

Pythagorean Theorem (and one of its beautiful proofs)

$$
c^{2}=a^{2}+b^{2}
$$

Consider the curve $f(x)=x^{3 / 2}, x$ in [0,1]. Give a rough estimation of the length of the graph of f .

Estimation $\sqrt{2}$ ~ 1.14 Length 1.11145 .

Consider the curve $f(x)=x^{3 / 2}, x$ in $[0,16]$. Give a rough estimation of the length of the graph of f.

Estimation $16.17^{1 / 2} \ldots \sim 65.9697$ Length 411.033

Arc length

We have a curve given by the equation

$y=g(x)$
We can approximate the length of the blue arc, by the length of the green segment.
The length of the free segment can be computed using the Pythagorean theorem. $\sqrt{(\Delta x)^{2}+(\Delta y)^{2}}$

We repeat this for every arc, and we obtain an approximation of the length of the whole curve.

$$
\sum_{i=1}^{n} \sqrt{\left(\Delta x_{i}\right)^{2}+\left(\Delta y_{i}\right)^{2}}
$$

If the function g and its derivative are continuous, when the lengths $\Delta \mathrm{x}$ of each interval goes to zero, the above sum
converges to $\int_{a}^{b} \sqrt{\left(1+\left(g^{\prime}(x)\right)^{2}\right.} d x$ where a and b are the extremes of the interval where x "lives"

Consider the curve $f(x)=x^{3 / 2}, x$ in
[0,1]. Give a rough estimation of the length of the graph of f.

Estimation $\sqrt{2}$ ~ 1.14
 Length 1.11145 .

Consider the curve $f(x)=x^{3 / 2}, x$ in $[0,16]$. Give a rough estimation of the length of the graph of f.
stimation $16.17^{1 / 2} \ldots \sim 65.9697$ Length 411.033

EXAMPLE

Sketch the curve
$\mathrm{x}=\sin (\mathrm{t})$,
$y=\sin (2 t), t$ in $[0,2 \pi]$

Sketch the curve
$\mathrm{x}=\sin (\mathrm{t})$,
$\mathrm{y}=\sin (2 \mathrm{t}), \mathrm{t}$ in $[0,2 \pi]$

Arc length

We have a curve given by parametric equations

$$
x=f(t), y=g(t)
$$

We can approximate the length of the blue arc, by the length of the green
segment
The length of the free segment can be computed using the Pythagorean theorem.

$$
\sqrt{(\Delta x)^{2}+(\Delta y)^{2}}
$$

We repeat this for every arc, and we obtain an approximation of the length of the whole curve
$\sum_{i=1}^{n} \sqrt{\left(\Delta x_{i}\right)^{2}+\left(\Delta y_{i}\right)^{2}}$
$\Delta x=f\left(t_{i+1}\right)-f\left(t_{i}\right) \approx f^{\prime}\left(\hat{t}_{i}\right) \Delta t$
$\Delta y=g\left(t_{i+1}\right)-g\left(t_{i}\right) \approx g^{\prime}\left(\hat{t}_{i}\right) \Delta t$
If the function g and its derivative are continuous, when the
lengths $\Delta \mathrm{x}$ of each interval goes to zero, the above sum $\int_{c}^{d} \sqrt{\left(\left(f^{\prime}(t)\right)^{2}+\left(g^{\prime}(t)\right)^{2}\right.} d t$ where a and b are the extremes of the interval where x "lives

EXAMPLE

Set up (but do not evaluate) the length of the curve defined by parametric
equations
$\mathrm{x}=\sin (\mathrm{t})$,

Example: Estimate the length of the curve given
by the function $F(t)=(\cos (3 t), \sin (t)), t$ in $[0,2 \pi]$ using a partition of $[0,2 \pi]$ into 4 intervals.
What intervals would you choose to get a better estimation?

Review of Volumes

Generate solids rotating a

 curve about vertical or horizontal axes. The obtained solids are called solids of revolution.

$V=\int_{a}^{b} 2 \pi x f(x) d x$
Find a volume of solids of revolution by the washer method or the cylindrical shell method.

Peano curve animation from Wikipedia

Example

The closed region bounded by the graph of $x=y^{2}$ and the vertical line $x=2$ is revolved about the line $x=2$. Calculate the volume of the solid of revolution.

Example

Denote by R the region bounded by the y-axis the graph of $f(x)=x$ and the graph of $g(x)=x^{2}-2$, on the right of the y-axis.

Calculate the volume of the solid of revolution obtained by revolving R about the y-axis.

Consider the following picture:

* How high would the water level be if the waves all settled?

After explaining to a student through various lessons and examples that:

$$
\operatorname{Lim}_{x \rightarrow 8} \frac{1}{x-8}=\infty
$$

I tried to check if she really understood that, so I gave her a different example. This was the result:
$\operatorname{LIM}_{x \rightarrow 5} \frac{1}{x-5}=$ n

The homework grades of a student are 6, 6, 7, 8, 10. Find the average homework score.
average $=$ sum of grades $/$ number of hw

The temperature of a room is 70 degrees Fahrenheit at 10AM, 72 degrees Fahrenheit at 11:05AM and 74 at 11:30AM. Use these data to estimate the average temperature.

What if we want to make a more accurate estimation of the average temperature?

If the temperature is given by a function $f, f(x)=$ temperature at time x, x in $[a, b]$. We want to estimate the average value of f. Divide [a, b] into n equal intervals.
$\Delta x=(b-a) / n$
x_{i} is a number the i-th interval

We estimate for the average
value:
$f_{\text {average }} \approx \frac{f\left(x_{1}\right)+f\left(x_{2}\right)+\ldots+f\left(x_{n}\right)}{n}$

Example

* If $f(x)=x^{2}$, find the average value of f on the interval $[1,3]$ and interpret the result geometrically.
* http:/ / demonstrations.wolfram.com/ DistanceAndAverageVelocityForPiecewiseTrajectory /

$$
\begin{aligned}
f_{\text {average }} & \approx \frac{f\left(x_{1}\right)+f\left(x_{2}\right)+\ldots+f\left(x_{n}\right)}{n} \\
& =\frac{\Delta x}{b-a}\left[f\left(x_{1}\right)+f\left(x_{2}\right)+\ldots f\left(x_{n}\right)\right]
\end{aligned}
$$

Since

$$
\Delta x=(b-a) / n
$$

Taking limits $\quad \frac{1}{b-a} \int_{a}^{b} f(x) d x$

How high would the water level be if the waves all settled?

Example

- The temperature of a room is 70 degrees Fahrenheit at 10AM, 72 degrees Fahrenheit at 11:05AM and 74 at 11:30AM. Use these data to estimate the average temperature.
- The equation below gives the temperature $\mathrm{T}(\mathrm{t})$ of a room after t minutes.

$$
T(t)=\frac{8}{14625} t^{2}-\frac{14}{2925} t+70
$$

- What is the average temperature during the first 90 minutes?
- What is the average temperature during the first 30 seconds?

Example

The speed of an object is given by the equation $v(t)=12 t-t^{2}$ where v is in meters/ sec and t is in seconds.

Determine what is the total distance traveled and the average speed of the object between $\mathrm{t}=2 \mathrm{~s}$ and $\mathrm{t}=11 \mathrm{~s}$.

To determine the average value, we find a horizontal line such that the area under this horizontal line is equal to the area under the curve between two specified values of t.

Example

Find the average value of the function $f(x)=20-x^{2}$ in the interval $[-2,4]$. Also, find all the values of x at which the average occurs.
Give the geometric interpretation of the results.

