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Abstract. The period doubling Cantor sets of strongly dissi-
pative Hénon-like maps with different average Jacobian are not
smoothly conjugated, as was shown in [CLM]. The Jacobian Rigid-
ity Conjecture says that the period doubling Cantor sets of two-
dimensional Hénon-like maps with the same average Jacobian are
smoothly conjugated. This conjecture is true for average Jacobian
zero, e.g. the one-dimensional case. The other extreme case is
when the maps preserve area, e.g. the average Jacobian is one. In-
deed, the main result presented here is that the the period doubling
Cantor set of area-preserving maps in the universality class of the
Eckmann-Koch-Wittwer renormalization fixed point are smoothly
conjugated.
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1. Introduction

The simplest dynamics beyond periodic behavior can be found in
systems at the accumulation of period doubling. These systems have
a period doubling Cantor set whose dynamics can be very well un-
derstood in terms of the periodic orbits which accumulate on this set.
The consecutive approximating periodic orbits are related by so-called
period doubling bifurcations. This simplest non-period behavior is of-
ten observed in models and in nature. In particular, the transition to
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chaos in strongly dissipative systems often occurs with such a period
doubling Cantor set.
The topological properties of these period doubling Cantor sets are

simple and very well understood. In the mid-1970’s Feigenbaum [F1,
F2] and, independently, Coullet and Tresser [CT, TC], discovered uni-
versal geometrical properties of these Cantor sets at the transition to
chaotic behavior in one-dimensional dynamics. Coullet and Tresser
conjectured that the universal geometry at transition to chaos in one-
dimensional dynamics will also be observed in higher dimensional sys-
tems. This conjecture has been confirmed by many numerical and
physical experiments.1

Feigenbaum-Coullet-Tresser introduced renormalization in dynamics
to explain the observed geometrical universality. The renormalization
operator acts as a microscope. By repeatedly applying, one can de-
scribe the small scale geometrical structure by renormalizations, e.g.
systems associated to the smaller scales. The corresponding renormal-
ization operator has a unique hyperbolic fixed point. The dynamics of
the renormalization fixed point, which is itself a one-dimensional sys-
tem, and the behavior of the renormalization operator around this fixed
point determine the asymptotic small scale properties. This explains
the observed universality.
The renormalization technique has been generalized to many types

of dynamics. However, a rigorous study of universality has been sur-
prisingly difficult and technically sophisticated and so far has only been
thoroughly carried out in the case of one-dimensional maps, on the in-
terval or the circle, see [AL, CST, FMP, He, L, Ma, McM, MS, Su,
St, VSK, Y]. There is, however, at present no deep understanding of
universality in conservative systems, other than in the case of the uni-
versality for systems “near integrability” [AK, AKW, EKW2, K1, K2,
K3, G1, Ko, Kh].
Convergence of renormalization implies universal geometry at as-

ymptotic small scale around a certain point. A stronger property is
rigidity: there is universal geometry at asymptotic small scale around
all points. All period doubling Cantor sets are topologically equivalent.
Between two of them there will be a homeomorphism conjugating the

1This conjecture should be taken with caution as not every transition to chaos
is related to accumulation of period doubling.
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dynamics. A priori there is no reason to belief that these homeomor-
phisms have some smoothness. Rigidity means that there are conju-
gating homeomorphism which are smooth.2 The topology determines
the small scale geometry.

Indeed, the period doubling Cantor sets in one-dimensional dynamics
are rigid. This is surprising. Especially because the Cantor sets have
very rich geometry: there are essentially no two points with the same
asymptotic small scale geometry, see [BMT]. Many numerical and
physical experiments show that exactly the same universal geometry
from one-dimensional dynamics occurs also in some dissipative higher
dimensional systems. Surprisingly, the rigidity phenomenon is more
delicate in higher dimensions.
Strongly dissipative two-dimensional Hénon-like maps can be thought

of as two dimensional perturbations of one-dimensional systems. In
[CEK1] and [CLM] two renormalization schemes were developed for
strongly dissipative Hénon-like maps at the accumulation of period
doubling. This explained the observed one-dimensional universal ge-
ometry present in these Hénon-like maps. Surprisingly, the period dou-
bling Hénon-like Cantor sets are not smoothly conjugated to their one-
dimensional counter part, see [CLM, LM1].
In §3 we will discuss the dynamical construction of the period dou-

bling Cantor sets. The average Jacobian, e.g. the average rate of dissi-
pation, plays a role. The Cantor set of systems with different average
Jacobian are not smoothly conjugated, see [CLM, LM1]. Nevertheless,
the geometry of the one-dimensional period doubling Cantor set is still
present. The conjugations between the Cantor sets of strongly dissi-
pative Hénon-like maps is almost everywhere, with respect to the nat-
ural measure on the Cantor set, smooth. This phenomenon is called
Probabilistic Rigidity, see [LM1, LM3]. Small scale geometry has a
probabilistic nature in higher dimensions.
As we discussed before, different average Jacobians are an obstruc-

tion to rigidity. However, this is not contradicting the rigidity paradigm
topology determines geometry. Namely, in [LM2] it is shown that maps
with different average Jacobian are not topologically equivalent. The
average Jacobian is a topological invariant. It describes topological as-
pects of the heteroclinic web, e.g. the network of stable and unstable
manifolds of the period orbits. This leads to the

2The precise definition of rigidity will be given in §4.
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Jacobian Rigidity Conjecture. The period doubling Cantor sets of
two-dimensional Hénon-like maps with the same average Jacobian are
C1+α-conjugated.

This conjecture is true for average Jacobian zero, e.g. the one-
dimensional case. The other extreme case when the maps preserve
area, e.g. the average Jacobian is one, is described in our main result,
see Theorem 4.1. It says,

Rigidity for Area-preserving Maps. The period doubling Cantor
set of area-preserving maps in the universality class of the Eckman-
Koch-Wittwer renormalization fixed point are C1+α-conjugated.

Area-preserving maps at accumulation of period doubling are ob-
served by several authors in the early 80’s, see [DP, Hl, BCGG, Bo,
CEK2, EKW1]. In [EKW2] Eckmann, Koch and Wittwer introduced a
period doubling renormalization scheme for area preserving maps and
described the hyperbolic behavior of the renormalization operator in
a neighborhood of a renormalization fixed point. In particular, they
observed universality for maps at the accumulation of period doubling.
The maps in the universality class of the Eckmann-Koch-Wittwer

renormalization fixed point are at the accumulation of period doubling.
It was shown in [GJ1] that these maps do have a period doubling
Cantor set and the Lyapounov exponents are at most zero. Moreover,
for maps in a certain strong stable part of the renormalization fixed
point, a space with finite codimension, their period doubling Cantor
sets are at least bi-Lipschitz conjugated. In this paper we improve
the conclusions of [GJ1]: rigidity holds in the whole stable manifold
of the Eckmann-Koch-Wittwer renormalization fixed point. Moreover,
the conjugations are at least C1+α with α = 0.237.

Acknoledgements: This work was started during a visit by the au-
thors to the Institut Mittag-Leffler (Djursholm, Sweden) as part of the
research program on “Dynamics and PDEs”. The hospitality of the in-
stitute is gratefully acknowledged. The second author was funded by a
postdoctoral fellowship from the Institut Mittag-Leffler. The authors
would like to thank the referees for their very careful reading of the
original manuscript.
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2. Preliminaries

Given a domain D ⊂ C2, letD ⊂ int(D∩R2) be compactly contained
in the real slice. Assume (0, 0) ∈ D. An area-preserving map F : D →
F (D) ⊂ R2 will mean a real symmetric map which has a holomorphic
extension to D and is an exact symplectic diffeomorphism onto its
image with the following properties

1) F (0, 0) = (0, 0),
2) T ◦ F ◦ T = F−1, where T (x, u) = (x,−u) (reversibility),
3) ∂ux

′ 6= 0 with (x′, u′) = F (x, u) (twist condition).

The collection of such maps is denoted by Cons(D).

Our subject are maps at the accumulation of period doubling in
a neighborhood of the Eckmann-Koch-Wittwer renormalization fixed
point, [EKW2]. We will need stronger and additional estimates than
the spectral information obtained in [EKW2]. These estimates were
obtained in [GJ2]. Although both [EKW2] and [GJ2] study a neigh-
borhood of the same fixed point, the used constructions differ. We
do need the estimates form [GJ2] and summarize these results here,
see Theorem 2.1, Lemma 2.2, and Proposition 2.3. Observe that the
Eckmann-Koch-Wittwer renormalization fixed point from [EKW2] and
the corresponding spectral properties of the renormalization operator
in this fixed point presented in [EKW2] and [GJ2] are obtained with
computer assisted proofs.

In [GJ2] Gaidashev and Johnson construct simply connected do-
mains D ⊂ D ⊂ C2 and adapt the renormalization scheme from
[EKW2]. This renormalization scheme is defined on a neighborhood
Cons0(D) of F∗ ∈ Cons(D), where F∗ corresponds to the Eckman-
Koch-Wittwer fixed point. Each map F ∈ Cons0(D) has a unique pe-
riodic orbit of period 2. This orbit has one point (pF , 0) with pF < 0.
The dependance

F 7→ pF

is analytic. Furthermore there are analytic function

F 7→ λF ∈ (−∞, 0)

and

F 7→ µF ∈ (0,∞).

The rescaling which will be used to renormalize is

ΛF : (x, u) 7→ (λFx+ pF , µFu).
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The renormalization operator R : Cons0(D) → Cons(D) is defined by

RF = ΛF
−1 ◦ F ◦ F ◦ ΛF .

The results from [GJ2] which will be used in the sequel are collected in
the following Theorem, Lemma, and Proposition. We will denote the
C2-norm of maps by ||.||C2 .

Theorem 2.1. There exists F∗ ∈ Cons0(D) such that

1) Cons0(D) is a neighborhood of F∗.
2) F∗ is a hyperbolic fixed point of the renormalization operator.
3) F∗ has a one-dimensional local unstable manifold.
4) F∗ has a codimension one local stable manifold W s

loc(F∗).
5) F ∗ has a codimension two local strong stable manifoldW ss

loc(F∗) ⊂
W s

loc(F∗) ⊂ Cons0(D).
6) There exist a distance d on W ss

loc(F∗), and ν < 0.126 such that

for every F, F̃ ∈ W ss
loc(F∗)

||F − F̃ ||C2 ≤ d(F, F̃ )

and
d(RF,RF̃ ) ≤ ν · d(F, F̃ ).

In particular,

d(RnF, F∗) ≤ νn · d(F, F∗).

7) The one dimensional family defined by Ft = h−1t ◦F∗ ◦ht, where
ht : D → ht(D) ⊂ R2 is the diffeomorphism defined by

ht(x, u) = (x+ tx2,
u

1 + 2tx
),

with |t| ≤ c0, is contained in the stable manifold W s
loc(F∗) and

is transversal to the strong stable manifold W ss
loc(F∗) ⊂ W s

loc(F∗)
and intersects only in F∗.

8) The map ΛF depend analytically on F .

For F ∈ Cons0(D) we will use the notation

ψ0 = ψ0(F ) = ΛF : D → R
2

and
ψ1 = ψ1(F ) = F ◦ ΛF : D → R

2

In the next sections we will consider infinitely renormalizable maps.
These are maps for which all RnF , n ≥ 0, are defined. For such maps
we will consider

Ψn
w = ψw1

(F ) ◦ ψw2
(RF ) ◦ · · · ◦ ψwn

(Rn−1F ) : Dom(RnF ) → Dom(F ),

with wk ∈ {0, 1}.
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Lemma 2.2. For F ∈ Cons0(D) there are analytically defined simply
connected domains (pF , 0) ∈ B0(F ) ⊂ D and B1(F ) ⊂ D such that

(2.1) B1(F ) ∩ B0(F ) = ∅,

and

(2.2) F 2(B0(F )) ∩ B0(F ) 6= ∅.

Moreover,

ψw(B0(RF ) ∪ B1(RF )) ⊂ Bw(F ),

with w ∈ {0, 1}.

Proposition 2.3. There exists 0 < θ1 < θ2 < 1 such that for F ∈
W s

loc(F∗) we have

θ41 · |v| ≤ |DΨ4
w(x, u)v| ≤ θ42 · |v|

for every w ∈ {0, 1}4 and (x, u) ∈ B0(F ) ∪B1(F ). Moreover,

(2.3)
θ2ν

θ1
< 1.

Remark 2.1. The following estimates are obtained in [GJ2].

(2.4) θ1 ≥ 0.061

(2.5) θ2 ≤ 0.249

(2.6) ν < 0.126

(2.7)
θ2ν

θ1
< 0.515

Remark 2.2. The estimate (2.3) plays a crucial role in the proof of the
rigidity Theorem 4.1. The optimal way to describe this condition is
in terms of F∗ and the derivative of renormalization DR(F∗) at that
point. Namely, let

σ∗ = Spectral radius(DR(F∗)|T
ss),

where T ss is the tangent space to W ss
loc(F∗) at F∗. Moreover, let

θ∗1 = inf
w∈{0,1}∞,(x,u)∈D,||v||=1

{lim inf
n→∞

||DΨn
wn(F∗)(x, u)v||

1

n},

where wn is the truncation of the infinite word w to its first n letters.
And similarly, let

θ∗2 = sup
w∈{0,1}∞,(x,u)∈D,||v||=1

{lim sup
n→∞

||DΨn
wn(F∗)(x, u)v||

1

n}.
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The numbers θ∗1 and θ∗2 reflect geometrical properties of the period
doubling Cantor set of F∗, see §3. The rigidity Theorem can be proved
under the condition

θ∗2σ
∗

θ∗1
< 1.

The derivative of renormalization at the fixed point is a compact op-
erator. In particular, rigidity can be proved on a finite codimension
subspace where the contraction is strong enough. The numerical es-
timates from [GJ2] show that only the weakest stable direction is not
strong enough. Luckily, this weakest stable direction corresponds to a
one-dimensional family of analytically conjugated maps. The authors
do not have a conceptual explanation for this coincidence.

The Appendix is used to present some elementary estimates on the
error term of affine approximations of diffeomorphisms. In this section
we used coordinates (x, u) to denote a point. In the sequel we will not
need anymore the coordinates and denote points simply by x, etc.

3. The Cantor Set

In this section we construct the invariant Cantor set for infinitely
renormalizable maps. This cantor set is intrinsically related to the
renormalization process. As in dimension one, it is a Cantor set on
which the map acts like the dyadic adding machine. The construction
is similar to the construction of the limit set of an iterated function
system. As a matter of fact, the Cantor set of the renormalization fixed
point F∗, is the limit set of an iterated function system, see Figure 3.1.
The stable manifoldW s(F∗) ⊂ Cons0(D), also called the universality

class, of F∗, consists of the maps with RnF → F∗. Trough out this
section we will consider a fixed map F ∈ W s(F∗).
We will use the notation

ψn0 = ΛRn−1F : D → R
2

and
ψn1 = Rn−1F ◦ ΛRn−1F : D → R

2

Observe,
RnF = (ψn0 )

−1 ◦Rn−1F ◦ ψn0 .

The convergence of RnF → F∗ and Theorem 2.1(8) immediately im-
plies

Lemma 3.1. For every F ∈ W s(F∗)

lim
n→∞

||ψn0,1(F )− ψ0,1(F∗)||C2 = 0.
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Remark 3.1. Lemma 3.1 shows a crucial difference between conservative
and dissipative infinitely renormalizable maps. In the conservative case,
the rescaling maps converge to (non-degenerated) diffeomorphisms. In
the dissipative case, the corresponding rescaling ψn1 converge to a de-
generated map, a map with one-dimensional image. This degeneration
is at the heart of the difficulties of the non-rigidity phenomena observed
in dissipative maps, see [CLM]. The degeneration occurs in a universal
manner. This universal degeneration is responsible for the probabilistic
nature of geometry in dimension two where one observes Probabilistic
Universality and Probabilistic Rigidity, see [LM3].

Remark 3.2. The convergence in Lemma 3.1 holds in any Ck-distance,
k ≥ 0. We only need control of the lower order derivatives.

Remark 3.3. The construction of the Cantor set in the conservative
case is exactly the same as in the dissipative case. The difference lies
in the asymptotic behavior of the rescalings, see remark 3.1.

Let

Ψ2
00 = ψ1

0 ◦ ψ
2
0, Ψ2

01 = ψ1
0 ◦ ψ

2
1, Ψ2

10 = ψ1
1 ◦ ψ

2
0, . . . .

and, proceeding this way, construct, for any w = (w1, . . . , wn) ∈ {0, 1}n,
n ≥ 1, the maps

Ψn
w = ψ1

w1
◦ · · · ◦ ψnwn

: Dom(RnF ) → Dom(F ).

The notation Ψn
w(F ) will also be used to emphasize the map under

consideration. The following Lemma follows directly from Proposition
2.3.

Lemma 3.2. For every F ∈ W s(F∗) there exists C > 0 such that for
any word w ∈ {0, 1}n, n ≥ 1,

‖DΨn
w‖ ≤ Cθn2

where θ2 < 1 is given in Proposition 2.3 and (2.5).

Define the pieces of the nth-level or nth-scale as follows. They are
closed topological disks. For each w ∈ {0, 1}n let

Bn
w0 ≡ Bn

w0(F ) = Ψn
w(B0(R

nF ))

and
Bn
w1 ≡ Bn

w1(F ) = Ψn
w(B1(R

nF )).

The set of words {0, 1}n can be viewed as the additive group of
residues mod 2n by letting

w 7→
n−1
∑

k=0

wk+12
k.
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F RF RF 2 RnF

B0

B1

ψ1
0

ψ1
1

ψ2
0

ψ2
1

ψ3
0

ψ3
1

Figure 3.1. The Renormalization Microscope

Let p : {0, 1}n → {0, 1}n be the operation of adding 1 in this group.

Lemma 3.3. For every F ∈ W s(F∗) and n ≥ 1

1) The above families of pieces are nested:

Bn
wν ⊂ Bn−1

w , w ∈ {0, 1}n, ν ∈ {0, 1}.

2) The pieces Bn
w, w ∈ {0, 1}n+1 \ {1n+1}, are pairwise disjoint.

3) Under F , the pieces are permuted as follows.

F (Bn
w) = Bn

p(w),

unless p(w) = 0n+1. If p(w) = 0n+1, then F (Bn
w) ∩ B

n
0n+1 6= ∅.

Proof. The first assertion holds by construction: Let w ∈ {0, 1}n−1,
wn, v ∈ {0, 1}, and use Lemma 2.2,

Bn
wwnv

= Ψn
wwn

(Bv(R
nF )) = Ψn−1

w ◦ ψnwn
(Bv(R

nF ))

⊂ Ψn−1
w (Bwn

(Rn−1F )) = Bn−1
wwn

(F ).

The second follows by induction. For all maps under consideration
we have the disjointness property (2.1) which says, that B1

0(F ) and
B1

1(F ) are disjoint. Assume that the pieces of the nth generation are
disjoint for all maps under consideration. This implies that the pieces
Bn+1

0w ⊂ B1
0 , w ∈ {0, 1}n+1, are pairwise disjoint, as they are images of

the disjoint pieces Bn
w(RF ) by the map ψ0

1. Applying F , we see that
the pieces Bn+1

1w ⊂ B1
1 , w ∈ W n, are pairwise disjoint as well. The

assertion follows because B1
1 and B1

0 are also disjoint.

Let us inductively check the third assertion. For n = 1, we have:

B1
1 = F (B1

0) and F (B
1
1) ∩B

1
0 6= ∅.

Consider now the pieces Bn
w(RF ), w ∈ {0, 1}n+1, of level n for RF .

Assume inductively that they are permuted by RF as required. Then
the pieces Bn+1

0w = ψ1
0(B

n
w(RF )) are permuted in the same fashion under

F 2. Moreover, Bn+1
1w = ψ1

1(B
n
w(RF )) = F (Bn+1

0w ), and the conclusion
follows. �

Furthermore, Lemma 3.2 implies:
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Lemma 3.4. For every F ∈ W s(F∗) there exists C > 0 such that for
all w ∈ {0, 1}n+1, diamBn

w ≤ Cθn2 .

Let

O ≡ OF =
∞
⋂

n=1

⋃

w∈{0,1}n

Bn
w.

Let us also consider the diadic group {0, 1}∞ = lim
←

{0, 1}n. The ele-

ments of {0, 1}∞ are infinite sequences (w1w2 . . . ) of symbols 0 and 1
that can be also represented as formal power series

w 7→
∞
∑

k=0

wk+12
k.

The integers Z are embedded into {0, 1}∞ as finite series. The adding
machine p : {0, 1}∞ → {0, 1}∞ is the operation of adding 1 in this
group. The discussion above yields:

Theorem 3.5. For every F ∈ W s(F∗) the set OF is an invariant
Cantor set. The map F acts on OF as the dyadic adding machine
p : {0, 1}∞ → {0, 1}∞. The conjugacy between p and F |OF is given by
the following homeomorphism hF : {0, 1}∞ → OF :

(3.1) hF : w = (w1w2 . . . ) 7→
∞
⋂

n=1

Bn
w1...wn+1

.

Furthermore, OF has Lebesgue measure zero with

HD(OF ) ≤ −
log 2

log θ2
≤ 0.795.

The invariant Cantor sets OF are the counterpart of the period dou-
bling Cantor sets in one-dimensional dynamics and strongly dissipative
Hénon-like maps, see [CLM, GST, Mi]. The dynamics of F restricted
to OF is conjugated to the adding machine. The adding machine is
uniquely ergodic. Let µ be the unique invariant measure of F restricted
to OF :

µ(Bn
w) =

1

2n+1
.

Theorem 3.6. The measure µF of every map F ∈ W s(F∗) has a single
characteristic exponent, χ = 0.

Proof. The largest characteristic exponent is denoted by χ. Let Fn
be the n-th renormalization of F . This map restricted to B0(R

nF ) ∪
B1(R

nF ) is smoothly conjugate to the restriction of F 2n to the piece
Bn

0n0 ∪B
n
0n1. Let µn be the normalized restriction of µ to Bn

0n0 ∪ B
n
0n1,
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and let νn be the invariant measure on the Cantor set of Fn. Note that
these two measures are preserved by the conjugacy. Then

2nχ = χ(F 2n |Bn
0n0 ∪B

n
0n1, µn) = χ(Fn, νn) ≤

∫

log ‖DFn‖ dνn ≤ C,

since the maps Fn → F∗ have uniformly bounded C1-norms.
Hence, χ ≤ 0. If χ < 0, both characteristic exponents of F would be

negative. This contradicts the relation χ+χ− = 0 which holds because
the map preserves the Lebesgue measure. �

4. Rigidity

Let O ⊂ R2. A map h : O → R2 is differentiable at x0 ∈ O if there
exists a linear map Dh(x0) : R

2 → R
2 such that for x ∈ O

h(x) = h(x0) +Dh(x0)(x− x0) + o(|x− x0|).

If the map x 7→ Dh(x) is Cα then we say that h is a C1+α-map and if it
is Lipschitz (α = 1) we say that h is C1+Lip. Observe, the composition
of two C1+α-maps is again C1+α.
A bijection h : O → h(O) ⊂ R2 is a C1+α-diffeomorphism if there

exists a map h−1 : h(O) → R2 with h−1 ◦ h = id and both maps are
C1+α.
There are many conjugations between OF and OF̃ with F, F̃ ∈

W s(F∗). However, we will only consider conjugations h : OF → OF̃

defined by
h = hF̃ ◦ h−1F ,

where hF and hF̃ are the conjugations from {0, 1}∞ to OF and OF̃

respectively, see Theorem 3.5.

Definition 4.1. The Cantor set OF is rigid if for some α > 0, the
conjugation h : OF → OF∗

is a C1+α-diffeomorphsim. Notation, OF =
OF∗

mod(C1+α).

Let

(4.1) α0 =
ln θ2ν

ln θ1
− 1 > 0.237.

Theorem 4.1. The Cantor set OF , with F ∈ W s
loc(F∗), is rigid. Namely,

OF = OF∗
mod(C1+α)

for every 0 < α < α0.

The proof of the Rigidity Theorem 4.1 consists of two parts. The
main part, Proposition 4.5 treats the rigidity question for maps in the
local strong stable manifold. The other reduces the rigidity question
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to this Proposition, using that the local weak stable manifold is part
of a smooth conjugacy class, see Lemma 4.3.

Lemma 4.2. If ORnF = OF∗
mod(C1+α) then OF = OF∗

mod(C1+α).

Proof. Assume that the conjugation ĥn : ORnF → OF∗
is a C1+α-

diffeomorphism. Use the notation Ok
w = Bk

w∩OF (To indicate the map
under consideration we will also use Ok

w(F ) = Bk
w ∩OF ) . Observe, for

every word w ∈ {0, 1}k+1 one has

(4.2) ĥn(O
k
w(R

nF )) = Ok
w(F∗).

Define the following C1+α-diffeomorphism hn : O(F ) → O(F̃ ). For
w ∈ {0, 1}n, v ∈ {0, 1} let

(4.3) hn|O
n
wv = Ψn

w(F∗) ◦ ĥn ◦ (Ψ
n
w(F ))

−1 : On
wv(F ) → On

wv(F̃ ).

From (4.2) we get a similar property for hn: for every word w ∈
{0, 1}k+1, k ≥ n,

hn(O
k
w(F )) = Ok

w(F∗).

Let x ∈ OF , say x =
⋂

kO
k
wk(F ), with w

k ∈ {0, 1}k. Observe,

F (x) =
⋂

k

Ok
p(wk)(F )

and

h(x) =
⋂

k

Ok
wk(F∗).

Hence,

F∗(h(x)) =
⋂

k

Ok
p(wk)(F∗)

and

h(F (x)) =
⋂

k

Ok
p(wk)(F∗).

Indeed, the diffeomorphism is a conjugation, h ◦ F = F∗ ◦ h. �

Consider the family of diffeomorpsims ht : D → ht(D) ⊂ R
2 given

in Theorem 2.1(7).

Lemma 4.3. There exists c > 0 such that for any F ∈ W s
loc(F∗) close

enough to F∗ the family Ft = h−1t ◦ F ◦ ht, |t| ≤ c, has a unique
intersection with the strong stable manifold W ss

loc(F∗).

Proof. This Lemma follows immediately from the transversality prop-
erty mentioned in Theorem 2.1(7). �
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Lemma 4.4. For every F ∈ W s(F∗) there exists F̃ ∈ W ss
loc(F∗) such

that for some n ≥ 1, the conjugation h : ORnF → OF̃ is a C1+Lip-
diffeomorphism.

Proof. For n ≥ 1 large enough, RnF ∈ W s
loc(F∗) is close enough to F∗

to apply Lemma 4.3. �

Remark 4.1. Observe, the conjugation in lemma 4.4 is much better
than C1+Lip. It is in fact the restriction of a rational map.

Proposition 4.5. The Cantor set OF , with F ∈ W ss
loc(F∗), is rigid.

Namely,
OF = OF∗

mod(C1+α)

for every 0 < α < α0.

The proof of this key Proposition will be presented in a series of
Lemmas. Fix two maps F, F̃ ∈ W ss

loc(F∗). The constants which will
appear in the following analysis are independent of these maps. They
only depend on the size of W ss

loc(F∗).

Consider the conjugation h : OF → OF̃ defined by

h = hF̃ ◦ h−1F ,

where hF and hF̃ are the conjugations from the adding machine {0, 1}∞

to OF and OF̃ respectively, see Theorem 3.5. We will show that this
map is C1+α, for any α > 0 satisfying

(4.4)
θ2ν

θ1+α1

< 1

or equivalently 0 < α < α0, see (4.1).

Proposition 2.3 has an unfortunate form. Ideally, we would have

θ1 · |v| ≤ |Dψ0,1(x, u)v| ≤ θ2 · |v|.

However, this only holds on a small neighborhood of the Cantor sets.
This inconvenience forces us to work in ”steps of four”.

Let On =
⋃

w∈{0,1}4n+1 B4n
w (F ) and similarly define Õn for F̃ (In the

sequel we will use a tilde to indicate whether an object refers to F or
F̃ ). The map hn : On → Õn is defined by

hn|B
4n
wv = Ψ̃4n

w ◦ (Ψ4n
w )−1,

where w ∈ {0, 1}4n and v ∈ {0, 1}, Ψ4n
w = Ψ4n

w (F ) and Ψ̃4n
w = Ψ4n

w (F̃ ).
This map hn is an approximate conjugation, see Figure 4.1. Compare
this map with the conjugation (4.3). The conjugation ĥn between the
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nth-renormalization is replaced here by the identity. To indicate the
maps under consideration we will also use the notation hn(F, F̃ ).

F

F̃

R4nF

R4nF̃

B4n
w0

B̃4n
w0

hn id

Ψ4n
w

Ψ̃4n
w

OF

OF̃

B0

B̃0

Figure 4.1. The Aproximate Conjugation hn

Observe, hn|OF → h, where h : OF → OF̃ is the conjugation. The
following Lemmas will describe this convergence in more detail. The
proofs are by induction. The idea of this induction is the following.
The maps hn are quasi conjugations up to the 4nth-scale. We use the
uniform control of these maps at the 4nth-scale for the renormalizations
and push it down to the next scale of the original systems. The control
of the derivative of the quasi-conjugations, see Lemma 4.7, Lemma
4.8, and Lemma 4.9 relies in an essential way on the fact that the
renormalizations R4F and R4F̃ of F and F̃ are strictly closer, see The-
orem 2.1(6), than the original systems. Namely, this implies that their
quasi-conjugation at the 4nth-scale is strictly better than the quasi-
conjugation at the nth-scale of the original systems. This effect causes
the contraction in for example the estimate (4.20).

Lemma 4.6. There exists a constant C > 0 such that

|hn+1(x)− hn(x)| ≤ C · (θ2ν)
4n · d(F, F̃ ),

with x ∈ On+1. In particular,

|hn(x)− x| ≤ C · d(F, F̃ )

Proof. The proof will be by induction. Observe, h0(x) = x and

h1(x) = Ψ̃4
w ◦ (Ψ4

w)
−1(x),
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when x ∈ B4
w with w ∈ {0, 1}4+1. Because the maps Ψ4

w(F ) depend
analytically on F , see Theorem 2.1(8), we get

|h1(x)− h0(x)| ≤ C · d(F, F̃ ).

Assume the Lemma holds for n. Let ĥn = hn(R
4F,R4F̃ ). Given a

point in the domain of hn+2, say x ∈ B
4(n+2)
wv with w ∈ {0, 1}4 and

v ∈ {0, 1}4(n+1)+1. Then

hk+1(x) = Ψ̃4
w ◦ ĥk ◦ (Ψ

4
w)
−1(x),

with either k = n or k = n + 1. Also observe that (Ψ4
w)
−1(B

4(n+2)
wv ) ⊂

B
4(n+1)
v ⊂ B0(R

4F )∪B1(R
4F ). This will allow us to apply Proposition

2.3. Let x− = (Ψ4
w)
−1(x). Use Proposition 2.3, Theorem 2.1(6), and

the induction hypothesis, to obtain

|hn+2(x)− hn+1(x)| ≤ |Ψ̃4
w ◦ ĥn+1(x−)− Ψ̃4

w ◦ ĥn(x−)|

≤ θ42 · |ĥn+1(x−)− ĥn(x−)|

≤ θ42 · C · (θ2ν)
4n · d(R4F,R4F̃ )

≤ C · (θ2ν)
4(n+1) · d(F, F̃ ).

The proximity to identity follows from h0 = id. �

Observe that the maps hn are differentiable, in fact analytic.

F

F̃

R4F

R4F̃

B4
w1

B̃4
w1

hn+1 ĥn

(Ψ4
w)

−1

Ψ̃4
w

B1(R
4F )

B1(R
4F̃ )

Figure 4.2. The Induction Step for hn+1
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Lemma 4.7. There exists a constant C > 0 such that

|Dhn+1(x)−Dhn(x)| ≤ C ·

(

θ2ν

θ1

)4n

· d(F, F̃ ),

with x ∈ On+1. In particular,

|Dhn(x)− id | ≤ C · d(F, F̃ ).

Proof. The proof will be by induction. Observe, Dh0(x) = id and

h1(x) = Ψ̃4
w ◦ (Ψ4

w)
−1(x),

when x ∈ B4
wv with w ∈ {0, 1}4 and v ∈ {0, 1}. Because the maps

Ψ4
w(F ) depend analytically on F , see Theorem 2.1(8), we get

|Dh1(x)−Dh0(x)| ≤ C · d(F, F̃ ).

Assume the Lemma holds for 0, 1, 2, . . . , n with constant Cn > 0. This
implies

(4.5) |Dhn(x)− id | ≤ C · Cn · d(F, F̃ ),

where we used Dh0 = id.
Let ĥn = hn(R

4F,R4F̃ ). Given a point in the domain of hn+2, say

x ∈ B
4(n+2)
wv with w ∈ {0, 1}4 and v ∈ {0, 1}4(n+1)+1. Then

Dhk+1(x) = DΨ̃4
w(x̂k) ◦Dĥk(x−) ◦D(Ψ4

w)
−1(x),

where x− = (Ψ4
w)
−1(x) and x̂k = ĥk(x−) and either k = n or k = n+1.

Also observe that (Ψ4
w)
−1(B

4(n+2)
wv ) ⊂ B

4(n+1)
v ⊂ B0(R

4F ) ∪ B1(R
4F ).

This will allow us to apply Proposition 2.3. Let d = d(F, F̃ ). Use
Proposition 2.3, Theorem 2.1(6), the induction hypothesis, Lemma 4.6,
and (4.5) to obtain

|Dhn+2(x)−Dhn+1(x)|

≤|DΨ̃4
w(x̂n+1)Dĥn+1(x−)D(Ψ4

w)
−1(x)−DΨ̃4

w(x̂n)Dĥn(x−)D(Ψ4
w)
−1(x)|

≤|DΨ̃4
w(x̂n)| · |Dĥn+1(x−)−Dĥn(x−)| · |D(Ψ4

w)
−1(x)|+

|DΨ̃4
w(x̂n+1)−DΨ̃4

w(x̂n)| · |Dĥn+1(x−)| · |D(Ψ4
w)
−1(x)|

≤

(

θ2

θ1

)4

· Cn ·

(

θ2ν

θ1

)4n

· d(R4F,R4F̃ ) + C · |x̂n+1 − x̂n| · |Dĥn+1(x−)|

≤ Cn ·

(

θ2ν

θ1

)4(n+1)

· d+ C · (θ2ν)
4n · (1 + C · Cn · d) · d

This implies
Cn+1 ≤ Cn + C · θ4n1 · (1 + C · Cn).

In particular, the sequence Cn is bounded. The Lemma is proved. �
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Lemma 4.8. For every 0 < α < α0 there exists a constant C > 0 such
that

|hn(y)− hn(x)−Dhn(x)(y − x)| ≤ C · d(F, F̃ ) · |y − x|1+α,

where x, y ∈ On.

Proof. Fix < α < α0. Consider the collection of diffeomorphisms

{Ψ4
w(F )|F ∈ W ss

loc(F∗) and w ∈ {0, 1}4}

and
{(Ψ4

w(F ))
−1|F ∈ W ss

loc(F∗) and w ∈ {0, 1}4}.

Let K > 0 be the constant such that the Lemmas 5.1, 5.2, 5.3, and 5.4
hold for these collections. Furthermore, choose δ0 > 0 such that

(4.6) γ =

(

θ2ν

θ1+α1

)4

· (1 +Kδ0)
1+α < 1.

We may assume that for every F ∈ W ss
loc(F∗) and w1, w2 ∈ {0, 1}4+1

dist(B4
w1
(F ), B4

w2
(F )) ≥ δ0.

Use the notation d = d(F, F̃ ).

The proof is by induction. The Lemma holds for n = 0 because
h0 = id. It holds even with C0 = 0. But we will choose C0 > 0 large
enough such that the Lemma holds with C = C0 whenever |y−x| ≥ δ0.
This is indeed possible because from Lemma 4.7 we get a uniform bound
on the norm of Dhn.

Assume the Lemma holds for n:

|hn(y)− hn(x)−Dhn(x)(y − x)| ≤ Cn · d · |y − x|1+α.

Choose x, y ∈ On+1 with |y − x| ≤ δ0. Then there is w ∈ {0, 1}4, and
v ∈ {0, 1}, with x, y ∈ B4

wv. Let

ψ = Ψ4
w(F )

and
ψ̃ = Ψ4

w(F̃ ).

Observe, ψ−1(x), ψ−1(y) ∈ B0(R
4F ) ∪ B1(R

4F ). This will allow us to
apply Proposition 2.3. The maps Ψ4

w(F ) depend analytically on F , see
Theorem 2.1(8). Hence,

(4.7) ||ψ − ψ̃||C2 ≤ C · d.

Let
ĥn = hn(R

4F,R4F̃ )
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then

hn+1(x) = ψ̃ ◦ ĥn ◦ ψ
−1(x)

and

hn+1(y) = ψ̃ ◦ ĥn ◦ ψ
−1(y).

Our goal is to estimate |hn+1(y)−hn+1(x)−Dhn+1(x)(y−x)|, the dis-
tortion (The appendix gives some estimates on distortions in general).
To avoid very cumbersome expressions we will work backward.

The maps ψ and ψ̃ will contribute to the distortion. The first part of
the proof will lead to an estimate on the influence of these distortions,
see (4.14). From Lemma 4.6 we get

(4.8) ĥn(ψ
−1(x)) = ψ−1(x) + ∆

with

(4.9) |∆| ≤ C · d

where we used d(R4F,R4F̃ ) ≤ ν4d, see Theorem 2.1(6). From Lemma
4.7 we get

(4.10) Dĥn(ψ
−1(x)) = id+O(d).

Use (4.8) and (4.10) and Lemma 5.3 in the following estimates. Let

z = ĥn(ψ
−1(x)) +Dĥn(ψ

−1(x))(Dψ−1(x)(y − x) + Eψ−1(x, y))

= ψ−1(x) +Dψ−1(x)(y − x) + Eψ−1(x, y) + ∆ +O(d|y − x|).

Hence,

(4.11) z = ψ−1(y) + ∆ +O(d|y − x|).

The next term we treat, using (4.8), (4.11), Lemma 5.4, (4.7), Lemma
5.2, is

Eψ̃(ĥn(ψ
−1(x)), z) = Eψ̃(ψ

−1(x) + ∆, ψ−1(y) + ∆ +O(d|y − x|))

= Eψ(ψ
−1(x) + ∆, ψ−1(y) + ∆) +O(d|y − x|2)

Hence, using Lemma 5.1, and (4.9) we obtain

(4.12) Eψ̃(ĥn(ψ
−1(x)), z) = Eψ(ψ

−1(x), ψ−1(y)) +O(d|y − x|2).

The next term we treat, using (4.7), Lemma 4.7, (4.8), and (4.9), is

Dψ̃(ĥn(ψ
−1(x))) ·Dĥn(ψ

−1(x)) · Eψ−1(x, y) =

(Dψ(ĥn(ψ
−1(x))) +O(d)) · (id+O(d)) · Eψ−1(x, y) =

(Dψ(ψ−1(x)) +O(d)) · (id+O(d)) · Eψ−1(x, y).
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Hence, using Lemma 5.3,

(4.13)
Dψ̃(ĥn(ψ

−1(x)))Dĥn(ψ
−1(x))Eψ−1(x, y) =

Dψ((ψ−1(x))Eψ−1(x, y) +O(d|y − x|2).

Now we apply the cancellation from Lemma 5.5 to (4.12) and (4.13) to

obtain an estimate on the influence of the distortions of ψ and ψ̃

(4.14) Dψ̃(ĥn(x−))Dĥn(x−)Eψ−1(x, y)+Eψ̃(ĥn(x−), z) = O(d|y−x|2),

where x− = ψ−1(x).

The second part of the proof will give an estimate on the influence
of the distortion of the approximate conjugation ĥn between R4F and
R4F̃ . First use the induction hypothesis, to obtain

(4.15)
ĥn(ψ

−1(y)) = ĥn(ψ
−1(x) +Dψ−1(x)(y − x) + Eψ−1(x, y))

= z +∆z,

where

(4.16) |∆z| ≤ Cn · d(R
4F,R4F̃ ) · |Dψ−1(x)(y − x) + Eψ−1(x, y)|1+α.

Now use Theorem 2.1(6), Proposition 2.3, Lemma 5.3, to obtain

(4.17) |∆z| ≤ Cn ·

(

ν

θ1+α1

)4

· d · |y − x|1+α · (1 +K|y − x|)1+α.

Hence, again using Proposition 2.3, (4.6), and |y − x| ≤ δ0,

(4.18) |ψ̃(z +∆z)− ψ̃(z)| ≤ Cn · γ · d · |y − x|1+α.

The final term is

ψ̃(z) =hn+1(x)+

Dψ̃(ĥn(x−)) ·Dĥn(x−) · {Dψ
−1(x)(y − x) + Eψ−1(x, y)}+

Eψ̃(ĥn(ψ
−1(x)), z)

=hn+1(x) +Dhn+1(x)(y − x)+

Dψ̃(ĥn(x−)) ·Dĥn(x−) · Eψ−1(x, y) + Eψ̃(ĥn(x−), z).

From (4.14) we obtain

(4.19) ψ̃(z) = hn+1(x) +Dhn+1(x)(y − x) + O(d|y − x|2).

Finally, we will use both parts of the proof to estimate the distortion
of hn+1. Using (4.15) we can estimate

hn+1(y) = ψ̃(z +∆z) = ψ̃(z) + (ψ̃(z +∆z)− ψ̃(z))
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by (4.18) and (4.19), we obtain

|hn+1(y)− hn+1(x)−Dhn+1(x)(y − x)| ≤

Cn · γ · d · |y − x|1+α + C · d · |y − x|2 =

(Cnγ + C) · d · |y − x|1+α.

Hence,

(4.20) Cn+1 ≤ max{C0, γ · Cn + C}.

This finishes the proof of the Lemma. �

Remark 4.2. The application of Lemma 4.8 does not need the factor
d(F, F̃ ). However, this factor plays a crucial role. The contraction in
(4.20) by the factor γ < 1 arises in the equation (4.16), (4.17), and
(4.18). The distance factor reveals the contraction.
The proof became lengthy. The cause is the error term in (4.19).

This is the sum of the distortions of ψ̃ and ψ−1. The estimates show
that these distortions essentially cancel each other. Without evoking
the cancelation in (4.14) the error term would be of the order |y − x|2

without the necessary factor d(F, F̃ ). Similar analysis occurs in the
proof of Lemma 4.9.

Lemma 4.9. For every 0 < α < α0 there exists a constant C > 0 such
that

|Dhn(y)−Dhn(x)| ≤ C · d(F, F̃ ) · |y − x|α,

where x, y ∈ On.

Proof. Fix < α < α0. Consider the collection of diffeomorphisms

{Ψ4
w(F )|F ∈ W ss

loc(F∗) and w ∈ {0, 1}4}

and

{(Ψ4
w(F ))

−1|F ∈ W ss
loc(F∗) and w ∈ {0, 1}4}.

The Lemmas 5.6, 5.7, 5.8, and 5.9 hold uniformly for these collections.
Choose δ0 > 0 such that for every F ∈ W ss

loc(F∗) and w1, w2 ∈ {0, 1}4+1

dist(B4
w1
(F ), B4

w2
(F )) ≥ δ0.

Use the notation d = d(F, F̃ ).

The proof is by induction. The Lemma holds for n = 0 because
h0 = id. It holds even with C0 = 0. But we will choose C0 > 0 large
enough such that the Lemma holds with C = C0 whenever |y−x| ≥ δ0.
This is indeed possible because from Lemma 4.7 we get a uniform bound
on the norm of Dhn.



22 D. GAIDASHEV, T. JOHNSON , M. MARTENS

Assume the Lemma holds for n:

|Dhn(y)−Dhn(x)| ≤ Cn · d · |y − x|α.

Choose x, y ∈ On+1 with |y − x| ≤ δ0. Then there is w ∈ {0, 1}4,
v ∈ {0, 1}, with x, y ∈ B4

wv. Let

ψ = Ψ4
w(F )

and
ψ̃ = Ψ4

w(F̃ ).

Observe, ψ−1(x), ψ−1(y) ∈ B0(R
4F ) ∪ B1(R

4F ). This will allow us to
apply Proposition 2.3. Let

ĥn = hn(R
4F,R4F̃ )

then
Dhn+1(x) = Dψ̃(ĥn(ψ

−1(x)))Dĥn(ψ
−1(x))Dψ−1(x)

and
Dhn+1(y) = Dψ̃(ĥn(ψ

−1(y)))Dĥn(ψ
−1(y))Dψ−1(y).

Our goal is to estimate |Dhn+1(y)−Dhn+1(x)|. We will work backward

again. The maps ψ and ψ̃ will contribute. The first part of the proof
will lead to an estimate on this influence, see (4.24).

Use (4.8), (4.10), Lemma 4.8, and Proposition 2.3 in the following
estimates. Let x− = ψ−1(x) then

ĥn(ψ
−1(y)) = ĥn(x−) +Dĥn(x−)(ψ

−1(y)− ψ−1(x)) +O(d · |y − x|1+α)

= ψ−1(x) + ∆ + (ψ−1(y)− ψ−1(x)) +O(d|y − x|).

Hence,

(4.21) ĥn(ψ
−1(y)) = ψ−1(y) + ∆ +O(d|y − x|).

Let y− = ψ−1(y) then, by using (4.21), (4.8), Lemma 5.9, Lemma 5.6,
and (4.9)

(4.22) EDψ̃(ĥn(x−), ĥn(y−)) = EDψ(x−, y−) +O(d|y − x|).

Use (4.8), (4.9), Lemma 5.8

(4.23) Dψ̃(ĥn(x−))EDψ−1(x, y) = Dψ(x−)EDψ−1(x, y)+O(d|y−x|).

The influence of ψ and ψ̃ is estimated by using (4.22) and (4.23)

Dψ̃(ĥn(x−))EDψ−1(x, y) + EDψ̃(ĥn(x−), ĥn(y−))Dψ
−1(y)

= Dψ(x−)EDψ−1(x, y) + EDψ(x−, y−)Dψ
−1(y) +O(d|y − x|).

Hence, by using the cancellation Lemma 5.10,

(4.24) Dψ̃(x̃−)EDψ−1(x, y) + EDψ̃(x̃−, ỹ−))Dψ
−1(y) = O(d|y − x|),
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where x̃− = ĥn(x−) and ỹ=ĥn(y−).

Finally, using Lemma 4.7, lemma 5.8, and (4.24), we are prepared to
estimate

Dhn+1(y) =

=Dψ̃(ỹ−)Dĥn(ψ
−1(y))Dψ−1(y)

=(Dψ̃(x̃−) + EDψ̃(x̃−, ỹ−))Dĥn(y−)(Dψ
−1(x) + EDψ−1(x, y))

=Dψ̃(x̃−)Dĥn(y−)Dψ
−1(x) +Dψ̃(x̃−)(id+O(d))EDψ−1(x, y)+

EDψ̃(x̃−, ỹ−)(id+O(d))Dψ
−1(y)

=Dψ̃(x̃−)Dĥn(y−)Dψ
−1(x) +O(d|y − x|).

Now, use the induction hypothesis, Proposition 2.3, and Theorem 2.1(6)
in the following estimates

|Dhn+1(y)−Dhn+1(x)|

≤ |Dψ̃(x̃−)(Dĥn(y−)−Dĥn(x−))Dψ
−1(x)|+ C · d · |y − x|

≤ θ42 · Cn · d(R
4F,R4F̃ ) ·

(

|y − x|

θ41

)α

·
1

θ41
+ C · d · |y − x|

≤ Cn ·

(

θ2ν

θ1+α1

)4

· d · |y − x|α + C · d · |y − x|.

Recall the definition of γ < 1, see (4.6), and we get

Cn+1 ≤ max{C0, γ · Cn + C}.

The Lemma follows. �

Remark 4.3. The proof of Lemma 4.8 and Lemma 4.9 rely on the strong
convergence in W ss

loc(F∗). Namely,

θ2ν

θ1
< 1.

Also observe that Lemma 4.7 is only useful under the same condition.
The convergence in W s

loc(F∗) is too slow to allow a similar treatment.
The Cantor sets OF are constructed similar to the limit set of an

iterated function system. See Figure 3.1. The pieces Bn
wv are images of

the branches Ψn
w. These branches are generated by the rescaling maps

ψn0 and ψn1 which have the property ψn0 → ψ0 and ψ
n
1 → ψ1. One could

generalize this construction by arbitrarily chosen converging sequences
of contracting diffeomorphisms. In this generalized context one would
also obtain a rigidity theorem under the condition that the convergence
is fast enough compared to the minimal and maximal contraction rates
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of the limit diffeomorphisms. However, one can construct examples of
this generalized type with slow convergence such that the conjugations
are not Lipschitz.
The Rigidity Theorem 4.1 in the context of area-preserving maps

relies on the above mentioned general principle together with the fact
that the weak stable direction is a family containing the fixed point of
analytically conjugated maps, see Theorem 2.1(7).

From Lemma 4.7 we get convergence limDhn(x) = D(x). The follow-
ing Lemmas states that the matrices D(x) are indeed the derivatives of
the limit map h = limhn : OF → OF̃ and that these derivatives satisfy
a Holder condition. They follow from Lemma 4.8 and Lemma 4.9 by
taking the limit.

Lemma 4.10. For every 0 < α < α0 there exists a constant C > 0
such that

|h(y)− h(x)−Dh(x)(y − x)| ≤ C · d(F, F̃ ) · |y − x|1+α,

where x, y ∈ OF and Dh(x) = D(x).

Lemma 4.11. For every 0 < α < α0 there exists a constant C > 0
such that

|Dh(y)−Dh(x)| ≤ C · d(F, F̃ ) · |y − x|α,

where x, y ∈ OF .

Proof of Proposituion 4.5: Lemma 4.10 and Lemma 4.11 say that the
conjugation h : OF → OF̃ is a C1+α-map. By switching the role of F

and F̃ we see that h is in fact a C1+α-diffeomorphism. The Proposition
follows. �

Proof of the Rigidity Theorem 4.1: Given F ∈ W s(F∗), let F̃ ∈ W ss
loc(F∗)

and n ≥ 1 be the map from Lemma 4.4. In particular, the conjugation
h : ORnF → OF̃ is a C1+Lip-diffeomorphism. Proposition 4.5 says,

OF̃ = OF∗
mod(C1+α).

Hence,

ORnF = OF∗
mod(C1+α).

Apply Lemma 4.2 and the Rigidity Theorem 4.1 follows. �



RENORMALIZATIONOF AREA-PRESERVING MAPS 25

5. Appendix

Let D ⊂ R2 and consider a bounded collection of C3-maps ψ : D →
R2. For such a collection there exists a K > 0 such that the following
Lemmas hold for the error terms

Eψ(x, y) = ψ(y)− ψ(x)−Dψ(x)(y − x).

corresponding to affine approximations. We associate these error terms
with distortion.

Lemma 5.1. For every x, y, x+∆, y +∆ ∈ D

|Eψ(x+∆, y +∆)− Eψ(x, y)| ≤ K · |∆| · |y − x|2.

Lemma 5.2. For every x, y, y +∆ ∈ D

|Eψ(x, y +∆)− Eψ(x, y)| ≤ K · {|∆| · |y − x|+ |∆|2}.

Lemma 5.3. For every x, y ∈ D

|Eψ(x, y)| ≤ K · |y − x|2.

Lemma 5.4. For every x, y ∈ D

|Eψ̃(x, y)− Eψ(x, y)| ≤ K · ||ψ̃ − ψ||C2 · |y − x|2.

For completeness let us indicate how one can show these estimates.
First observe that it suffices to obtain these estimates for the coordinate
functions. Secondly, one can reduce the problem to a one-variable
problem by restricting these coordinate function to the lines connecting
two points. For a one-variable function ψ : (d1, d2) → R we have

Eψ(x, y) =

∫ y

x

ψ(2)(t) · (y − t) · dt.

One can use this to prove for example Lemma 5.2. Namely,

|Eψ(x, y +∆)− Eψ(x, y)| ≤

|

∫ y+∆

y

ψ(2)(t) · (y − t) · dt+∆ ·

∫ y+∆

x

ψ(2)(t)dt|.

The Lemma follows.

The next Lemma is responsible for a crucial cancellation in the proof
of Lemma 4.8.

Lemma 5.5. If ψ : D → ψ(D) is a diffeomorphism then

Dψ(ψ−1(x))Eψ−1(x, y) + Eψ(ψ
−1(x), ψ−1(y)) = 0,

for every x, y ∈ ψ(D)
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The proof is a calculation. Let x− = ψ−1(x) and y− = ψ−1(y).

0 = ψ ◦ ψ−1(y)− y

= ψ(ψ−1(x) +Dψ−1(x)(y − x) + Eψ−1(x, y))− y

= x+Dψ(x−){Dψ
−1(x)(y − x) + Eψ−1(x, y)}+ Eψ(x−, y−)− y

= Dψ(ψ−1(x))Eψ−1(x, y) + Eψ(ψ
−1(x), ψ−1(y)).

Consider the error terms

EDψ(x, y) = Dψ(y)−Dψ(x).

Lemma 5.6. For every x, y, x+∆, y +∆ ∈ D

|EDψ(x+∆, y +∆)− EDψ(x, y)| ≤ K · |∆| · |y − x|.

Lemma 5.7. For every x, y, y +∆ ∈ D

|EDψ(x, y +∆)− EDψ(x, y)| ≤ K · |∆|.

Lemma 5.8. For every x, y ∈ D

|EDψ(x, y)| ≤ K · |y − x|.

Lemma 5.9. For every x, y ∈ D

|EDψ̃(x, y)− EDψ(x, y)| ≤ K · ||ψ̃ − ψ||C2 · |y − x|.

The next Lemma is responsible for a crucial cancellation in the proof
of Lemma 4.9.

Lemma 5.10. If ψ : D → ψ(D) is a diffeomorphism then

Dψ(ψ−1(x))EDψ−1(x, y) + EDψ(ψ
−1(x), ψ−1(y))Dψ−1(y) = 0,

for every x, y ∈ ψ(D)
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