
$\pi=3.1415$ 92653589793 238462643383 279502884197169 ${ }_{4}^{399307510582097494}$

## MAT 132 8.1 Sequences




An (infinite)
is a an infinite list of numbers written in
order.

An (infinite) sequence is thus a function, where the domain is the set of positive integers and the range is the real numbers.

$$
\left\{a_{n}\right\}=\left\{a_{1}, a_{2}, a_{3}, \ldots, a_{n}, \ldots\right\}_{n \text {th term }}
$$

Examples
$\{1,1,1,1, .$.
$\{1,2,3, .$.
$\{1 / 2,-2 / 3,3 / 4,-4 / 5 \ldots\}$
$\{\sqrt{2}, \sqrt{ } 3, \sqrt{ } 4, \ldots\}$
$\{1,4,1,5,9,2 \ldots\}$


In a sequence order matters and elements can be repeated.

Find a formula for the n-th term of each the above sequences.

A sequence is defined explicitly if there is a formula yields individual terms independently
Example: Consider the sequence of general term $a_{n}=3^{n}$.
The first, second, third and fourth terms of this sequences are

$$
\begin{aligned}
& a_{1}=3^{1}=3, \\
& a_{2}=3^{2}=9, \\
& a_{3}=3^{3}=27, \\
& a_{4}=3^{4}=81
\end{aligned}
$$

Example: $\quad a_{n}=\frac{(-1)^{n}}{n^{2}+1}$
$\begin{aligned} & \text { To find the } 100^{\text {th }} \text { term, } \\ & \text { plug } 100 \text { in for } n \text { : }\end{aligned} \quad a_{100}=\frac{(-1)^{100}}{100^{2}+1}=\frac{1}{10001}$

Challenge: Find the 100 -th term of the sequence below.

## Secret sequence!

This number sequence is made from counters.

How many counters will be in number (4)
of this sequence?

A sequence is defined recursively if there is a formula that relates $a_{n}$ to previous terms

Example 1: $b_{1}=4 \quad b_{n}=b_{n-1}+2$ for all $n \geq 2$
Example 2: Fibonacci sequence $\mathrm{b}_{1}=1, \mathrm{~b}_{2}=1, \mathrm{~b}_{\mathrm{n}}=\mathrm{b}_{\mathrm{n}-1}+\mathrm{b}_{\mathrm{n}-2}$ for $n \geq 3$
Example 3: Collatz sequences

Example 1: $\quad b_{1}=4$

$$
b_{4}=b_{3}+2=10
$$

$$
\begin{array}{ll}
b_{2}=b_{1}+2=6 & \begin{array}{l}
\text { Can you give an explicit } \\
\text { definition of the sequence in }
\end{array} \\
b_{3}=b_{2}+2=8 & \text { Example 1? }
\end{array}
$$



Fibonacci sequence in nature

$\qquad$


The golden angle, is 137.5 degrees

## Example of sequences defined recursively: Collatz sequences

$$
\begin{aligned}
\mathrm{f}(\mathrm{n})= & \mathrm{n} / 2 \text { if } \mathrm{n} \text { is even } \\
& 3 \mathrm{n}+1 \text { otherwise }
\end{aligned}
$$

Start with a positive integer, say, 10 ,
$\mathrm{a}_{1}=10$
$\mathrm{a}_{2}=\mathrm{f}\left(\mathrm{a}_{1}\right)=5$
$a_{3}=f\left(a_{2}\right)=16$
and so on.
This gives a recursively defined sequence for each "starting number", which seems to end in $1,1,1,1$.. for all starting numbers.
(Starting at a different number, you'll obtained a different sequence )

Conjecture:
No matter which number you start from, the sequence always reaches 1

> | 2011: The Collatz |
| :--- |
| algorithm has |
| been tested and |
| found to always |
| reach 1 for all |
| numbers up to |
| $5.7 \times 10^{18}$ |

## Example of sequences defined recursively: Collatz sequences

$\mathrm{f}(\mathrm{n})=\mathrm{n} / 2$ if n is even $3 n+1$ otherwise

Start with a positive integer, say, 10, $a_{1}=10$ $\mathrm{a}_{2}=\mathrm{f}\left(\mathrm{a}_{1}\right)=5$ $a_{3}=f\left(a_{2}\right)=16$ and so on.



An arithmetic sequence is a sequence such that the difference between consecutive terms is constant.

Examples: $-5,-2,1,4,7, \ldots \quad d=3$
$\ln 2, \ln 6, \ln 18, \ln 54, \ldots \quad d=\ln 6-\ln 2=\ln \frac{6}{2}=\ln 3$

Arithmetic sequences can be defined recursively:

$$
a_{n}=a_{n-1}+d
$$

or explicitly:

$$
a_{n}=a_{1}+d(n-1)
$$

A sequence is defined explicitly if there is a formula that allows you to find individual terms independently.
$E x: a_{n}=n /\left(n^{2}+1\right)$
Any real-valued function defined on the positive real yields a sequence (explicitly defined).

Example: $f(x)=(x+2)^{1 / 2}$
$n$-th of the sequence: $a_{n}=(n+2)^{1 / 2}$
A sequence is defined recursively if there is a formula that relates $a_{n}$ to previous terms.

An arithmetic sequence has a common difference between terms.

An geometric sequence has a common ratio between terms.
$\begin{aligned} & \text { Write the first terms of } \\ & \text { the sequence }\end{aligned} \quad a_{n}=\frac{n-1}{n}$

Plot these terms on a number line

$$
a_{n}=\frac{n-1}{n}
$$

Plot the sequence as


The terms in this sequence get closer and closer to 1 .
The sequence CONVERGES to 1 .

The sequence $\left\{a_{n}\right\}$ converges to $L$ if we can make $a_{n}$ as close to $L$ as we want for all sufficiently large $n$. In other words, the value of the $a_{n}$ 's approach $L$ as $n$ approaches infinity.
We write

$$
\begin{array}{r}
\lim _{n \rightarrow \infty} a_{n}=L \quad \text { or } \quad a_{n} \rightarrow L \text { as } n \rightarrow \infty \\
\\
\quad \text { Example } \\
a_{n}=\frac{n-1}{n}
\end{array}
$$

Otherwise, that is if $\left\{a_{n}\right\}$ does not converges to any number, we say that $\left\{a_{n}\right\}$ diverges.

> Example

$$
a_{n}=\frac{(-1)^{n+1}(n-1)}{n}
$$

Consider the sequence $a_{n}=\frac{(-1)^{n+1}(n-1)}{n}$


The terms in this sequence do not get close to any (single) number when $n$ grows.

## Recall:

A sequence is geometric if the quotient of consecutive terms is constant. That is consecutive terms have the same ratio.

$$
\begin{array}{rlr}
\text { Example: } 1,-2,4,-8,16, \ldots & r=-2 \\
& 10^{-2}, 10^{-1}, 1,10, \ldots & r=\frac{10^{-1}}{10^{-2}}=10
\end{array}
$$

Geometric sequences can be defined recursively:

$$
a_{n}=a_{n-1} \cdot r
$$

or explicitly:

$$
a_{n}=a_{1} \cdot r^{n-1}
$$

Can you find examples of convergent geometric
sequence? And of diverent geometric sequences?

## Determine whether the sequences below are convergent.

1. $a_{n}=3^{n}$,
2. $a_{n}=(1 / 2)^{n}$
3. $a_{n}=(-1)^{n}$
4. $a_{n}=(-2)^{\mathrm{n}}$
5. $a_{n}=(-0.1)^{\mathrm{n}}$
6. ${ }^{a}{ }_{n}=(3 / 2)^{n}$

7 The sequence $\left\{r^{n}\right\}$ is convergent if $-1<r \leqslant 1$ and divergent for all other values of $r$.

$$
\lim _{n \rightarrow \infty} r^{n}= \begin{cases}0 & \text { if }-1<r<1 \\ 1 & \text { if } r=1\end{cases}
$$

If $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ are convergent sequences and $c$ is a constant, then

$$
\begin{aligned}
& \lim _{n \rightarrow \infty}\left(a_{n}+b_{n}\right)=\lim _{n \rightarrow \infty} a_{n}+\lim _{n \rightarrow \infty} b_{n} \\
& \lim _{n \rightarrow \infty}\left(a_{n}-b_{n}\right)=\lim _{n \rightarrow \infty} a_{n}-\lim _{n \rightarrow \infty} b_{n} \\
& \lim _{n \rightarrow \infty} c a_{n}=c \lim _{n \rightarrow \infty} a_{n} \\
& \lim _{n \rightarrow \infty}\left(a_{n} b_{n}\right)=\lim _{n \rightarrow \infty} a_{n} \cdot \lim _{n \rightarrow \infty} b_{n} \\
& \lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=\frac{\lim _{n \rightarrow \infty} a_{n}}{\lim _{n \rightarrow \infty} b_{n}} \text { if } \lim _{n \rightarrow \infty} b_{n} \neq 0 \\
& \lim _{n \rightarrow \infty} a_{n}^{p}=\left[\lim _{n \rightarrow \infty} a_{n}\right]^{p} \text { if } p>0 \text { and } a_{n}>0
\end{aligned}
$$

2 Theorem If $\lim _{x \rightarrow \infty} f(x)=L$ and $f(n)=a_{n}$ when $n$ is an integer, then $\lim _{n \rightarrow \infty} a_{n}=L$.

- Examples: Study whether the sequences below converge using the theorem above (if possible)

$$
\begin{gathered}
a_{n}=\frac{n-1}{n} \\
a_{n}=\frac{(-1)^{n+1}(n-1)}{n}
\end{gathered}
$$

- Example: The above theorem cannot be used to prove that the sequence $a_{n}=1 / n!$ converges. Why?

Example: Below is the n-th term of some sequences
Determine whether the corresponding sequences converge and if so, find the limit.

1. $a_{n}=1 / n$
2. $a_{n}=1 / n+3(n+1) / n^{2}$
3. $\mathrm{b}_{\mathrm{n}}=\left(\mathrm{a}_{\mathrm{n}}\right)^{2}\left(\mathrm{a}_{\mathrm{n}}\right.$ as in 2.).
4. $a_{n}=n!/(n+1)!$
5. $a_{n}=(n+1)!/ n!$
6. $a_{n}=1 / \ln (n)$.
7. $a_{n}=n / \ln (n)$.
8. $a_{n}=n \cdot \sin (1 / n)$.

## The squeeze theorem

$$
\text { If } a_{n} \leqslant b_{n} \leqslant c_{n} \text { for } n \geqslant n_{0} \text { and } \lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} c_{n}=L \text {, then } \lim _{n \rightarrow \infty} b_{n}=L \text {. }
$$

- Example: Use the "squeeze theorem" above to determine whether the sequence $\left\{a_{n}\right\}$ defined by $a_{n}=\left(n^{2}+1\right) / n^{3}$ is converges and if so, find the limit.

Definition A sequence $\left\{a_{n}\right\}$ is called increasing if $a_{n}<a_{n+1}$ for all $n \geqslant 1$, that is, $a_{1}<a_{2}<a_{3}<\cdots$. It is called decreasing if $a_{n}>a_{n+1}$ for all $n \geqslant 1$. A sequence is monotonic if it is either increasing or decreasing.

Give examples of
1.Increasing, convergent sequences.
2.Decreasing convergent sequences.
3.Increasing divergent sequences.
4.Decreasing divergent sequences.
5.Convergent sequences that are not increasing and not decreasing
6.Divergent sequences that are not increasing and not decreasing

## List of Types of sequences and examples

Defined explicitly Ex: $a_{n}=n /\left(n^{2}+1\right)$
Defined recursively Ex: $\mathrm{a}_{1}=1$,
$a_{2}=1, a_{n}=a_{n-1}+a_{n-2}, n \geq 3$.
Defined by function
Example: $f(x)=(x+2)^{1 / 2} \quad a_{n}=(n+2)^{1 / 2}$

## Convergent $a_{n}=1 / n$

Divergent, $a_{n}=n$ or $a_{n}=(-1)^{n}$
Arithmetic $\mathrm{a}_{\mathrm{n}}=\mathrm{a}_{1}+(\mathrm{n}-1)$. d
Geometric $\mathrm{a}_{\mathrm{n}}=\mathrm{a}_{1} . \mathrm{r}^{\mathrm{n}-1}$

Increasing $a_{n}=(1-1 / n)$
Decreasing $a_{n}=1 / n$
Bounded $\mathrm{a}_{\mathrm{n}}=\sin (\mathrm{n})$
"Tricks" to determine whether sequences are convergent or divergent and to find the limit if they are convergent.

- Squeeze theorem - L'Hopital

Example: Compute the arc length
of the circle $r=\sin \Theta$
$\theta$ in $[0,2 \pi]$


Example: Compute the length arc of the spiral $r=e^{\ominus}$ in $[0,2 \pi]$

POLAR


Example: Compute the arc length the graph of the curve $y=x^{3 / 2}$, $x$ in $[0,5$ ]


Example: Compute the length two arcs of the cycloid $x=\theta-\sin \Theta, y=1-$ $\cos \theta .\left(\operatorname{Hin} t(1-\cos (t))=2 \sin ^{2}(t / 2)\right)$
PARAMETRIC


