MAT 142 FALL 2003
 MIDTERM I

!!! WRITE YOUR NAME, SUNY ID N. AND SECTION BELOW !!! NAME :

SUNY ID N. :
SECTION :
CHECK THAT THERE ARE 6 PROBLEMS. THEY DO NOT HAVE EQUAL VALUE. SHOW YOUR WORK!!!

1	40 pts	
2	40 pts	
3	40 pts	
4	40 pts	
5	50 pts	
6	40 pts	
Total	250	

1. [40 points] Find the center of mass of the triangular plate bounded by the graphs of $y=|x|$ and $y=1$. The density is constant.

Solution: We may assume that the density of the plate is 1 everywhere (if not use δ and find that the answer is the same). Since the region has the line $x=0$ as its axis of symmetry, the x-coordinate of its center of mass is 0 , so we need only find the y-coordinate, i.e. the moment of the region about the x-axis divided by the mass of the plate. The moment of the region about the x-axis is $\left(\int_{0}^{1} 2 y^{2} d y\right)$, or $\frac{2}{3}$ (we consider horizontal strips). The mass of the plate is $\left(\int_{0}^{1} 2 y d y\right)$, or 1. The center of mass of the plate is $\left(0, \frac{2}{3}\right)$.
2. [40 points] Solve the initial value problem

$$
\frac{d y}{d x}=y \sin x, \quad y(0)=1
$$

Solution: Separating variables, we obtain $\frac{d y}{y}=\sin x d x$. Integrating both sides gives $\ln |y|=-\cos x+C$; exponentiating both sides gives $y=k e^{-\cos x}$ where k is a nonnegative constant. Due to the initial condition, we have that $1=k e^{-1}$, or $k=e$. Therefore the solution is $y=e^{1-\cos x}$.
3. [40 points] If a semicircular plate whose radius is 4 feet is submerged in water so that it is perpendicular to the surface, it points down and its diameter is 6 feet below the surface, set up, but do not evaluate, an integral which gives the force exerted by the water on one side of the plate. (The weight-density of water is 62.4 pounds per cubic foot.)

Solution: If we work in a coordinate system in which the surface of the water is the line $y=0$, the integral representing the force exerted by the water on one side of the plate is
$\int_{-10}^{-6}(62.4)(-y)\left(2 \sqrt{\left(16-(y+6)^{2}\right)} d y\right.$.
4. [40 points] Let $f(x)$ be a differentiable function on the interval $(0, \infty)$. Assume that

1) $f(1)=0$,
2) $f^{\prime}(1)=1$,
3) $f(a b)=f(a)+f(b)$ for every $a, b>0$.
a) Prove that $f\left(\frac{1}{x}\right)=-f(x)$.

Solution: $0=f(1)=f\left(x \frac{1}{x}\right)=f(x)+f\left(\frac{1}{x}\right)$.
So we have $f\left(\frac{1}{x}\right)=-f(x)$.
b) Prove that $f(x)=\ln x$. You can use that $f\left(\frac{1}{x}\right)=-f(x)$ even if you did not prove it. (Hint: consider $f^{\prime}(1)$)

Solution:

$$
\begin{gathered}
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \stackrel{3)}{=} \lim _{h \rightarrow 0} \frac{f\left((x+h) \frac{1}{x}\right)}{h}= \\
\lim _{h \rightarrow 0} \frac{f\left(1+\frac{h}{x}\right)}{h} \stackrel{1)}{=} \lim _{h \rightarrow 0} \frac{\left.f\left(1+\frac{h}{x}\right)-f(1)\right)}{h}= \\
\lim _{h \rightarrow 0} \frac{f\left(1+\frac{h}{x}\right)-f(1)}{\frac{h}{x}} \frac{1}{x} \stackrel{2)}{=} 1 \cdot \frac{1}{x}=\frac{1}{x} .
\end{gathered}
$$

Since $f^{\prime}(x)=\frac{1}{x}, f(x)=\ln x+C$.
By 1), $f(x)=\ln x$.
5. [50 points] Evaluate the following integral and derivative.
a) $\int_{0}^{\sqrt{\ln \pi}} 2 x e^{x^{2}} \cos e^{x^{2}} d x$

Solution. Set $u=e^{x^{2}}$.
$=\int_{1}^{\pi} \cos u d u=-\sin 1$.
b) If $y=(\ln (\sin t))^{\pi}$, find $\frac{d y}{d t}$.

Solution. $\pi \frac{1}{t} \cos t(\ln (\sin t))^{\pi-1}$
6. [40 points] Solve the initial value problem

$$
y^{\prime}+x y=x, \quad y(0)=-6 .
$$

$$
\begin{aligned}
& v(x)=e^{x^{2} / 2} \\
& y=e^{-x^{2} / 2} \int e^{x^{2} / 2} x d x=1+C e^{-x^{2} / 2}
\end{aligned}
$$

Using the initial condition, we get $C=-7$.
$y=1-7 e^{-x^{2} / 2}$.

