- 1. If p is a prime then \sqrt{p} is irrational.
- 2. Let a and b be integers such that b is odd. Prove that if 6 divides a.b then either 6 divides a or 3 divides b.
- 3. Find $\cap_{n \in \mathbb{N}}(-\frac{1}{n}, \frac{1}{n})$ and $\cup_{n \in \mathbb{N}}(-\frac{1}{n}, \frac{1}{n})$
- 4. Let Δ be a set and let $\{A_{\alpha}, \alpha \in \Delta\}$ be a family of sets. Determine which one of the following statements hold. If a statement is not true for every family, find a family for which is true. (You cannot use the empy set!) Assume that f is a function from A to A and each A_{α} is a subset of A.
 - a $\cap_{\alpha \in \Delta} A_{\alpha} \subset \bigcup_{\alpha \in \Delta} A_{\alpha}$ b $\bigcup_{\alpha \in \Delta} A_{\alpha} \subset \cap_{\alpha \in \Delta} A_{\alpha}$ c $\bigcup_{\alpha \in \Delta} A_{\alpha} = \cap_{\alpha \in \Delta} A_{\alpha}$ d $\bigcup_{\alpha \in \Delta} f(A_{\alpha}) = f(\bigcup_{\alpha \in \Delta} A_{\alpha})$ e $\cap_{\alpha \in \Delta} f^{-1}(A_{\alpha}) = f^{-1}(\cap_{\alpha \in \Delta} A_{\alpha})$
- 5. Use mathematical induction to prove the following statement:. Suppose $a_1, a_2, ..., a_n$ are integers and p is a prime number. If $p|a_1a_2\cdots a_n$, then $p|a_i$ for some $i \in \{1, 2, ..., n\}$.
- 6. Prove that if a and b are are relatively prime, such that a|m and b|m then $a \cdot b|m$.
- 7. Prove that if x is a real number then $|x + 10| |x 1| \ge -11$.
- 8. Prove that $x^2 + y^2 \ge 2xy$ for all pairs of real numbers a and b.
- 9. Prove that if x is a positive real number then x + 9/x > 6.
- 10. Prove or disprove: $|n^2 n + 17|$ is prime for all natural numbers n.
- 11. Prove by induction: $5n + 2 \le n^2$ for all $n \ge 6$.
- 12. Prove by induction that for all natural numbers n, $n(n^2+5)$ is a multiple o 6.
- 13. Prove that for any real number x, x + 20 > x.
- 14. If S is a collection of sets and B is a set disjoint from every $A \in S$ then B is disjoint from $\bigcup_{A \in S} A$.

- 15. A collection of sets S is totally ordered if for every $A, B \in S$ either $A \subset B$ or $B \subset A$. Let U be a set. Prove that a collection S of subsets of U is totally ordered if and only if the collection $S^c = \{U \setminus A : A \in S\}$ is totally ordered.
- 16. Prove that the relation \equiv on the set A is an equivalence relation if an only if it is reflexive and for every $a, b, c \in A$, if $a \equiv b$ and $a \equiv c$ then $b \equiv c$.
- 17. Prove that if f is a function from A to B and the family $\{B_i : i \in \Delta\}$ is a partition of B then $\{f^{-1}(B_i) : i \in \Delta\}$ is a partition of A.
- 18. Find an example of an injective function f from A to B and a surjective function g from B to C such that $f \circ g$ is not surjective.
- 19. Prove or disprove: If B is a finite set and $f: A \to B$ is surjective then A is finite.
- 20. Determine the cardinality of the following sets. (and prove your answer)
 - a. $\{x \in \mathbb{R} : x > 0 \text{ and } x^2 \in \mathbb{Q}\}$
 - b. The set of all multiples of 7.
 - c. The set of irrational numbers.
 - d. The set of all constant functions from $\mathbb R$ to $\mathbb R$
 - e. The set of al finite subsets of \mathbb{N} (this one is hard)
- 21. Prove that any two consecutive Fibonacci numbers are relatively prime.
- 22. Prove that if d is the greatest comon divisor of two numbers a and b then d^2 divides a.b.
- 23. Find all the elemens [x] in \mathbb{Z}_{12} such that $[x]^n = [0]$.
- 24. Find the sum of all elements of \mathbb{Z}_n for all positive integers n.