Problem. (35) Find the Taylor series of $f(x)=\sin x$ at $x=\pi$
(Solution) We begin by manually computing the first few derivatives of f evaluated at π to look for a pattern:

n	$f^{(n)}(x)$	$f^{(n)}(\pi)$
0	$\sin x$	0
1	$\cos x$	-1
2	$-\sin x$	0
3	$-\cos x$	1
4	$\sin x$	0

So we see that $f^{(n)}(\pi)$ is 0 for all even values of n and alternates between positive and negative 1 for odd values of n. So if $n=2 k+1$ then $f^{(n)}(\pi)=(-1)^{k+1}$. Notice that the exponent is $k+1$ since we need $f^{(n)}(\pi)$ to be -1 when $k=0$ and hence $n=1$. Therefore, our Taylor series is

$$
f(x)=\sum_{k=0}^{\infty} \frac{(-1)^{k+1}(x-\pi)^{2 k+1}}{(2 k+1)!}
$$

Compare this to the McLaurin series for $\sin x$ which is

$$
f(x)=\sum_{k=0}^{\infty} \frac{(-1)^{k} x^{2 k+1}}{(2 k+1)!}
$$

And notice that they are the same except for their centers and the exponent of -1 . Think about what this means, and why it should be true (Hint: look at the graph of $\sin x$).
Problem. (36) Find the McLaurin series of $f(x)=\frac{x^{3}}{1+x}$
(Solution) This problem is difficult to do directly, but there is an easy way around: we can use the McLaurin series of $(1+x)^{-1}$, which is much easier to calculate, and then just multiply it by x^{3} at the end. If $g(x)=(1+x)^{-1}$ we will leave it as an exercise to the reader to verify that:

$$
g(x)=\sum_{k=0}^{\infty}(-1)^{k} x^{k}
$$

Therefore, to obtain f we simply multiply g by x^{3} which amounts to simply increasing the exponents by 3 and so we obtain:

$$
f(x)=\sum_{k=0}^{\infty}(-1)^{k} x^{k+3}
$$

Problem. (37) Consider the power series $f(x)=\sum_{n=1}^{\infty} \frac{x^{n}}{n^{2}}$ and (a) find the interval of convergence, (b) estimate $f(-1 / 2)$ by adding four terms, and (c) determine how many terms of the series $f(-1 / 2)$ are required to ensure that the sum is accurate to within 0.0001 .
(Solution) (a) Let $a_{n}=\frac{x^{n}}{n^{2}}$ and apply the ratio test to determine the initial interval of convergence:
$\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\lim _{n \rightarrow \infty}\left|\frac{x^{n+1}}{(n+1)^{2}} \frac{n^{2}}{x^{n}}\right|=\lim _{n \rightarrow \infty}\left|x\left(\frac{n}{n+1}\right)^{2}\right|=\lim _{n \rightarrow \infty}\left|x\left(\frac{1}{1+\frac{1}{n}}\right)^{2}\right|=|x|$

And so if $|x|<1$, the series will converge, which means that the interval of convergence is at least $(-1,1)$. It now remains to check the endpoints:
Case 1. If $x=1$ then $a_{n}=\frac{1}{n^{2}}$ which converges since it is a p-series with $p>1$.
Case 2. If $x=-1$ then $a_{n}=\frac{(-1)^{n}}{n^{2}}=(-1)^{n} b_{n}$ where $b_{n}=n^{-2}$ is the nonalternating part of a_{n}. Since n^{2} is increasing, its reciprocal b_{n} is decreasing. Furthermore, $\lim _{n \rightarrow \infty} b_{n}=0$. Therefore, by the alternating series test, the series converges.
So the series converges at both endpoints and so the final interval of convergence is $[-1,1]$.
(b) This is a direct computation. The first four terms give us the fourth partial sum

$$
s_{4}(x)=x+\frac{x^{2}}{4}+\frac{x^{3}}{9}+\frac{x^{4}}{16}=\frac{1}{144}\left(144 x+36 x^{2}+16 x^{3}+9 x^{4}\right)
$$

and so

$$
s_{4}(-1 / 2)=-1031 / 2304 \approx-0.447483
$$

(c) When $x=-1 / 2$ our series becomes

$$
f(-1 / 2)=\sum_{n=1}^{\infty}(-1 / 2)^{n} / n^{2}=\sum_{n=1}^{\infty}(-1)^{n} b_{n}
$$

where $b_{n}=2^{-n} n^{-2}$. We can now apply the Alternating Series Estimation Theorem which states that in a convergent alternating series $\sum(-1)^{n} b_{n}$ the error estimate of the first n terms, R_{n}, has absolute value at most b_{n+1}, i.e.

$$
\left|R_{n}\right| \leq b_{n+1}
$$

Therefore, to be accurate within 0.0001 we need

$$
\left|R_{n}\right|=b_{n+1}=\frac{1}{2^{n} n^{2}} \leq 0.0001=\frac{1}{10,000}
$$

And so, by taking the reciprocal we need to determine when

$$
10,000 \leq 2^{n} n^{2}
$$

By manual calculation we find that the smallest value for which this is true is $n=8$. So the approximation is sufficiently accurate when $n \geq 8$.
Problem. (38) Use series to evaluate the limit $\lim _{x \rightarrow 0} \frac{x^{2} e^{x}}{\cos x-1}$
(Solution) We will use the the McLaurin series

$$
e^{x}=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\cdots
$$

and

$$
\cos x=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n}}{(2 n)!}=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}+\cdots
$$

Therefore

$$
\lim _{x \rightarrow 0} \frac{x^{2} e^{x}}{\cos x-1}=\lim _{x \rightarrow 0} \frac{x^{2}+x^{3}+\frac{x^{4}}{2!}+\frac{x^{5}}{3!}+\cdots}{-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}+\cdots}=\lim _{x \rightarrow 0} \frac{1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\cdots}{-\frac{1}{2!}+\frac{x^{2}}{4!}+\cdots}=-2
$$

