1. If p is a prime then \sqrt{p} is irrational.
2. Let a and b be integers such that b is odd. Prove that if 6 divides $a . b$ then either 6 divides a or 3 divides b.
3. Find $\cap_{n \in \mathbb{N}}\left(-\frac{1}{n}, \frac{1}{n}\right)$ and $\cup_{n \in \mathbb{N}}\left(-\frac{1}{n}, \frac{1}{n}\right)$
4. Let Δ be a set and let $\left\{A_{\alpha}, \alpha \in \Delta\right\}$ be a family of sets. Determine which one of the following statements hold. If a statement is not true for every family, find a family for which is true. (You cannot use the empy set!) Assume that f is a function from A to A and each A_{α} is a subset of A.
a $\cap_{\alpha \in \Delta} A_{\alpha} \subset \cup_{\alpha \in \Delta} A_{\alpha}$
$\mathrm{b} \cup_{\alpha \in \Delta} A_{\alpha} \subset \cap_{\alpha \in \Delta} A_{\alpha}$
c $\cup_{\alpha \in \Delta} A_{\alpha}=\cap_{\alpha \in \Delta} A_{\alpha}$
$\mathrm{d} \cup_{\alpha \in \Delta} f\left(A_{\alpha}\right)=f\left(\cup_{\alpha \in \Delta} A_{\alpha}\right)$
$\mathrm{e} \cap_{\alpha \in \Delta} f^{-1}\left(A_{\alpha}\right)=f^{-1}\left(\cap_{\alpha \in \Delta} A_{\alpha}\right)$
5. Use mathematical induction to prove the following statment:. Suppose $a_{1}, a_{2}, \ldots, a_{n}$ are integers and p is a prime number. If $p \mid a_{1} a_{2} \cdots a_{n}$, then $p \mid a_{i}$ for some $i \in\{1,2, \ldots, n\}$.
6. Prove that if a and b are are relatively prime, such that $a \mid m$ and $b \mid m$ then $a \cdot b \mid m$.
7. Prove that if x is a real number then $|x+10|-|x-1| \geq-11$.
8. Prove that $x^{2}+y^{2} \geq 2 x y$ for all pairs of real numbers a and b.
9. Prove that if x is a positive real number then $x+9 / x>6$.
10. Prove or disprove: $\left|n^{2}-n+17\right|$ is prime for all natural numbers n.
11. Prove by induction: $5 n+2 \leq n^{2}$ for all $n \geq 6$.
12. Prove by induction that for all natural numbers $n, n\left(n^{2}+5\right)$ is a multiple o 6 .
13. Prove that for any real number $x, x+20>x$.
14. If \mathcal{S} is a collection of sets and B is a set disjoint from every $A \in S$ then B is disjoint from $\cup_{A \in S} A$.
15. A collection of sets \mathcal{S} is totally ordered if for every $A, B \in \mathcal{S}$ either $A \subset B$ or $B \subset A$. Let U be a set. Prove that a collection \mathcal{S} of subsets of U is totally ordered if and only if the collection $S^{c}=\{U \backslash A: A \in \mathcal{S}\}$ is totally ordered.
16. Prove that the relation \equiv on the set A is an equivalence relation if an only if it is reflexive and for every $a, b, c \in A$, if $a \equiv b$ and $a \equiv c$ then $b \equiv c$.
17. Prove that if f is a function from A to B and the family $\left\{B_{i}: i \in \Delta\right\}$ is a partition of B then $\left\{f^{-1}\left(B_{i}\right): i \in \Delta\right\}$ is a partition of A.
18. Find an example of an injective function f from A to B and a surjective function g from B to C such that $f \circ g$ is not surjective.
19. Prove or disprove: If B is a finite set and $f: A \rightarrow B$ is surjective then A is finite.
20. Determine the cardinality of the following sets. (and prove your answer)
a. $\left\{x \in \mathbb{R}: x>0\right.$ and $\left.x^{2} \in \mathbb{Q}\right\}$
b. The set of all multiples of 7 .
c. The set of irrational numbers.
d. The set of all constant functions from \mathbb{R} to \mathbb{R}
e. The set of al finite subsets of \mathbb{N} (this one is hard)
21. Prove that any two consecutive Fibonacci numbers are relatively prime.
22. Prove that if d is the greatest comon divisor of two numbers a and b then d^{2} divides a.b.
23. Find all the elemens $[x]$ in \mathbb{Z}_{12} such that $[x]^{n}=[0]$.
24. Find the sum of all elements of \mathbb{Z}_{n} for all positive integers n.
