(1) The region bounded by the curves $y=x^{2}$ and $x=y^{2}$ is rotated about the x-axis. Set up an integral for the volume of the resulting solid by two different methods.

Method 1: Using washers, we have two functions of $x: y=x^{2}$ and $y=\sqrt{x}$. To find their intersection, we set them equal to each other.

$$
\begin{aligned}
x^{2} & =\sqrt{x} \\
x^{4} & =x \\
x^{4}-x & =0 \\
x\left(x^{3}-1\right) & =0 \\
x(x-1)\left(x^{2}+x+1\right) & =0 .
\end{aligned}
$$

By the quadratic formula, the quantity $x^{2}+x+1$ is never zero, so the intersection points are just $x=0$ and $x=1$. On the interval $[0,1]$ the function $y=\sqrt{x}$ is larger than the function $y=x^{2}$, so the washer method gives

$$
A=\int_{0}^{1} \pi(\sqrt{x})^{2}-\pi\left(x^{2}\right)^{2} d x
$$

Method 2: Using cylindrical shells, we need to write the two curves as functions of y : $x=y^{2}$ and $x=\sqrt{y}$. The intersection point is found as before, giving us $y=0$ and $y=1$. The washer methods gives

$$
A=\int_{0}^{1} 2 \pi y\left(\sqrt{y}-y^{2}\right) d y
$$

(2) Set up (but do not evaluate) an integral for the length of the curve $y=x^{3 / 2}$, for $x \in[0,4]$.

We parameterize the curve by $x=t, y=t^{3 / 2}, t \in[0,4]$. Taking derivatives, we get

$$
\begin{aligned}
& \frac{d x}{d t}=1 \\
& \frac{d y}{d t}=\frac{3}{2} \sqrt{t}
\end{aligned}
$$

Thus, the formula for arc length gives

$$
L=\int_{0}^{4} \sqrt{1+\left(\frac{3}{2} \sqrt{t}\right)^{2}} d t
$$

(3) Set up integral for the length of and the area of the inside loop of the polar curve $r=$ $1-2 \cos (\theta)$.

By setting $r=0$ we see that the curve passes through 0 at $\theta=\pi / 3$ and $-\pi / 3$. By plotting the graph (plot some points like $\theta=0, \pm \pi / 6, \pm \pi / 4, \pm \pi / 3, \pm \pi / 4$, etc) we see that the loop occurs on the interval $\theta \in[-\pi / 3, \pi / 3]$. We also need to compute $\frac{d r}{d \theta}$:

$$
\frac{d r}{d \theta}=2 \sin (\theta)
$$

The formulas for polar arc length L and area A give

$$
\begin{aligned}
L & =\int_{-\pi / 3}^{\pi / 3} \sqrt{(1-2 \cos (\theta))^{2}+(2 \sin (\theta))^{2}} d \theta \\
A & =\int_{-\pi / 3}^{\pi / 3} \frac{1}{2}(1-2 \cos (\theta))^{2} d \theta
\end{aligned}
$$

(4) A tank on the shape of a sphere of radius 10 ft is full of oil weighing $50 \mathrm{lb} / \mathrm{ft}^{3}$. How much work is done by pumping the oil through a hole in the top?

Placing the origin at the center of the tank, we find that the radius of a slice at height y is given by $r(y)=\sqrt{10^{2}-y^{2}}$. So, the area of a slice is $A(y)=\pi\left(100-y^{2}\right)$. So, the infinitesimal volume of a slice, $d V$ is given by

$$
d V=\pi\left(100-y^{2}\right) d y
$$

Since mass M is density \times volume, the infinitesimal mass $d M$ is given by

$$
d M=50 \cdot d V=50 \cdot \pi\left(100-y^{2}\right) d y
$$

Force F is mass times acceleration, so the infinitesimal force $d F$ required to lift a slice is given by

$$
d F=32 \cdot d M=32 \cdot 50 \cdot \pi\left(100-y^{2}\right) d y
$$

where the acceleration due to gravity is roughly $32 \mathrm{ft} / \mathrm{s}^{2}$. We need to move a given slice at height y to the top of the tank, which is at height 10 . This distance is $10-y$. Work is distance times force, so the infinitesimal work for a given slice at height y is

$$
d W=(10-y) \cdot d F=(10-y) \cdot 32 \cdot 50 \cdot \pi\left(100-y^{2}\right) d y
$$

The total work W is thus the integral of $d W$, from $y=-10$ to $y=10$:

$$
W=\int_{-10}^{10}(10-y) \cdot 32 \cdot 50 \cdot \pi\left(100-y^{2}\right) d y
$$

You can then integrate this function (first pull out all those constants!) to get the answer.
(5) if 6 J of work is needed to stretch a spring from 10 cm to 12 cm and another 10 J is needed to stretch it from 12 cm to 14 cm , what is the natural length of the spring? (Recall Hooke's law: the force required to maintain a spring stretched x units beyond its natural length is proportional to x).

In mathematical notation, Hooke's law says that the force $F(x)$ as a function of x is given by the function $k x$, where k is some constant $(k>0$.) Let L denote the natural length of the spring. The first statement tells us that

$$
\int_{0.1-L}^{0.12-L} k x d x=6
$$

The limits of integration are written like that, since 10 cm is equal to L plus the initial amount that the spring is being stretched. Likewise 12 cm is equal to L plus the final amount being stretched. We needed to change centimeters into meters because Joules are in terms of meters.)

The second statement likewise says

$$
\int_{0.12-L}^{0.14-L} k x d x=10
$$

Integrating, we get the system of equations

$$
\begin{aligned}
\frac{k}{2}\left[(0.12-L)^{2}-(0.1-L)^{2}\right] & =6 \\
\frac{k}{2}\left[(0.14-L)^{2}-(0.12-L)^{2}\right] & =10
\end{aligned}
$$

Simplifying, we get

$$
\begin{aligned}
& 0.11-L=\frac{300}{k} \\
& 0.13-L=\frac{500}{k}
\end{aligned}
$$

Thus, $k=300 /(0.11-L)$, so

$$
L=0.13-\frac{500}{300}(0.11-L)
$$

Solving for L, we get $L=0.08$ meters, or 8 cm .
(6) Determine whether each of the series is convergent or divergent. If it is convergent, find its sum. (Justify your answers)
(a) $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n^{2}+1}}$. Diverges. Use the limit comparison test with the series $\sum_{n=1}^{\infty} \frac{1}{n}$, which we know diverges (it's a p-series with $p=1$.)

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \frac{1 / n}{1 / \sqrt{n^{2}+1}} & =\lim _{n \rightarrow \infty} \frac{\sqrt{n^{2}+1}}{n} \\
& =\lim _{n \rightarrow \infty} \sqrt{\frac{n^{2}+1}{n^{2}}} \\
& =\sqrt{\lim _{n \rightarrow \infty} \frac{n^{2}+1}{n^{2}}} \\
& =\sqrt{\lim _{n \rightarrow \infty} 1+\frac{1}{n^{2}}} \\
& =\sqrt{1+\lim _{n \rightarrow \infty} \frac{1}{n^{2}}} \\
& =\sqrt{1+0} \\
& =1
\end{aligned}
$$

Since $0<1<\infty$, the limit comparison test tells us that the series $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n^{2}+1}}$ diverges too.
(b) $\sum_{n=1}^{\infty}\left(\frac{3}{n(n+3)}+\frac{1}{(-10)^{n}}\right)$. Converges. We can break it up into two series. The first, $\sum_{n=1}^{\infty} \frac{3}{n(n+3)}$ converges by the comparison test: we compare it to the series $\sum_{n=1}^{\infty} \frac{3}{n^{2}}=$ $3 \sum_{n=1}^{\infty} \frac{1}{n^{2}}$, which converges since it's a p-series where $p=2$. We may apply the comparison test, since $0 \leq \frac{3}{n(n+3)} \leq \frac{3}{n^{2}}$.
The second series $\sum_{n=1}^{\infty} \frac{1}{(-10)^{n}}$ converges since it's a geometric series $\sum r^{n}$, where $r=$ $-1 / 10$ (hence $|r|<1$.) It converges to $\frac{1}{1+1 / 10}-1$. (we subtract 1 , because the formula for a geometric series starts at $n=0$, and we're starting from $n=1$.)
(c) $\sum_{n=1}^{\infty} \frac{n^{2}-4}{2 n^{2}+3}$ diverges, since by L'Hopital's rule,

$$
\lim _{n \rightarrow \infty} \frac{n^{2}-4}{2 n^{2}+3}=\lim _{n \rightarrow \infty} \frac{2 n}{4 n}=\frac{1}{2}
$$

Since the sequence $\frac{n^{2}-4}{2 n^{2}+3}$ does not converge to zero, the series can't possibly converge. (Recall that if a series $\sum a_{n}$ converges, then $a_{n} \rightarrow 0$.)
(d) $\sum_{n=1}^{\infty} \frac{\ln (n)}{n}$ diverges by the comparison test. We know that for $n \geq 3$ we have $\frac{\ln (n)}{n}>\frac{1}{n}$. Since $\sum_{n=1}^{\infty} \frac{1}{n}$ diverges (it's a p-series, where $p=1$,) the series $\sum_{n=1}^{\infty} \frac{\ln (n)}{n}$ also diverges.
(7) Represent the number $3.4 \overline{15}=3.4151515 \ldots$ as a quotient of integers.

We first represent the number as a series: $3.4 \overline{15}=3.4+0.0 \overline{15}$. We have

$$
\begin{aligned}
0.015 & =\frac{15}{1000} \\
0.01515 & =\frac{15}{1000}+\frac{15}{1000} \cdot \frac{1}{100} \\
0.0151515 & =\frac{15}{1000}+\frac{15}{1000} \cdot \frac{1}{100}+\frac{15}{1000} \cdot \frac{1}{100} \cdot \frac{1}{100} .
\end{aligned}
$$

So, we begin to see a pattern. The repeating decimal is thus given by

$$
0.0 \overline{15}=\sum_{n=0}^{\infty}\left(\frac{15}{1000}\right) \cdot \frac{1}{100^{n}}=\frac{15}{1000} \cdot \sum_{n=0}^{\infty}\left(\frac{1}{100}\right)^{n}=\frac{15}{1000} \cdot \frac{1}{1-\frac{1}{100}}
$$

since $\sum_{n=0}^{\infty}\left(\frac{1}{100}\right)^{n}$ is a geometric series $\sum_{n=0} \infty r^{n}$ where $r=1 / 100$. Therefore, the full decimal $3.4 \overline{15}$ is given by

$$
\begin{aligned}
3.4 \overline{15} & =3+\frac{4}{10}+0.0 \overline{15} \\
& =\frac{34}{10}+\frac{15}{1000} \cdot \frac{1}{1-\frac{1}{100}} \\
& =\frac{34}{10}+\frac{15}{10} \frac{1}{99} \\
& =\frac{34 \cdot 99+15}{990} \\
& =\frac{3381}{990}
\end{aligned}
$$

(8) (a) Approximate the series $\sum_{n=1}^{\infty} \frac{1}{n^{2}}$ by using the first 4 terms.

We compute this by hand: the sum of the first 4 terms is $1+1 / 4+1 / 9+1 / 16$.
(b) Estimate the error of the approximation. In general, the error $E_{N}=\sum_{n=1}^{\infty} \frac{1}{n^{2}}-\sum_{n=1}^{N} \frac{1}{n^{2}}$ satisfies

$$
\int_{N+1}^{\infty} \frac{1}{x^{2}} d x \leq E_{N} \leq \int_{N}^{\infty} \frac{1}{x^{2}} d x
$$

We integrate both of these improper integrals (remembering to take a limit!) to get

$$
\frac{1}{N+1} \leq E_{N} \leq \frac{1}{N}
$$

Here, $N=4$, so the error is between $1 / 5$ and $1 / 4$.
(c) Determine how many terms are required to ensure that the sum is accurate to within 0.0001.

By part (b), we know that the error $E_{N} \leq 1 / N$. We want to find N so that $1 / N<0.0001$ (so then $E_{N} \leq 1 / N<0.0001$). Rewriting this as a fraction, we want N so that $1 / N<1 / 10000$, or in other words $N>10000$.
Good luck tomorrow!!!

