

Different ways of representing curves on the plane

Given as a function
$\{(x, y), y=f(x)\}$
Example $\left\{(x, y): y=x^{2}+x-0.5\right.$

| $\{(x, y): G(x, y)=0\}$ |
| ---: | :--- |
| Example $\left\{(x, y): x^{2}+y^{2}=25\right\}$ |

How to plot a point P with polar coordinates (r, Θ)

How to plot a point P with polar coordinates (r, Θ)

If $r=0, P$ is the pole.
If $r>0$, rotate the polar axis an angle Θ (counterclockwise if $\Theta>0$, clockwise otherwise) and place P on this ray at distance r from the pole.
If $r<0$, proceed as if $r>0$, but place P the point in the opposite ray, at distance -r from the pole.

Plot the points with polar coordinates given below

* $(0,27)$
* $(4, \pi / 6)$
* $(-3, \pi / 2)$

Points can be represented in more than one way in polar coordinates.

Find more ways to represent the points above.

Example

1. Find polar coordinates for a the point with rectangular coordinates $(2 \sqrt{3}, 2)$
2. Find the rectangular coordinates for the point with polar coordinates $(-4,5 \pi / 6)$
3.Sketch a graph of the polar curve $\mathrm{r}=\sin \theta-\cos \theta$
4.Sketch a graph of the polar curve $r=\cos (5 \theta)$

Polar curves

A polar curve is a curve described by an a equation in polar coordinates.

Plot the following examples

* $\mathrm{r}=3 \cos (2 \theta)$
* $\mathrm{r}=(1-\cos \theta)$
* $\mathrm{r}=\theta$
* $\mathrm{r}=\sin \theta$

Consider the polar curve of
equation $\quad r=a(1-\cos \theta)$
(a is constant) θ in $[0,2 \pi]$
(This curve is called cardiod. The
animation is from Wolfram
http:/ / mathworld.wolfram.com/
Cardioid.html)

This curve has parametric equations
$\mathrm{x}=\mathrm{a} \cos (\mathrm{t})(1-\cos (\mathrm{t}))$
$y=\sin (t)(1-\cos (t))$
Example: Compute the area bounded by the cardiod

$$
\mathrm{r}=(1-\cos \Theta)
$$

and its rectangular coordinates its points
θ in $[0,2 \pi]$
satisfy the equation
$\left(x^{2}+y^{2}+a x\right)^{2}=a^{2}\left(x^{2}+y^{2}\right)$

Area of a sector of a circle of radius r

$$
\frac{\theta}{2 \pi}=\frac{A}{\pi r^{2}} \Rightarrow A=\frac{r^{2} \theta}{2}
$$

Area A of a region bounded by a polar curve of equation $r=f(\Theta), ~ Ө$ in $[a, b]$

$$
\begin{gathered}
\Delta \theta r^{2} / 2=\Delta \theta \cdot f(\theta)^{2} / 2 \\
A=\frac{1}{2} \int_{a}^{b} f(\theta)^{2} d \theta
\end{gathered}
$$

Find the area enclosed by the curve $r=\sin (\Theta)$

Find the area enclosed by the curve $\mathrm{r}=\Theta, \Theta$ in $[0,2 \pi]$ and the positive x -axis

Arc length review

$\int_{a}^{b} \sqrt{\left(\frac{\mathrm{~d}}{\mathrm{~d} t} x(t)\right)^{2}+\left(\frac{\mathrm{d}}{\mathrm{d} t} y(t)\right)^{2}} \mathrm{~d} t$

Length of a curve in polar coordinates

$$
\left\{\begin{array}{l}
x=r \cos \theta \\
y=r \sin \theta
\end{array} \quad \& \quad r=f(\theta)\right.
$$

Given the polar curve

$$
x=r \cos \theta=f(\theta) \cos \theta \quad y=r \sin \theta=f(\theta) \sin \theta
$$

Differentiate with respect to θ

$$
\frac{d x}{d \theta}=\frac{d r}{d \theta} \cos \theta-r \sin \theta \quad \frac{d y}{d \theta}=\frac{d r}{d \theta} \sin \theta+r \cos \theta
$$

Square and add

$$
\begin{aligned}
\left(\frac{d x}{d \theta}\right)^{2}+\left(\frac{d y}{d \theta}\right)^{2}= & \left(\frac{d r}{d \theta}\right)^{2} \cos ^{2} \theta-2 r \frac{d r}{d \theta} \cos \theta \sin \theta+r^{2} \sin ^{2} \theta \\
& +\left(\frac{d r}{d \theta}\right)^{2} \sin ^{2} \theta+2 r \frac{d r}{d \theta} \sin \theta \cos \theta+r^{2} \cos ^{2} \theta=\left(\frac{d r}{d \theta}\right)^{2}+r^{2}
\end{aligned}
$$

Using the formula for parametric curves

$$
\int_{a}^{b} \sqrt{\left(\frac{\mathrm{~d}}{\mathrm{~d} t} x(t)\right)^{2}+\left(\frac{\mathrm{d}}{\mathrm{~d} t} y(t)\right)^{2}} \mathrm{~d} t
$$

$$
L=\int_{a}^{b} \sqrt{r^{2}+\left(\frac{d r}{d \theta}\right)^{2}} d \theta
$$

Example: Express (but not evaluate) as an integral the

$$
\text { length of a petal of } 3 \cos (2 \theta)
$$

Example: Express (but not evaluate) as an integral the arc length of the cardiod lying above the x-axis

$$
r=1-\cos \theta
$$

θ in $[0,2 \pi]$

$$
L=\int_{a}^{b} \sqrt{r^{2}+\left(\frac{d r}{d \theta}\right)^{2}} d \theta
$$

Example: Compute the arc length of the circle $r=\sin \Theta$ θ in $[0,2 \pi]$

Example: Compute the length arc
of the spiral $\mathrm{r}=\mathrm{e}^{\ominus}$
in $[0,2 \pi]$

Example: Compute the arc length of
the circle $\mathrm{r}=\sin \Theta$
θ in $[0,2 \pi]$

Example: Compute the length arc of the spiral $\mathrm{r}=\mathrm{e}^{\ominus}$ in $[0,2 \pi]$

POLAR

Example: Compute the arc length the graph of the curve $\mathrm{y}=\mathrm{x}^{3 / 2}$, x in $[0,5]$

Example: Compute the length two arcs of the cycloid $\mathrm{x}=\theta-\sin \theta, \mathrm{y}=1$ $\cos \theta .\left(\operatorname{Hint}(1-\cos (t))=2 \sin ^{2}(t / 2)\right)$
PARAMETRIC

