

# An (infinite) sequence is a an infinite list of numbers written in order.

An (infinite) sequence is thus a function, where the domain is the set of positive integers and the range is the real numbers.

$$\{a_n\} = \{a_1, a_2, a_3, \dots, a_n, \dots\}$$

Examples {1,1,1,1,..} {1,2,3,..} { $\frac{1}{2}$ ,-2/3,3/4,-4/5...} { $\sqrt{2}$ , $\sqrt{3}$ , $\sqrt{4}$ ,... } {1,4,1,5,9,2...}

In a sequence order matters and elements can be repeated.

Find a formula for the n-th term of each the above sequences.

A sequence is defined explicitly if there is a formula yields individual terms independently

Example: Consider the sequence of general term  $a_n = 3^n$ .

The first, second, third and fourth terms of this sequences are

 $a_n$ 

 $a_1 = 3^1 = 3,$   $a_2 = 3^2 = 9,$   $a_3 = 3^3 = 27,$  $a_4 = 3^4 = 81$ 

Example:

To find the  $100^{\text{th}}$  term, plug 100 in for *n*:

$$= \frac{(-1)^n}{n^2 + 1}$$
$$a_{100} = \frac{(-1)^{100}}{100^2 + 1} = \frac{1}{10001}$$

Challenge: Find the 100-th term of the sequence below.









# Example of sequences defined recursively: Collatz sequences

## f(n) = n/2 if n is even 3n+1 otherwise

Start with a positive integer, say, 10,  $a_1=10$ 

$$a_2 = f(a_1) = 5$$

 $a_3 = f(a_2) = 16$ 

and so on.

This gives a recursively defined sequence for each "starting number", which seems to end in 1, 1,1,1.. for all starting numbers.

(Starting at a different number, you'll obtained a different sequence )

### Conjecture: No matter which number you start from, the sequence always reaches 1

2011: The Collatz algorithm has been tested and found to always reach 1 for all numbers up to  $5 \cdot 7 \ge 10^{18}$ 

8





A sequence is geometric if the quotient of consecutive terms is constant. That is consecutive terms have the same ratio.

Example: 1, -2, 4, -8, 16, ...
 
$$r = -2$$
 $10^{-2}$ ,  $10^{-1}$ , 1, 10, ...
  $r = \frac{10^{-1}}{10^{-2}} = 10$ 

 Geometric sequences can  
be defined recursively:
  $a_n = a_{n-1} \cdot r$ 

 or explicitly:
  $a_n = a_1 \cdot r^{n-1}$ 

A sequence is defined explicitly if there is a formula that allows you to find individual terms independently.

Ex:  $a_n = n/(n^2 + 1)$ 

Any real-valued function defined on the positive real yields a sequence (explicitly defined).

Example:  $f(x)=(x+2)^{\frac{1}{2}}$ n-th of the sequence:  $a_n=(n+2)^{\frac{1}{2}}$ 

A sequence is defined recursively if there is a formula that relates  $a_n$  to previous terms.

An arithmetic sequence has a common difference between terms.

An geometric sequence has a common ratio between terms.



The sequence  $\{a_n\}$  <u>converges to L</u> if we can make  $a_n$  as close to L as we want for all sufficiently large n. In other words, the value of the  $a_n$ 's approach L as n approaches infinity.

write 
$$\lim_{n \to \infty} a_n = L$$
 or  $a_n \to L$  as  $n \to \infty$   
Example  $a_n = \frac{n-1}{n}$ 

We

Otherwise, that is if  $\{a_n\}$  does not converges to any number, we say that  $\{a_n\}$  *diverges*. Example

$$a_n = \frac{(-1)^{n+1} (n-1)}{n}_{15}$$

n

#### Recall:

A sequence is geometric if the quotient of consecutive terms is constant. That is consecutive terms have the same ratio.

Example: 
$$1, -2, 4, -8, 16, \dots$$
 $r = -2$  $10^{-2}, 10^{-1}, 1, 10, \dots$  $r = \frac{10^{-1}}{10^{-2}} = 10$ Geometric sequences can  
be defined recursively: $a_n = a_{n-1} \cdot r$ or explicitly: $a_n = a_1 \cdot r^{n-1}$ Can you find examples of convergent geometric  
sequence? And of diverent geometric sequences?

Determine whether the sequences below are convergent.

1. 
$$a_n = 3^n$$
,  
2.  $a_n = (\frac{1}{2})^n$   
3.  $a_n = (-1)^n$   
4.  $a_n = (-2)^n$   
5.  $a_n = (-0.1)^n$   
6.  $a_n = (3/2)^n$ 

**7** The sequence  $\{r^n\}$  is convergent if  $-1 < r \le 1$  and divergent for all other values of *r*.

$$\lim_{n \to \infty} r^n = \begin{cases} 0 & \text{if } -1 < r < 1\\ 1 & \text{if } r = 1 \end{cases}$$

**2** Theorem If  $\lim_{x\to\infty} f(x) = L$  and  $f(n) = a_n$  when *n* is an integer, then  $\lim_{n\to\infty} a_n = L$ .

• Examples: Study whether the sequences below converge using the theorem above (if possible)

$$a_n = \frac{n-1}{n}$$
$$a_n = \frac{(-1)^{n+1}(n-1)}{n}$$

• Example: The above theorem cannot be used to prove that the sequence  $a_n=1/n!$  converges. Why?

18

If  $\{a_n\}$  and  $\{b_n\}$  are convergent sequences and c is a constant, then  $\lim_{n \to \infty} (a_n + b_n) = \lim_{n \to \infty} a_n + \lim_{n \to \infty} b_n$   $\lim_{n \to \infty} (a_n - b_n) = \lim_{n \to \infty} a_n - \lim_{n \to \infty} b_n$   $\lim_{n \to \infty} ca_n = c \lim_{n \to \infty} a_n$   $\lim_{n \to \infty} a_n \cdot \lim_{n \to \infty} b_n$   $\lim_{n \to \infty} \frac{a_n}{b_n} = \frac{\lim_{n \to \infty} a_n}{\lim_{n \to \infty} b_n}$ if  $\lim_{n \to \infty} b_n \neq 0$   $\lim_{n \to \infty} a_n^p = \left[\lim_{n \to \infty} a_n\right]^p$  if p > 0 and  $a_n > 0$ 

19

Example: Below is the n-th term of some sequences Determine whether the corresponding sequences converge and if so, find the limit.

1. 
$$a_n = 1/n$$
  
2.  $a_n = 1/n + 3(n+1)/n^2$   
3.  $b_n = (a_n)^2 (a_n as in 2.).$   
4.  $a_n = n!/(n+1)!$   
5.  $a_n = (n+1)!/n!$   
6.  $a_n = 1/\ln(n).$   
7.  $a_n = n/\ln(n).$   
8.  $a_n = n \cdot \sin(1/n).$ 



