An infinite crowd of mathematicians enters a bar. The first one orders a pint, the second one a half pint, the third one a quarter pint... "I understand", says the bartender - and pours two pints.

MAT 132

8.7 Taylor and Maclaurin Series 8.8 Applications of Taylor Polynomials Why we would ever want to express a function as a sum of **infinitely** many terms? Are we trying to make your life even more difficult ?

 $f(x) = c_0 + c_1 x + c_2 x^2$... with convergence radius R>0.

- It is easy to integrate polynomials than certain functions. fex²dx
- It might help to find certain limits. $\lim_{x\to 0} \frac{e^x 1 x}{r^2}$
- Often we do not have a formula for functions whose values we are trying to predict. In those cases, it is useful to know that we can approximate these functions by polynomials.

Suppose we have a function defined by a series

 $f(x) = c_0 + c_1 x + c_2 x^2$... with convergence radius R>0.

- Find f(0), f'(0), f''(0),..., f⁽ⁿ⁾(0).
- Can you determine the values of the coefficients c_n in terms of the values of the function f?
- If f(x)=e^x, find an expression of f as a power series. What is the radius of convergence?

Suppose we have a function defined by a series

 $f(x) = c_0 + c_1 (x - a) + c_2 (x - a)^2$... with convergence radius R>0.

- Find f(a), f'(a), f''(a),..., f⁽ⁿ⁾(a).
- Can you determine the values of the coefficients c_n in terms of f?
- If f(x)=sin(x), can you find an expression of f as a power series centered at π/2?

5 Theorem If
$$f$$
 has a power series representation (expansion) at a , that is, if

$$f(x) = \sum_{n=0}^{\infty} c_n (x - a)^n \qquad |x - a| < R$$
then its coefficients are given by the formula

$$c_n = \frac{f'^{(n)}(a)}{n!}$$
The series

$$f(x) = \sum_{n=0}^{\infty} \frac{f'^{(n)}(a)}{n!} (x - a)^n$$

$$= f(a) + \frac{f'(a)}{1!} (x - a) + \frac{f''(a)}{2!} (x - a)^2 + \frac{f'''(a)}{3!} (x - a)^3 + \cdots$$
is called the Taylor series of f at a .
When $a=0$, the series (below) is called the Maclaurin series

$$f(x) = \sum_{n=0}^{\infty} \frac{f'^{(n)}(0)}{n!} x^n = f(0) + \frac{f'(0)}{1!} x + \frac{f''(0)}{2!} x^2 + \cdots$$

In the case of the Taylor series, the partial sums are

$$T_n(x) = \sum_{n=0}^{\infty} \frac{f^{(i)}(a)}{i!} (x-a)^i$$

= $f(a) + \frac{f'(a)}{1!} (x-a) + \frac{f''(a)}{2!} (x-a)^2 + \cdots + \frac{f^{(n)}(a)}{n!} (x-a)^n$

Notice that T_n is a polynomial n of degree n called the *n*th degree Taylor polynomial of f at a.

The remainder of order n of the Taylor series is

$$R_n(x) = f(x) - T_n(x)$$

SUMMARY: Recall, given a function f, and a number a, the Taylor polynomial of f of order n centered at a and remainder are $T_n(x) = \sum_{i=0}^n \frac{f^{(i)}(a)}{i!} (x - a)^i$

$$= \sum_{i=0}^{2} \frac{1}{i!} (x-a)^{i}$$

$$= f(a) + \frac{f'(a)}{1!} (x-a) + \frac{f''(a)}{2!} (x-a)^{2} + \dots + \frac{f^{(n)}(a)}{n!} (x-a)^{n}$$

$$R_{n}(x) = f(x) - T_{n}(x)$$

- We want to approximate f(x) by Tn(x) (for some n). Thus we need to know.
 - For a given n, how good is our approximation? Estimate how far are we from the actual value of the function.
 - If we want the "error" to be less than a given number, how large does n have to be?

The reminder ("error") is $R_n(x)=f(x)-T_n(x)$.

We discussed two methods for estimating $|R_n(x)|$ (each needs hypothesis)

 $\cdot \ensuremath{>}^{\bullet}$ If the series is alternating, by the Alternating Series Estimation Theorem.

• \mathbb{E} If $|\mathbf{f}^{(n)}(\mathbf{x})| \leq \mathbf{M}$, then $|R_n(x)| \leq \frac{M}{(n+1)!} |x-a|^{n+1}$ for $|x-a| \leq d$

$$\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n = 1 + x + x^2 + x^3 + \cdots \qquad R=1$$

$$e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!} = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots \qquad R=\infty$$

$$\sin x = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!} = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \cdots \qquad R=\infty$$

$$\cos x = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!} = x - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \cdots \qquad R=\infty$$

$$\tan^{-1} x = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{2n+1} = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \cdots \qquad R=\infty$$

$$(1+x)^x = \sum_{n=0}^{\infty} {k \choose n} x^n = 1 + kx + \frac{k(k-1)}{2!} x^2 + \frac{k(k-1)(k-2)}{3!} + \cdots \qquad R=\infty$$

Find the Maclaurin series for $f(x)=(1+x)^k$, where k is any real number. **17** The Binomial Series If k is any real number and |x| < 1, then $(1+x)^{k} = \sum_{n=0}^{\infty} \binom{k}{n} x^{n} = 1 + kx + \frac{k(k-1)}{2!} x^{2} + \frac{k(k-1)(k-2)}{3!} x^{3} + \cdots$ Prove that the binomial series converges when |x| < 1. Use the binomial series to expand $1/(1+x)^{0.5}$, as a power series. Use b0=1 b1=0.-5 this to estimate $1/\sqrt{1.1}$ correct to b2=0.00375 b3~0.00027 three decimal places. $1 - \frac{1}{2}x + \frac{1 \cdot 3}{2^2 \cdot 2!}x^2 - \frac{1 \cdot 3}{2^3 \cdot 3!}x^3 + \dots + (-1)^n \frac{1 \cdot 3 \dots (2n-1)}{2^n \cdot n!}x^n + \dots$

- 8.7.50 Use series to approximate the definite integral within the indicated accuracy correct to four decimal places. $\int_{x^2 e^{-x^2} dx}^{0.5} e^{-x^2} dx$
- Use series to evaluate the limit $\lim_{x \to 0} \frac{\sin(x) x + \frac{1}{6}x^3}{x^5}$
- Evaluate the integral below, correct up to two decimal places.

 $\frac{\sin(x)}{dx}$

$$\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n = 1 + x + x^2 + x^3 + \cdots$$
 $R = 1$

$$e^{x} = \sum_{n=0}^{\infty} \frac{x^{n}}{n!} = 1 + \frac{x}{1!} + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \cdots$$
 $R = \infty$

$$\sin x = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!} = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \cdots \qquad R = \infty$$

$$\cos x = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!} = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \cdots \qquad R = \infty$$

$$\tan^{-1}x = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{2n+1} = x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} + \cdots \qquad R = 1$$

$$\ln(1+x) = \sum_{n=1}^{\infty} (-1)^{n-1} \frac{x^n}{n} = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \cdots \qquad R = 1$$

$$(1+x)^{k} = \sum_{n=0}^{\infty} \binom{k}{n} x^{n} = 1 + kx + \frac{k(k-1)}{2!} x^{2} + \frac{k(k-1)(k-2)}{3!} x^{3} + \cdots \quad R = 1$$

 The powers series representation of a function a given center "a" is unique.

- If f is a function and we know that f has a representation as a power series, then the Taylor series converges to f in the interval of convergence.
- If we are given a function f (we don't know whether f has a representation as a power series,) the theorem below gives necessary conditions that imply that f has a representation as a power series:

$$T_n(x) = \sum_{i=0}^n \frac{f^{(i)}(a)}{i!} (x - a)^i$$

= $f(a) + \frac{f'(a)}{1!} (x - a) + \frac{f''(a)}{2!} (x - a)^2 + \dots + \frac{f^{(n)}(a)}{n!} (x - a)^n$

$$R_n(x) = f(x) - T_n(x)$$

8 Theorem If $f(x) = T_n(x) + R_n(x)$, where T_n is the *n*th-degree Taylor polynomial of f at a and

$$\lim_{n\to\infty}R_n(x)=0$$

for |x - a| < R, then *f* is equal to the sum of its Taylor series on the interval |x - a| < R.

8 Theorem If $f(x) = T_n(x) + R_n(x)$, where T_n is the *n*th-degree Taylor polynomial of f at a and

$$\lim_{n\to\infty}R_n(x)=0$$

for |x - a| < R, then *f* is equal to the sum of its Taylor series on the interval |x - a| < R.

$$T_n(x) = \sum_{i=0}^n \frac{f^{(i)}(a)}{i!} (x - a)^i$$

= $f(a) + \frac{f'(a)}{1!} (x - a) + \frac{f''(a)}{2!} (x - a)^2 + \dots + \frac{f^{(n)}(a)}{n!} (x - a)^n$
 $R_n(x) = f(x) - T_n(x)$

9 Taylor's Inequality If $|f^{(n+1)}(x)| \le M$ for $|x - a| \le d$, then the remainder $R_n(x)$ of the Taylor series satisfies the inequality

$$|R_n(x)| \le \frac{M}{(n+1)!} |x-a|^{n+1}$$
 for $|x-a| \le d$

This implies that the Taylor series converges in this case. Why?