MAT I 32 Series

8.4 Other convergency tests

Alternating series
Absolutely convergence series
Ratio Test

A series

$$
\sum_{i=1}^{\infty}(-1)^{n} a_{n}
$$

is called alternating if $\left\{a_{n}\right\}$ is a sequence of positive terms, that is $a_{n}>0$ for all n.

TWO EXAMPLES OF ALTERNATING SERIES

```
If {\mp@subsup{a}{n}{}}}\mathrm{ is a sequence such that
an}>0
an}\geq\mp@subsup{a}{n+1}{}\mathrm{ , and
an}->0\mathrm{ when n }->
then the series
```

CONU: BE ES

Study the convergence of the the series.

$$
\sum_{n=1}^{\infty}
$$

$$
\begin{aligned}
& \sum_{n=1}^{\infty} \frac{(-1)^{n}}{n} \\
& \sum_{=1}^{\infty} \frac{(-1)^{n}(n+2)}{n(n+1)}
\end{aligned}
$$

In order to check whether a sequence is decreasing, one can 1. compare consecutive terms or 2. if the sequence is defined by a function, check derivative of the functionis negative.

The 15 th partial sum of the series
is -0.824542 . In symbols $\sum_{n=1}^{\infty}(-1)^{n} \frac{1}{n^{2}}$

$$
\sum_{n=1}^{15}(-1)^{n} \frac{1}{n^{2}}=-0.824542
$$

Estimate the error in using -0.824542 to approximate the total sum of the series.

Alternating Series Estimation Theorem If $s=\Sigma(-1)^{n-1} b_{n}$ is the sum of an alternating series that satisfies

$$
\text { (i) } b_{n+1} \leqslant b_{n} \quad \text { and } \quad \text { (ii) } \lim _{n \rightarrow \infty} b_{n}=0
$$

then

$$
\left|R_{n}\right|=\left|s-s_{n}\right| \leqslant b_{n+1}
$$

1 Theorem If a series $\sum a_{n}$ is absolutely convergent, then it is convergent.

$$
\begin{array}{lll}
\sum_{n=1}^{\infty} \frac{(-1)^{n} n}{2^{n}} & \sum_{n=1}^{\infty} \frac{(-1)^{n}}{n} & \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{(2 n-1)!} \\
\sum_{n=1}^{\infty} \frac{(-1)^{n}(n+2)}{n(n+1)} & \sum_{n=1}^{\infty}(-1)^{n}\left(\frac{2}{3}\right)^{n}
\end{array}
$$

The Ratio Test
(i) If $\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=L<1$, then the series $\sum_{n=1}^{\infty} a_{n}$ is absolutely convergent (and therefore convergent).
(ii) If $\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=L>1$ or $\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\infty$, then the series $\sum_{n=1}^{\infty} a_{n}$
is divergent.
(iii) If $\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=1$, the Ratio Test is inconclusive; that is, no conclusion can be drawn about the convergence or divergence of $\sum a_{n}$.

A power series in \mathbf{x} is a series that can be expressed as

$$
c_{0}+c_{1} x+c_{2} x^{2}+\cdots+c_{n} x^{n} \cdots
$$

The coefficients $c_{0}, c_{1}, c_{2} \ldots$ are constants.

We also use the notation

$$
\begin{gathered}
\sum_{n=0}^{\infty} c_{n} x^{n}=c_{0}+c_{1} x+c_{2} x^{2}+\cdots+c_{n} x^{n} \cdots \\
\begin{array}{c}
\text { By replacing " } \mathrm{x} \text { " by a real number, } \\
\text { we obtain a power series }
\end{array}
\end{gathered}
$$

Examples

$$
\sum_{n=0}^{\infty} \frac{(-1)^{n} 2^{n} x^{n}}{n 3^{n}} \quad \sum_{n=0}^{\infty} \frac{x^{n}}{n!}
$$

A power series in ($x-a$) is a series that can be expressed as $\sum_{n=0}^{\infty} c_{n}(x-a) x^{n}=c_{0}+c_{1}(x-a) x+c_{2}(x-a) x^{2}+\cdots+c_{n}(x-a)^{n} \cdots$

The coefficients $c_{0}, c_{1}, c_{2} \ldots$ are constants
"a" is also a constant.

Examples

$\sum_{n=0}^{\infty} 3(x-1)^{n}$

$$
\sum_{n=0}^{\infty} \frac{(-1)^{n} 2^{n}(x+2)^{n}}{n 3^{n}}
$$

Find the values of x for which each of the the power series below is convergent.
$\sum_{n=0}^{\infty} 3 x^{n} \quad \sum_{n=0}^{\infty} \frac{(-1)^{n} 2^{n}(x+2)^{n}}{n 3^{n}} \quad \sum_{n=0}^{\infty} \frac{x^{n}}{n!} \quad \sum_{n=0}^{\infty} n!x^{n}$

The Ratio Test

(i) If $\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=L<1$, then the series $\sum_{n=1}^{\infty} a_{n}$ is absolutely convergent (and therefore convergent).
(ii) If $\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=L>1$ or $\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\infty$, then the series $\sum_{n=1}^{\infty} a_{n}$ is divergent.
(iii) If $\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=1$, the Ratio Test is inconclusive; that is, no conclusion can be drawn about the convergence or divergence of $\sum a_{n}$.

$$
\sum_{n=0}^{\infty} \frac{(-1)^{n} 2^{n} x^{n}}{n 3^{n}}
$$

$$
\sum_{n=0}^{\infty} 3(x-1)^{n}
$$

If we replace " x " by a number, a powers series becomes an infinite series. Thus, in the case of power series we ask:

Theorem For a given power series $\sum_{n=0}^{\infty} c_{n}(x-a)^{n}$ there are only three possibilities:
(i) The series converges only when $x=a$.
(ii) The series converges for all x.
(iii) There is a positive number R such that the series converges if $|x-a|<R$ and diverges if $|x-a|>R$.

Which of the possibilities of the theorem above hold for each of the power series?

$$
\sum_{n=0}^{\infty} 3 x^{n}
$$

$$
\sum_{n=0}^{\infty} \frac{(-1)^{n} 2^{n} x^{n}}{n 3^{n}}
$$

$$
\sum_{n=0}^{\infty} 3(x-1)^{n}
$$

$$
\sum_{n=0}^{\infty} \frac{x^{n}}{n!}
$$

$$
\begin{gathered}
\sum_{n=0}^{\infty} \frac{(-1)^{n} 2^{n}(x+2)^{n}}{n 3^{n}} \\
\sum_{n=0}^{\sim} n!x^{n}
\end{gathered}
$$

