deer. What does the model predict the size of the
population will be in 10 years, 20 years, 30 years?

The logistic model is governed by the differential equation

P ′ = kP (1− P

5000
),

where P (t) is the population after t year, and k is the constant of proportionality. The
general solution (which we solved for several times in class) is

P (t) =
5000P0e

kt

5000 + P0(ekt − 1)
.

Here, the initial population P0 is 100. We want to solve for k. We know that

450 = P (5) =
5000 · 100e5k

5000 + 100(e5k − 1)
.

Solving for k, we get

k =
1

5
ln

441

91
.

Thus,

P (t) =
5000 · 100e

t
5 ln 441

91

5000 + 100(e
t
5 ln 441

91 − 1)
=

5000( 441
91 )t/5

49 + ( 441
91 )t/5

.
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In 10 years, the population should be

P (10) =
5000( 441

91 )2

49 + ( 441
91 )2

= 1620.

Likewise, P (20) ' 4592 and P (30) ' 4981.
(28) (a) Use Euler’s method with step size 0.2 to estimate y(0.4) where y(t) is the solution of

the initial value problem y′ = 2.t.y2, y(0) = 1.
I’m going to assume the differential equation is y′ = 2ty2. I’m not sure if what’s written
is a typo. We have t0 = 0, t1 = 0.2, and t2 = 0.4. We also know y0 = 1, and we’re
trying to find y2. Euler’s method gives

y1 = y0 + 0.2(2 · t0 · (y0)2) = 1 + 0.2(2 · 0 · (1)2) = 1,

y2 = y1 + 0.2(2 · t1 · (y1)2) = 1 + 0.2(2 · 0.2 · (1)2) = 1.08.

So, y(0.4) ' 1.08.
(b) Find the exact solution of the differential equation and compare the value at 0.4 with

the approximation in part a.
Separating the differential equation and integrating, we get∫

dy

y2
=

∫
2t dt.

Integrating, we get

−1

y
= t2 + C,

and solving for y, we get

y =
−1

t2 + C
.

The initial value 1 = y(0) = −1/C implies that C = −1, so the exact solution to the
IVP is

y =
−1

t2 − 1
.

The exact value at t = 0.4 is −1
(0.4)2−1 ' 1.19, which is close to our approximation 1.08.

(29) Find a general term for the sequence 1
2 ,

4
7 ,

1
2 ,

8
19 ,

5
14 ,

4
13 ,

7
26 ,

16
67 ,

3
14 ,

20
103 , . . . and determine

whether it is convergent.
Some of those fractions have been simplified to obfuscate the pattern. Rewrite the se-

quence as

2

4
,

4

7
,

6

12
,

8

19
,

10

28
,

12

39
,

14

52
,

16

67
,

18

84
,

20

103
, . . . .

So, the numerator is just 2n. That leaves the denominator. 103 is suspiciously close to
100 = 102. And 84 is the same distance from 81, which is also a perfect square. In fact, all
the denominators are three more than a perfect square. So, we can rewrite the sequence as

2

3 + 12
,

4

3 + 22
,

6

3 + 32
,

8

3 + 42
,

10

3 + 52
,

12

3 + 62
,

14

3 + 72
,

16

3 + 82
,

18

3 + 92
,

20

3 + 102
, . . .
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. So, the general term of the sequence is an = 2n
3+n2 . To see if the sequence is convergent, we

compute the limit using L’Hôpital’s rule:

lim
n→∞

an = lim
n→∞

2n

3 + n2

= lim
n→∞

2

2n

= lim
n→∞

1

n
= 0.

So, the sequence is convergent, and it converges to zero.
(30) Determine whether the series is convergent or divergent. If you are using a test, name it and

explain why you can use it.
(a)

∑∞
n=1

n+1
n4+2 .

Use the limit comparison test, comparing it to the series
∑∞
n=1

1
n3 , which converges by

the p-series test, since p = 3:

lim
n→∞

∣∣∣∣∣ 1
n3

n+1
n4+2

∣∣∣∣∣ = lim
n→∞

∣∣∣∣ n4 + 2

n4 + n3

∣∣∣∣
= lim
n→∞

∣∣∣∣1 + 2/n4

1 + 1/n

∣∣∣∣
= 1.

Since 0 < 1 <∞, the series
∑∞
n=1

n+1
n4+2 converges too.

(b)
∑∞
n=1

n2

n+2 .

By L’Hôpital’s rule, the limit of the sequence an = n2

n+2 is

lim
n→∞

an = lim
n→∞

n2

n+ 2
= lim
n→∞

2n

1
=∞.

Therefore, since the sequence an does not converge to zero, the series
∑∞
n=1

n2

n+2 diverges

(they name this test in the book, but I forget what it’s called.)
(c)

∑∞
n=1(−1)n 1

n1/3 .

The series converges by the alternating series test, since 0 ≤ 1
n1/3 and limn→∞

1
n1/3 = 0.

(d)
∑∞
n=1

1
n ln(n) .

The series is not well-defined, since the n = 1 term is 1/0. Let’s assume they mean∑∞
n=2

1
n ln(n) . It diverges by the integral test:∫ ∞

2

1

x ln(x)
dx = lim

t→∞

∫ t

2

1

x ln(x)
dx

= lim
t→∞

∫ ln(t)

ln(2)

du

u

= lim
t→∞

ln(u)|ln(t)ln(2)

= lim
t→∞

ln(ln(t))− ln(ln(2))

=∞,

where we made the substitution u = ln(t) in the 2nd line.
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(e)
∑∞
n=1

73n

n210n .

Since 73/10 = 34.3, we can rewrite this series as
∑∞
n=1

34.3n

n2 . Let an = 34.3n

n2 . Applying
L’Hôpital’s rule twice, we compute limn→∞ an:

lim
n→∞

an = lim
n→∞

34.3n

n2

= lim
n→∞

ln(34.3) · (34.3)n

2n

=
ln(34.3)

2
lim
n→∞

(34.3)n

n

=
ln(34.3)

2
lim
n→∞

ln(34.3) · (34.3)n

1

=
(ln(34.3))2

2
lim
n→∞

(34.3)n

=∞.

Therefore since limn→∞ an 6= 0, the series does not converge.
(31) Determine the values of x for which the series

∑∞
n=1 e

nx converges.
The series

∑∞
n=1 e

nx is geometric, since we can rewrite it as

∞∑
n=1

(ex)n.

Therefore, the series converges if and only if ex < 1, or in other words, if x < 0.
(32) Determine how many terms in the series

∑∞
n=1(−1)n 1

n4 are enough to add to approximate
the sum correct up to 3 decimal places.

The error EN is the remainder EN =
∑∞
n=N+1(−1)n 1

n4 . Since the series is alternating,
we know that

|EN | ≤ |aN+1| =
1

(N + 1)4
.

So, we want to find N such that

1

(N + 1)4
< 0.001.

In other words,

1000(1/4)− 1 < N.

The left hand side is approximately 4.62, so we need N ≥ 5..
(33) Find the radius of convergence and the interval of convergence of the series.

(a)
∑∞
n=1

xn

n44n .
Let’s apply the ratio test:

lim
n→∞

∣∣∣∣ xn+1

(n+ 1)44n+1
· n

44n

xn

∣∣∣∣ =
|x|
4

lim
n→∞

∣∣∣∣ n4

(n+ 1)4

∣∣∣∣
=
|x|
4
,

where the limit is computed using L’Hôpital’s rule. Thus, the series converges if |x|/4 <
1, or if |x| < 4. Thus, the radius of convergence is 4. To find the interval of convergence,
we need to determine what happens at x = 4 and x = −4. If x = 4, then the series is
just

∑∞
n=1

1
n4 which converges by the p-test, p = 4. if x = −4, then the series is just
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n=1

(−1)n
n4 , which converges by the alternating series test. Therefore, the interval of

convergence is [−4, 4].

(b)
∑∞
n=1

(x+10)n

n! .
Let’s apply the ratio test:

lim
n→∞

∣∣∣∣ (x+ 10)n+1

(n+ 1)!
· n!

(x+ 10)n

∣∣∣∣ = |x+ 10| lim
n→∞

1

n+ 1

= |x+ 10| · 0
= 0.

Therefore, the radius of convergence is ∞ and the interval of convergence is (−∞,∞).

(c)
∑∞
n=1(−1)n (x−1)n

n1/3 .
Let’s apply the ratio test:

lim
n→∞

∣∣∣∣ (−1)n+1(x− 1)n+1

(n+ 1)1/3
· n1/3

(−1)n(x− 1)n

∣∣∣∣ = |x− 1| lim
n→∞

(
n

n+ 1

)1/3

= |x− 1|.

Thus, the series converges if |x − 1| < 1. So, the radius of convergence is 1. To find
the interval of convergence, we need to find out what happens at x = 2 and x = 0. If

x = 2, then the series is just
∑∞
n=1

(−1)n
n1/3 , which converges by the alternating series test.

If x = 0, then the series is

∞∑
n=1

(−1)n(−1)n

n1/3
=

∞∑
n=1

(−1)2n

n1/3
=

∞∑
n=1

1

n1/3
,

which diverges by the p-series test, since p = 1/3. So, the interval of convergence is
(0, 2].

(34) Find the radius of convergence of the series
∑∞
n=1

(3n)!xn

(n!)3 .

We use the ratio test:

lim
n→∞

∣∣∣∣ (3(n+ 1))!xn+1

((n+ 1)!)3
· (n!)3

(3n)!xn

∣∣∣∣ = lim
n→∞

∣∣∣∣ (3n+ 3)!xn!n!n!

(n+ 1)!(n+ 1)!(n+ 1)!(3n)!

∣∣∣∣
= lim
n→∞

∣∣∣∣ (3n+ 3)(3n+ 2)(3n+ 1)x

(n+ 1)3

∣∣∣∣
= |x| lim

n→∞

27n3 + 54n2 + 30n+ 3

n3 + 3n2 + 3n+ 1
= |x| · 27,

where the last line follows from three applications of L’Hôpital’s rule. Thus, the series
converges if |x| · 27 < 1, so the radius of convergence is 1/27.

(35) Find the Taylor series of f(x) = sinx at x = π.
The Taylor series at x = a of the function f(x) is

∞∑
n=0

f (n)(a)

n!
(x− a)n.
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So, we need to compute derivatives of f(a) = sin(a):

f (0)(a) = sin a

f (1)(a) = cos a

f (2)(a) = − sin a

f (3)(a) = − cos a,

after which point the pattern repeats. If a = 0, we get the pattern 0, 1, 0,−1, . . ., but we are
instead concerned with what happens at a = π, in which case the pattern is 0,−1, 0, 1, . . ..
Notice that this is exactly the negative of the a = 0 pattern, so the coefficients in the Taylor
series we’re trying to find are exactly the negative of the coefficients of the usual MacLaurin
series, which is given by

∞∑
n=0

(−1)n

(2n+ 1)!
x2n+1.

Thus, the Taylor series at x = π is

∞∑
n=0

(−1)n+1

(2n+ 1)!
(x− π)2n+1.

(36) Find the MacLaurin series of f(x) = x3

1+x .

We could spend all day trying to use the definition
∑∞
n=0

f(n)(0)
n! xn, or we can be clever:

We know that the geometric series
∑∞
n=0 y

n sums to 1
1−y , as long as |y| < 1. Therefore, by

plugging in y = −x, we get

1

1 + x
=

∞∑
n=0

(−x)n =

∞∑
n=0

(−1)nxn.

Multiplying both sides by x3 we find the desired series:

x3

1 + x
=

∞∑
n=0

(−1)nxn+3.

(37) Consider the power series f(x) =
∑∞
n=1

xn

n2 .
(a) Find the interval of convergence.

Let’s apply the ratio test:

lim
n→∞

∣∣∣∣ xn+1

(n+ 1)2
· n

2

xn

∣∣∣∣ = |x| lim
n→∞

n2

(n+ 1)2
= |x|,

where the limit was computed using L’Hôpital’s rule. Thus, the radius of convergence
is 1. We need to find out what happens at x = 1 and x = −1: If x = 1, then the
series is

∑∞
n=1

1
n2 , which converges by the p-test, since p = 2. If x = −1, then the series

converges by the alternating series test. So, the interval of convergence is [−1, 1].
(b) Estimate f(−1/2) by adding four terms.

f(−1/2) ' −1

2
+

1/4

4
− 1/8

9
+

1/16

16
' 0.447482

.
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(c) Determine how many terms of the series f(−1/2) are required to ensure that the sum
is accurate to within 0.0001.
The series f(−1/2) is given by

∑∞
n=1

(−1)n
2nn2 . It is alternating, so We can use the alter-

nating series error estimate. In the notation of Problem (32), we know that

|EN | ≤
1

2N+1(N + 1)2
.

We want 1
2N+1(N+1)2

≤ 0.0001, or in other words

10, 000 ≤ 2N+1(N + 1)2.

A little trial and error later, and we can find that N = 7 works: 28 · 82 = 16, 384 >
10, 000.

(38) Use series to evaluate the limit limx→0
x2ex

cos x−1 .
We know that

ex =

∞∑
n=0

xn

n!
= 1 + x+

x2

2
+
x3

3!
+
x4

4!
+ . . . ,

so

x2ex = x2 + x3 +
x4

2
+
x5

3!
+
x6

4!
+ . . .

We also know that

cosx =

∞∑
n=0

(−1)n

(2n)!
x2n = 1− x2

2
+
x4

4!
− x6

6!
+ . . . ,

so

cosx− 1 = −x
2

2
+
x4

4!
− x6

6!
+ . . . .

Therefore,

lim
x→0

x2ex

cosx− 1
= lim
x→0

x2 + x3 + x4

2 + x5

3! + x6

4! + . . .

−x2

2 + x4

4! −
x6

6! + . . .

= lim
x→0

1 + x+ x2

2 + x3

3! + x4

4! + . . .

− 1
2 + x2

4! −
x4

6! + . . .

=
limx→0(1 + x+ x2

2 + x3

3! + x4

4! + . . . )

limx→0(− 1
2 + x2

4! −
x4

6! + . . . )

=
1

−1/2

= −2.


