An infinite crowd of mathematicians enters a bar. The first one orders a pint, the second one a half pint, the third one a quarter pint...
"I understand", says the bartender - and pours two
 pints.

MAT 132

8.7 Taylor and Maclaurin Series 8.8 Applications of Taylor Polynomials

Why we would ever want to express a function as a sum of infinitely many terms? Are we trying to make your life even more difficult?

$$
f(x)=c_{0}+c_{1} x+c_{2} x^{2} \quad \ldots \text { with convergence radius } \mathrm{R}>0 .
$$

- It is easy to integrate polynomials than certain functions. $\int e^{x^{2}} d x$
- It might help to find certain limits. $\lim _{i=0}^{e^{*}-1-x} \frac{e^{2}}{x^{2}}$
- Often we do not have a formula for functions whose values we are trying to predict. In those cases, it is useful to know that we can approximate these functions by polynomials.

Suppose we have a function defined by a series
$f(x)=c_{0}+c_{1}(x-a)+c_{2}(x-a)^{2} \quad . .$. with convergence radius $\mathrm{R}>0$.

- Find $f(a), f^{\prime}(a), f^{\prime \prime}(a), . ., f^{(n)}(a)$.
- Can you determine the values of the coefficients c_{n} in terms of f ?
- If $f(x)=\sin (x)$, can you find an expression of f as a power series centered at $n / 2$?

5 Theorem If f has a power series representation (expansion) at a, that is, if

$$
f(x)=\sum_{n=0}^{\infty} c_{n}(x-a)^{n} \quad|x-a|<R
$$

then its coefficients are given by the formula

$$
c_{n}=\frac{f^{(n)}(a)}{n!}
$$

The series

$$
\begin{aligned}
f(x) & =\sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!}(x-a)^{n} \\
& =f(a)+\frac{f^{\prime}(a)}{1!}(x-a)+\frac{f^{\prime \prime}(a)}{2!}(x-a)^{2}+\frac{f^{\prime \prime \prime}(a)}{3!}(x-a)^{3}+
\end{aligned}
$$

is called the Taylor series of f at a.
When $a=0$, the series (below) is called the Maclaurin series

$$
f(x)=\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^{n}=f(0)+\frac{f^{\prime}(0)}{1!} x+\frac{f^{\prime \prime}(0)}{2!} x^{2}+\cdots
$$

In blue the graph of the function $f(x)=e^{x}$. In brown, pink and green the Taylor polynomials $P_{1}(x), P_{2}(x)$ and $P_{3}(x)$ respectively (centered at 0)

In the case of the Taylor series, the partial sums are

$$
\begin{aligned}
& T_{n}(x)=\sum_{n=0}^{\infty} \frac{f^{(i)}(a)}{i!}(x-a)^{i} \\
& =f(a)+\frac{f^{\prime}(a)}{1!}(x-a)+\frac{f^{\prime \prime}(a)}{2!}(x-a)^{2}+\cdots \cdot+\frac{f^{(n)}(a)}{n!}(x-a)^{n}
\end{aligned}
$$

Notice that T_{n} is a polynomial n of degree n called the $n t h$ degree Taylor polynomial of f at a.

The remainder of order n of the Taylor series is

$$
R_{n}(x)=f(x)-T_{\mathrm{n}}(x)
$$

Recall the Taylor series,

$$
\begin{aligned}
f(x) & =\sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!}(x-a)^{n} \\
& =f(a)+\frac{f^{\prime}(a)}{1!}(x-a)+\frac{f^{\prime \prime}(a)}{2!}(x-a)^{2}+\frac{f^{\prime \prime \prime}(a)}{3!}(x-a)^{3}+\cdots
\end{aligned}
$$

$$
\begin{aligned}
& \text { SUMMARY: Recall, given a function } \mathbf{f} \text {, and a number a, the Taylor } \\
& \text { polynomial of } \mathbf{f} \text { of order } \mathbf{n} \text { centered at a and remainder are } \\
& \begin{aligned}
T_{n}(x) & =\sum_{i=0}^{n} \frac{f^{(i)}(a)}{i!}(x-a)^{i} \\
& =f(a)+\frac{f^{\prime}(a)}{1!}(x-a)+\frac{f^{\prime \prime}(a)}{2!}(x-a)^{2}+\cdots+\frac{f^{(n)}(a)}{n!}(x-a)^{n}
\end{aligned} \quad R_{n}(x)=f(x)-T_{n}(x)
\end{aligned}
$$

We want to approximate $f(x)$ by $T_{n}(x)$ (for some n). Thus we need to know.

- For a given n, how good is our approximation? Estimate how far are we from the actual value of the function.
- If we want the "error" to be less than a given number, how large does n have to be?

The reminder ("error") is $R_{n}(x)=f(x)-T_{n}(x)$.
We discussed two methods for estimating $\left|R_{n}(x)\right|$ (each needs hypothesis)
-.f. If the series is alternating, by the Alternating Series Estimation Theorem.
-. $\}$. If $\left|\mathbf{f}^{(n)}(\mathbf{x})\right| \leq \mathbf{M}$, then $\quad\left|R_{n}(x)\right| \leqslant \frac{M}{(n+1)!}|x-a|^{n+1} \quad$ for $|x-a| \leqslant d$

$$
\operatorname{lor} \mid x \text { al a }
$$

REVIEW The alternating series test

If we have a sequence $\left\{a_{n}\right\}$
where $a_{n}>0, a_{n} \geq a_{n+1}$, and $a_{n} \rightarrow 0$ when $n \rightarrow \infty$
then the series

$$
\sum_{n=1}^{\infty}(-1)^{n} a_{n}
$$

converges

Alternating Series Estimation Theorem If $s=\Sigma(-1)^{n-1} b_{n}$ is the sum of an alternating series that satisfies

$$
\text { (i) } b_{n+1} \leqslant b_{n} \quad \text { and } \quad \text { (ii) } \lim _{n \rightarrow \infty} b_{n}=0
$$

then
$\left|R_{n}\right|=\left|s-s_{n}\right| \leqslant b_{n+1}$

- Find the Taylor series for $f(x)=e^{x}$ at $a=-3$.
b0 $=0.049$ b1=0.0049
\square Use the series to approximate $e^{-3.1}$ correct to four decimal places.(you are given e^{-3})
- Find the Maclaurin series for $f(x)=\cos (x)$ and prove the series represents $f(x)$ for all values of x.
Find the Maclaurin series for $f(x)=\sin (x)$ and prove the series represents $f(x)$ for all values of x.
- Find the Maclaurin series for $f(x)=(1+x)^{k}$, where k is any real number.

> 17 The Binomial Series If k is any real number and $|x|<1$, then $$
(1+x)^{k}=\sum_{n=0}^{\infty}\binom{k}{n} x^{n}=1+k x+\frac{k(k-1)}{2!} x^{2}+\frac{k(k-1)(k-2)}{3!} x^{3}+
$$

-Prove that the binomial series converges when $|x|<1$.

- Use the binomial series to expand $1 /(1+x)^{0.5}$, as a power series. Use this to estimate $1 / \sqrt{ } 1.1$ correct to three decimal places.
$1-\frac{1}{2} x+\frac{1 \cdot 3}{2^{2} \cdot 2!} x^{2}-\frac{1 \cdot 3}{2^{3} \cdot 3!} x^{3}+\cdots+(-1)^{n} \frac{1 \cdot 3 \ldots(2 n-1)}{2^{n} \cdot n!} x^{n}+\ldots$

- 8.7.50 Use series to approximate the

 definite integral within the indicated accuracy correct to four decimal places.$$
\int_{0}^{0.5} x^{2} \mathrm{e}^{-x^{2}} \mathrm{~d} x
$$

- Use series to evaluate the limit

Evaluate the integral below, correct up to two decimal plares.

$$
\int_{\frac{1}{2}}^{1} \frac{\sin (x)}{x} d x
$$

$$
\begin{array}{ll}
\frac{1}{1-x}=\sum_{n=0}^{\infty} x^{n}=1+x+x^{2}+x^{3}+\cdots & R=1 \\
e^{x}=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}=1+\frac{x}{1!}+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\cdots & R=\infty \\
\sin x=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{(2 n+1)!}=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+\cdots & R=\infty \\
\cos x=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n}}{(2 n)!}=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\cdots & R=\infty \\
\tan ^{-1} x=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{2 n+1}=x-\frac{x^{3}}{3}+\frac{x^{5}}{5}-\frac{x^{7}}{7}+\cdots & R=1 \\
\ln (1+x)=\sum_{n=1}^{\infty}(-1)^{n-1} \frac{x^{n}}{n}=x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\frac{x^{4}}{4}+\cdots & R=1 \\
(1+x)^{k}=\sum_{n=0}^{\infty}\binom{k}{n} x^{n}=1+k x+\frac{k(k-1)}{2!} x^{2}+\frac{k(k-1)(k-2)}{3!} x^{3}+\cdots & R=1
\end{array}
$$

$$
\begin{aligned}
& 8 \text { Theorem If } f(x)=T_{n}(x)+R_{n}(x) \text {, where } T_{n} \text { is the } n \text { th-degree Taylor polyno- } \\
& \text { mial of } f \text { at } a \text { and } \\
& \qquad \lim _{n \rightarrow \infty} R_{n}(x)=0
\end{aligned}
$$

for $|x-a|<R$, then f is equal to the sum of its Taylor series on the interval $|x-a|<R$.

$$
\begin{aligned}
T_{n}(x)= & \sum_{i=0}^{n} \frac{f^{(i)}(a)}{i!}(x-a)^{i} \\
= & f(a)+\frac{f^{\prime}(a)}{1!}(x-a)+\frac{f^{\prime \prime}(a)}{2!}(x-a)^{2}+\cdots+\frac{f^{(n)}(a)}{n!}(x-a)^{n} \\
& R_{n}(x)=f(x)-T_{n}(x)
\end{aligned}
$$

9 Taylor's Inequality If $\left|f^{(n+1)}(x)\right| \leqslant M$ for $|x-a| \leqslant d$, then the remainder $R_{n}(x)$ of the Taylor series satisfies the inequality

$$
\left|R_{n}(x)\right| \leqslant \frac{M}{(n+1)!}|x-a|^{n+1} \quad \text { for }|x-a| \leqslant d
$$

$$
\lim _{n \rightarrow \infty} R_{n}(x)=0
$$

for $|x-a|<R$, then f is equal to the sum of its Taylor series on the interval

