MAT I 32

8.6 Representation of functions as power series

Recall

A power series defines a function whose domain is the interval of convergence of the power series.

Example: The geometric series with $\mathrm{a}_{1}=1$ and $\mathrm{r}=\mathrm{x}$

$$
\sum_{n=0}^{\infty} x^{n}=1+x+x^{2} \ldots=1 /(1-\mathrm{x})
$$

Recall
A function \mathbf{f} from a set X to a set Y is a rule that assigns to each element of a set X a unique element of a set Y .

Examples:

$$
\begin{aligned}
& \text { * } \mathrm{k}=\mathrm{X}=\mathrm{Z}, \mathrm{Y}=\mathrm{Z} \text { and } \mathrm{f}: \mathrm{x} \rightarrow 2 \cdot \mathrm{x} \\
& \text { * } \boldsymbol{k} X=\mathbf{N}, Y=R \text { and } f: x \rightarrow 2 \cdot n /\left(n^{2}+1\right) \\
& \text { \& }{ }^{\circ} \mathrm{X}=\mathbf{R}, \mathrm{Y}=\mathrm{R} \text { and } \mathrm{f}: \mathrm{x} \rightarrow \mathrm{x}^{2}+\mathrm{x}+3 \\
& \text { * }{ }^{2} X=(-\pi / 2, \pi / 2), Y=R \text { and } f: x \rightarrow \tan (x) \\
& \text { 水 } X=\{x \text { in } R, x \neq 1\}, Y=R \text { and } f: x \rightarrow 1 /(1-x) \\
& \text { * } k=\{x \text { in } R, x>-3\}, Y=R \text { and } f: x \rightarrow \sqrt{ }(x+3)
\end{aligned}
$$

- Graph the first several partial sums of the geometric series together with the function $f(x)=1 /(1-x)$, defined for all $x \neq 1$.
- On what interval do these partial sums appear to be converging to f?

Examples

1.Express $1 /(1+x)$ as a power series and find the interval of convergence.
2.Express $1 /\left(1+x^{3}\right)$ as a power series and find the interval of convergence.
3.Express $1 /\left(1+8 x^{3}\right)$ as a power series and find the interval of convergence.
4.Find a power series representation for $1 /(x+5)$
5.Find a power series representation for $x^{2} /(\underset{5}{x}+5)$

Differentiating and integrating power series

2 Theorem If the power series $\sum c_{n}(x-a)^{n}$ has radius of convergence $R>0$, then the function f defined by

$$
f(x)=c_{0}+c_{1}(x-a)+c_{2}(x-a)^{2}+\cdots=\sum_{n=0}^{\infty} c_{n}(x-a)^{n}
$$

is differentiable (and therefore continuous) on the interval $(a-R, a+R)$ and
(i) $f^{\prime}(x)=c_{1}+2 c_{2}(x-a)+3 c_{3}(x-a)^{2}+\cdots=\sum_{n=1}^{\infty} n c_{n}(x-a)^{n-1}$
(ii) $\int f(x) d x=C+c_{0}(x-a)+c_{1} \frac{(x-a)^{2}}{2}+c_{2} \frac{(x-a)^{3}}{3}+\cdots$

$$
=C+\sum_{n=0}^{\infty} c_{n} \frac{(x-a)^{n+1}}{n+1}
$$

The radii of convergence of the power series in Equations (i) and (ii) are both R.

Examples

1. Express $1 /(1-\mathrm{x})^{2}$ as a power series. What is the radius of convergence?
2. Find a power series representation of $\mathrm{f}(\mathrm{x})=\arctan (\mathrm{x})$.
3. Find the value of the integral below correct up to 6 decimal places

$$
\int_{0}^{\frac{1}{5}} \frac{1}{1+x^{4}} d x
$$

$(1 / 5)^{5} / 5=1 / 15625 \sim 0.000064$
$(1 / 5)^{\wedge} 9 / 9=1 / 17578125 \sim 5.68889^{*} 10^{-8}$

REVIEW The alternating series test

If we have a sequence $\left\{a_{n}\right\}$
where $a_{n}>0, a_{n} \geq a_{n+1}$, and $a_{n} \rightarrow 0$ when $n \rightarrow \infty$
then the series

$$
\sum_{n=1}^{\infty}(-1)^{n} a_{n}
$$

converges

Alternating Series Estimation Theorem If $s=\Sigma(-1)^{n-1} b_{n}$ is the sum of an alternating series that satisfies

$$
\begin{array}{ll}
\text { (i) } b_{n+1} \leqslant b_{n} \quad \text { and } \quad \text { (ii) } \lim _{n \rightarrow \infty} b_{n}=0
\end{array}
$$

then

$$
\left|R_{n}\right|=\left|s-s_{n}\right| \leqslant b_{n+1}
$$

23-26 Evaluate the indefinite integral as a power series. What is the radius of convergence?
23. $\int \frac{t}{1-t^{8}} d t$
24. $\int \frac{\ln (1-t)}{t} d t$
25. $\int \frac{x-\tan ^{-1} x}{x^{3}} d x$
26. $\int \tan ^{-1}\left(x^{2}\right) d x$

27-30 Use a power series to approximate the definite integral to six decimal places.
27. $\int_{0}^{0.2} \frac{1}{1+x^{5}} d x$
28. $\int_{0}^{0.4} \ln \left(1+x^{4}\right) d x$
29. $\int_{0}^{0.1} x \arctan (3 x) d x$
30. $\int_{0}^{0.3} \frac{x^{2}}{1+x^{4}} d x$

$$
\text { Important example } \quad \frac{1}{1-x}=\sum_{n=0}^{\infty} x^{n}=1+x+x^{2}+\ldots
$$

- Find a power series in terms of another one you know.

Examples

$1 /\left(1+8 x^{3}\right), x^{2} /(x+5)$

Examples
$f(x)=\arctan (x) f(x)=\ln (x)$

- Use the power series corresponding to $f^{\prime}(x)$ to find the power series corresponding to $f(x)$.

Use the power series of $\int f(x) d x$ to Examples $f(x)=1 /(1+x)^{2}$
find the power series of $f(x)$
Example: Express $1 /(1+x)^{2}=$ Recall that the derivative and as a power series and find integral of a power series have the radius of convergence? same interval of convergence.

- Use the alternate series estimation test to estimate the error when Find the value of a below correct up approximating a series by a partial sum. decimal places

