MAT 142 Problem Set #8

due in class on March 17, 2005

- 1. Apostol, section 10.9 # 1, 2, 5, 10
- 2. Apostol, section 10.10 # 3
- 3. Given a bounded sequence, a_n , define a new sequence, b_n , by

$$b_n = \sup\{a_n, a_{n+1}, a_{n+2}, \ldots\}$$

(a) Prove that $\lim_{n\to\infty} b_n$ exists. This limit is called the *limit supremum* of a_n and is written as $\limsup_{n\to\infty} a_n$. Similarly, we can define the *limit infimum* as $\liminf_{n\to\infty} a_n = \lim_{n\to\infty} c_n$, where

$$c_n = \inf\{a_n, a_{n+1}, a_{n+2}, \ldots\}$$

A similar proof also shows that the limit infimum always exists whenever a_n is bounded.

- (b) Use the squeeze principle to prove that if $\limsup_{n\to\infty} a_n = \liminf_{n\to\infty} a_n = L$,
- then $\lim_{n\to\infty}a_n=L$.

 (c) Compute the limit supremum and limit infimum of $a_n=(-1)^n$.

 4. (a) Prove the following extension to the limit comparison test: If $\lim_{n\to\infty}\frac{a_n}{b_n}=\frac{a_n}{a_n}$

0 and $\sum_{n=1}^{\infty} b_n$ converges, then $\sum_{n=1}^{\infty} a_n$ converges.

(b) Give an example of two series where $\lim_{n\to\infty}\frac{a_n}{b_n}=0$ and $\sum_{n=1}^{\infty}a_n$ converges,

but
$$\sum_{n=1}^{\infty} b_n$$
 diverges.