MAT 132

8.6 Representation of functions as power series

Recall

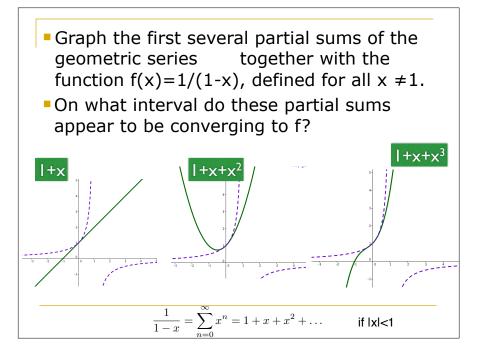
A **function f** from a set X to a set Y is a rule that assigns to each element of a set X a unique element of a set Y.

Examples:

*****X=Z, Y=Z and f: x → 2·x *****X=N, Y=R and f: x → 2·n/(n²+1) *****X=R, Y=R and f: x → x²+x+3 *****X=(-π/2,π/2), Y=R and f: x → tan(x) *****X={x in R, x ≠1}, Y=R and f: x → 1/(1-x) *****X={x in R, x>-3}, Y=R and f: x → $\sqrt{x+3}$

2

Recall


A power series defines a function whose domain is the interval of convergence of the power series.

Example: The geometric series with $a_1=1$ and r=x

$$\sum_{n=0}^{\infty} x^n = 1 + x + x^2 \dots = 1/(1-x)$$

if $|\mathbf{x}| < 1$

3

Examples

1.Express 1/(1+x) as a power series and find the interval of convergence.

2.Express $1/(1+x^3)$ as a power series and find the interval of convergence.

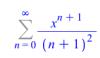
3.Express $1/(1+8x^3)$ as a power series and find the interval of convergence.

4. Find a power series representation for 1/(x+5)

5. Find a power series representation for $x^2/(x+5)$

Differentiating and integrating power series

2 Theorem If the power series $\sum c_n(x-a)^n$ has radius of convergence R > 0, then the function f defined by


$$f(x) = c_0 + c_1(x - a) + c_2(x - a)^2 + \dots = \sum_{n=0}^{\infty} c_n(x - a)^n$$

is differentiable (and therefore continuous) on the interval (a - R, a + R) and

(i)
$$f'(x) = c_1 + 2c_2(x-a) + 3c_3(x-a)^2 + \dots = \sum_{n=1}^{\infty} nc_n(x-a)^{n-1}$$

(ii) $\int f(x) \, dx = C + c_0(x-a) + c_1 \frac{(x-a)^2}{2} + c_2 \frac{(x-a)^3}{3} + \dots$
 $= C + \sum_{n=0}^{\infty} c_n \frac{(x-a)^{n+1}}{n+1}$

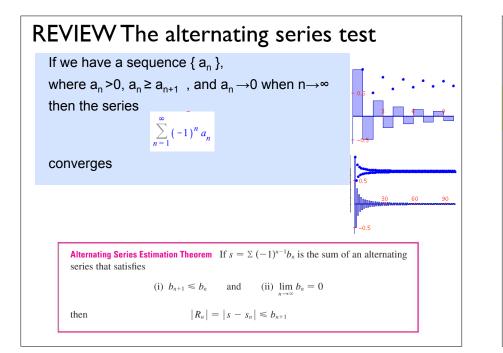
The radii of convergence of the power series in Equations (i) and (ii) are both R.

.Consider the power series

- 1. Find the radius of convergence.
- 2. Find the derivative of the function defined by the series.
- 3. If f is the function defined by the power series, find the domain of f, and the domain of f'. Do f and f' have the same radius of convergence? Do they have the same interval of convergence?

Examples

1. Express $1/(1-x)^2$ as a power series.


What is the radius of convergence?.

- 2. Find a power series representation of $f(x) = \arctan(x)$.
- 3. Find the value of the integral below correct up to 6 decimal places

$$\int_{0}^{\frac{1}{5}} \frac{1}{1+x^4} dx$$

(1/5)^9/9=1/17578125~5.68889*10-8

(1/5)5/5=1/15625~0.000064

Important example	$\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n = 1 + x + x^2 + \dots$
 Find a power series in term of another one you know. 	Examples $1/(1+8x^3)$, $x^2/(x+5)$
Examples f(x)=arctan(x)f(x)=ln(x)	 Use the power series corresponding to f'(x) to find the power series corresponding to f(x).
• Use the power series of $\int f(x)dx$ to find the power series of $f(x)$ Examples $f(x)=1/(1+x)^2$	
Example: Express 1/(1+x) ² as a power series and find radius of convergence?.	Recall that the derivative and integral of a power series have the same interval of convergence.
 Use the alternate series estimation test to estimate the error when approximating a series by a partial sum. Find the value of a certain integral below correct up to 8 decimal places 	

23–26 Evaluate the indefinite integral as a power series. What is the radius of convergence?

23.
$$\int \frac{t}{1-t^8} dt$$

24. $\int \frac{\ln(1-t)}{t} dt$
25. $\int \frac{x-\tan^{-1}x}{x^3} dx$
26. $\int \tan^{-1}(x^2) dx$

27–30 Use a power series to approximate the definite integral to $\sin \theta$ decimal places.

27.
$$\int_{0}^{0.2} \frac{1}{1+x^5} dx$$

28. $\int_{0}^{0.4} \ln(1+x^4) dx$
29. $\int_{0}^{0.1} x \arctan(3x) dx$
30. $\int_{0}^{0.3} \frac{x^2}{1+x^4} dx$