
Problem. (35) Find the Taylor series of f(x) = sinx at x = π

(Solution) We begin by manually computing the �rst few derivatives of f evaluated
at π to look for a pattern:

n f (n)(x) f (n)(π)
0 sinx 0
1 cosx −1
2 − sinx 0
3 − cosx 1
4 sinx 0

So we see that f (n)(π) is 0 for all even values of n and alternates between positive

and negative 1 for odd values of n. So if n = 2k+1 then f (n)(π) = (−1)k+1. Notice

that the exponent is k + 1 since we need f (n)(π) to be −1 when k = 0 and hence
n = 1. Therefore, our Taylor series is

f(x) =

∞∑
k=0

(−1)k+1(x− π)2k+1

(2k + 1)!

Compare this to the McLaurin series for sinx which is

f(x) =

∞∑
k=0

(−1)kx2k+1

(2k + 1)!

And notice that they are the same except for their centers and the exponent of −1.
Think about what this means, and why it should be true (Hint: look at the graph
of sinx).

Problem. (36) Find the McLaurin series of f(x) = x3

1+x

(Solution) This problem is di�cult to do directly, but there is an easy way around:
we can use the McLaurin series of (1+x)−1, which is much easier to calculate, and
then just multiply it by x3 at the end. If g(x) = (1 + x)−1 we will leave it as an
exercise to the reader to verify that:

g(x) =

∞∑
k=0

(−1)kxk

Therefore, to obtain f we simply multiply g by x3 which amounts to simply in-
creasing the exponents by 3 and so we obtain:

f(x) =

∞∑
k=0

(−1)kxk+3

Problem. (37) Consider the power series f(x) =
∑∞

n=1
xn

n2 and (a) �nd the interval
of convergence, (b) estimate f(−1/2) by adding four terms, and (c) determine how
many terms of the series f(−1/2) are required to ensure that the sum is accurate
to within 0.0001.
(Solution) (a) Let an = xn

n2 and apply the ratio test to determine the initial interval
of convergence:

lim
n→∞

∣∣∣∣an+1
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n→∞
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(n+ 1)2
n2

xn

∣∣∣∣ = lim
n→∞

∣∣∣∣∣x
(

n

n+ 1

)2
∣∣∣∣∣ = lim

n→∞

∣∣∣∣∣x
(

1

1 + 1
n
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∣∣∣∣∣ = |x|

1



2

And so if |x| < 1, the series will converge, which means that the interval of conver-
gence is at least (−1, 1) . It now remains to check the endpoints:

Case 1. If x = 1 then an = 1
n2 which converges since it is a p-series with p > 1.

Case 2. If x = −1 then an = (−1)n
n2 = (−1)nbn where bn = n−2 is the nonalter-

nating part of an. Since n
2 is increasing, its reciprocal bn is decreasing.

Furthermore, limn→∞ bn = 0. Therefore, by the alternating series test,
the series converges.

So the series converges at both endpoints and so the �nal interval of convergence
is [−1, 1].
(b) This is a direct computation. The �rst four terms give us the fourth partial
sum

s4(x) = x+
x2

4
+
x3

9
+
x4

16
=

1

144

(
144x+ 36x2 + 16x3 + 9x4

)
and so

s4(−1/2) = −1031/2304 ≈ −0.447483
(c) When x = −1/2 our series becomes

f(−1/2) =
∞∑

n=1

(−1/2)n/n2 =

∞∑
n=1

(−1)nbn

where bn = 2−nn−2. We can now apply the Alternating Series Estimation Theorem
which states that in a convergent alternating series

∑
(−1)nbn the error estimate

of the �rst n terms, Rn, has absolute value at most bn+1, i.e.

|Rn| ≤ bn+1

Therefore, to be accurate within 0.0001 we need

|Rn| = bn+1 =
1

2nn2
≤ 0.0001 =

1

10, 000

And so, by taking the reciprocal we need to determine when

10, 000 ≤ 2nn2

By manual calculation we �nd that the smallest value for which this is true is n = 8.
So the approximation is su�ciently accurate when n ≥ 8.

Problem. (38) Use series to evaluate the limit limx→0
x2ex

cos x−1
(Solution) We will use the the McLaurin series

ex =

∞∑
n=0

xn

n!
= 1 + x+

x2

2!
+
x3

3!
+ · · ·

and

cosx =

∞∑
n=0

(−1)nx2n

(2n)!
= 1− x2

2!
+
x4

4!
+ · · ·

Therefore

lim
x→0

x2ex

cosx− 1
= lim

x→0

x2 + x3 + x4

2! +
x5

3! + · · ·
−x2

2! +
x4

4! + · · ·
= lim

x→0

1 + x+ x2

2! +
x3

3! + · · ·
− 1

2! +
x2

4! + · · ·
= −2




