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Abstract of the Dissertation

Renormalization of three dimensional Hénon
map

by

Young Woo Nam

Doctor of Philosophy

in

Mathematics

Stony Brook University

2011

The three dimensional Hénon-like map

F (w) = (f(x)− ε(w), x, δ(w))

on R3 is defined in three dimensional space. The geometric proper-

ties of the Cantor attractor, OF is studied for the map, F ∈ IB(ε̄)

in the set of infinitely renormalizable maps. The nth renormal-

ized map, RnF has universal asymptotic behavior. For example,

Jacobian determinant of RnF is as follows

JacRnF = b2
n

a(x)(1 +O(ρn))
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with the average Jacobian b = bF .

Let M be set of model maps which satisfies ε(x, y, z) ≡ ε(x, y).

Then M is an invariant class under renormalization. Moreover,

for the maps in M and a perturbation F with the small enough

‖∂zε‖ , Cr invariant surfaces under RnF exist. By the Cr con-

jugation, the renormalization of two dimensional Cr Hénon-like

maps is constructed. The geometric properties of Cantor attrac-

tor, for instance, non rigidity, typical unbounded geometry of OF

and discontinuity of invariant line field on OF are involved with

two dimensional Cr Hénon-like maps. Moreover, another subclass,

N of IB(ε̄) is considered, which is invariant under renormalization

satisfying the following condition.

∂yδ ◦ F (w) + ∂zδ ◦ F (w) · ∂xδ(w) ≡ 0

In contrast with the map in M, the two dimensional Hénon renor-

malization theory is not applied in the class N , but the recursive

formula of scaling maps is analyzed directly to study the geometry

of the Cantor attractor. However, the same geometric properties

of Cantor set, in particular, the non rigidity of OF and typical

unbounded geometry of OF are also proved.
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3.2.1 Regions between local stable manifolds . . . . . . . . . . . . . 17

3.3.1 Restricted pieces for renormalization . . . . . . . . . . . . . . 20

4.1.1 Image of {x = const.} under the three dimensional Hénon-like
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Chapter 1

Introduction

The universality of one dimensional dynamical system was discovered by Feigen-
baum and independently by Coullet and Tresser in the mid 1970’s. Moreover,
the universality of the higher dimensional maps is conjectured by Coullet and
Tresser in [CT]. This topic which is about the transition from regular dynamics
to the chaotic one has been especially the central theme of the one dimensional
dynamics for last 30 years or even longer. The study of the universality and
rigidity is essentially related to the study of the corresponding renormalization
operator. The hyperbolicity at the fixed point of the renormalization operator
is finally proved in the one dimensional holomorphic dynamical systems by
Lyubich in [Lyu] using quadratic-like maps in the holomorphic germs. This
hyperbolicity theorem is extended to the Cr renormalizable interval maps for
r ≥ 3 + α where α is close to one in [dFdMP]. The similar universality prop-
erties are expected in higher dimensional maps which are strongly dissipative
and close to the one dimensional maps. In particular, renormalizable maps
with periodic doubling type are interesting in two or higher dimensional maps.
The universality of two dimensional strongly dissipative infinitely renormaliz-
able Hénon-like maps is justified in [CLM] and the topological properties of
the invariant attractors is explored in subsequent paper, [LM]. The Cantor
attractor of two dimensional Hénon maps is the counterpart of that of one
dimensional maps but it has different small scale geometric properties. The
Cantor attractor of the two dimensional maps have non rigidity and typically
unbounded geometry. These geometric properties of the two dimensional map
is generalized in the highly dissipative three dimensional Hénon family.
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1.1 Renormalization of unimodal maps

In the one dimensional map in the interval, the renormalizability is defined as
follows in general.

Definition 1.1.1. Let f be the unimodal map on the interval I and c be the
critical point of f . If there exists a proper subinterval J of I such that c ∈ J
and fn| J ⊂ J for some n ≥ 2 and f i(J) ∩ J = ∅ for all positive i < n, then
we call f is renormalizable.

The periodic doubling renormalization operator was introduced to study the
small scale geometry of the attractor of the family of unimodal maps with the
single critical point c which is quadratic, that is, f ′′(c) 6= 0. For example,
the family of quadratic map with parameter λ, x 7→ λx(1− x) can be consid-
ered. Let us define the periodic doubling renormalization operator of the one
dimensional map, f on the interval, I.

Definition 1.1.2 (Renormalization of periodic doubling type). f is renormal-
izable if it has two disjoint subintervals which are exchanged by f .

Let the two smallest disjoint intervals which are exchanged by f be C1 =
{I10 , I11} where I10 contains the critical point c and I11 contains the critical value
v. The rescaled map of the first return map

f 2 : I10 → I10

with affine conjugation defines the renormalization operator Rc. Similarly.
the operator Rv is defined on I11 . If f is infinitely renormalizable, then the nth

renormalized map of f , Rnf has the cycle of the pairwise disjoint intervals

Cn = {Ini | i = 0, 1, 2, . . . , 2n − 1}

where f(Ini ) = Ini+1 and ⋃
Cn+1 ⊂

⋃
Cn.

The nested sequence of Cn implies the Cantor set is the attractor of f .

C =
⋂⋃

Cn

The topological properties of unimodal maps with Cantor attractor is deeply
affected by the orbit of the critical point, which lead to the kneading sequence.
If the given map f is infinitely renormalizable, then f acts on the dyadic adding
machine on this attractor. For the introduction of dyadic adding machine and
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kneading sequence, see [BB]. The universality of renormalizable map says the
small scale geometry of two maps has asymptotically same around the renor-
malization fixed point. The rigidity means that if two infinitely renormalizable
maps, f and g are conjugated by a homeomorphism, h on the domain of two
maps, that is,

h ◦ f = g ◦ h
then h is differentiable on the Cantor attractor. Moreover, de Melo and Pinto
proved one dimensional infinitely renormalizable maps have the rigidity in
[dMP].

The topology of the dynamical system implies the geometry of it.

1.2 Hénon maps and bifurcation of the homo-

clinic tangency

The Hénon map is a polynomial diffeomorphism from R2 to itself as follows.

Ha, b(x, y) = (1− ax2 + y, bx)

Hénon introduced this above map on 1974 and there were numerical experi-
ments about it. A famous conjecture is there exists the strange attractor at
the parameter a = 1.4 and b = 0.3. The first significant achievement about
the Hénon map with parameter space (a, b) was done by Benedics and Car-
leson in [BC]. There exists the strange attractor for the positive measure of
the parameter space, (a, b) such that a0 < a < 2 and b < b0 where a0 is
close to 2 and b0 is small. Moreover, this parameter values which are con-
sidered in [BC] is a generalization of the one dimensional Misiuriewicz maps
in [Jak]. Jakobson proved that the maps which have absolutely continuous
invariant measure with respect to Lebegue measure has positive measure on
the parameter space. So is in the Hénon family in [BC]. Young and Wang use
the geometric condition to generalize Hénon family in [WY1]. Furthermore, it
is generalized to arbitrary finite dimension of the rank one attractor, that is,
attractor with the neutral or repulsive direction is one dimensional in [WY2].
The statistical properties, for instance, the existence of SRB measure on the
invariant set, are important in the generic dynamics of the chaotic region.

The hyperbolic systems have been studied from 1960s. Moreover, those sys-
tems were expected to be generic in the whole dynamical systems. This generic
hyperbolicity is the main conjecture of the rational maps on the Riemann
sphere. In the quadratic polynomial case, it is known that MLC (Mandelbrot
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set is locally connected) conjecture is equivalent to the generic hyperbolicity.
However, in the dynamical systems of two or higher dimensional maps New-
house proved that the maps in the chaotic region contains an open set. The
proof used a perturbation of homoclinic tangency with certain condition of the
invariant Cantor set. After Newhouse proof, Palis suggested a new conjecture
about the generic dynamical system at p.134 in [PT].

Conjecture 1.2.1 (Palis conjecture). Every Cr diffeomorphism in Diff (M)
for r ≥ 1 can be approximated by a hyperbolic diffeomorphism or else by one
exhibiting a homoclinic bifurcation involving a homoclinic tangency or a cycle
of hyperbolic periodic saddles with different indices.

Let us consider a homoclinic tangency of the two dimensional maps. Then
the dimension of both unstable and stable manifolds at the homoclinic point
is one. After bifurcation of the homoclinic tangency, let us consider the case
that stable and unstable manifold is (transversally) intersected around the
homoclinic point. Let us choose the bounded region on which this bifurcation
occurs and consider the first return map, H . Then after appropriate smooth
coordinate change, the image of the horizontal lines in the bounded region is
the vertical line. Then the simplest example of map of this form is the Hénon
map. 1

Ha, b(x, y) = (x2 − a+ by, x).

However, in general the first coordinate map of the first return map is not
generally a polynomial but is a perturbation of a unimodal one dimensional
map, say f(x). Then we call the first return map which is of the following
form

F (x, y) = (f(x)− ε(x, y), x)

the Hénon-like map where f(x) is a unimodal map.

A perturbation of homoclinic tangency could occur in higher dimension, that
is, in arbitrary (finite) dimension, the unstable or stable manifold at the ho-
moclinic point may have its dimension greater than one. However, in order
to make that the first return map has Hénon-like form in the first two coor-
dinates, let us assume that dimension of unstable manifold at the homoclinic
point is one in higher dimension. Then for example, in the three dimensional
space we get

F (x, y, z) = (f(x)− ε(x, y, z), x, • )

1The Hénon map in dynamical system means that the family of Hénon maps up to the
linear conjugacy. The parameter space {(a, b)} of each expression is also changed by the
same linear conjugacy.
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where f(x) is a unimodal map. Then the first return map in higher dimen-
sion has first two coordinates similar to the Hénon-like map. If the unstable
manifold of a fixed point is the attractor which is maximal backward invari-
ant, then it is called rank one attractor. This viewpoint is reflected in the
paper of Wang and Young, [WY2] in higher dimension for the maps on the
chaotic region, maps with positive entropy. Hénon renormalization of two di-
mensional Hénon-like maps is defined on [CLM] for the maps on the regular
region, namely, maps with the entropy zero.

1.3 Statement of results

Hénon renormalization of two dimensional map has common and different
properties of the one dimensional renormalizable maps. Dynamical system of
two dimensional Hénon-like map has universality but non-rigidity.

We expect that the three or higher dimensional system has the above proper-
ties. The extension of Hénon renormalization theory in three or higher dimen-
sion has the two goals in general.

• Finding the same or similar results of two dimensional theory in three
dimension.

• Finding the new phenomena which appear only on the three or higher
dimensional maps.

In this paper, we explore three dimensional Hénon-like maps for the first part
of the general goals. In particular, it is shown that the small scale geometry
of the Cantor attractor for three dimensional Hénon-like maps has the same
properties for two dimensional Hénon-like maps.

The three dimensional Hénon-like map F from the cubic box B to R3 is defined
as follows

F : (x, y, z) 7→ (f(x)− ε(x, y, z), x, δ(x, y, z))

where f(x) is a unimodal map. Let us assume that ‖ε‖C3, ‖ δ‖C3 ≤ ε̄ are
sufficiently small ε̄ > 0. We would call three dimensional Hénon-like maps
just Hénon-like maps unless the name could make confusion between two and
three dimensional maps.

F has two hyperbolic fixed points, β0 which has positive eigenvalues and β1
which has both positive and negative eigenvalues. Since ‖ δ‖ is sufficiently
small, each fixed point has only one expanding direction and we may assume
that product of two different eigenvalues is strictly less than one. The Hénon-
like map is called renormalizable if W u(β0) intersects W

s(β1) at the orbit of a

5



single point. However, the renormalizable map (with periodic doubling type)
has the invariant domain in B under F 2.

We need the non linear scaling map for universal limit of the renormalized
map. For this, let us define the horizontal-like diffeomorphism H is defined as
follows also.

H : (x, y, z) 7→ (f(x)− ε(x, y, z), y, z − δ(y, f−1(y), 0))

The renormalized map RF of the three dimensional Hénon-like map F is
defined as

RF = Λ ◦H ◦ F 2 ◦H−1 ◦ Λ−1

where H is the horizontal-like diffeomorphism and Λ is linear scaling map.

Moreover, the nth renormalization RnF is defined inductively. Assume that F
is an infinitely renormalizable perturbed Hénon-like map. Then RnF converges
to the degenerate map F∗ = (f∗(x), x, 0) where f∗ is the fixed point of the
renormalization operator of one dimensional unimodal maps. Furthermore, F∗
is the hyperbolic fixed point of the renormalization operator, R : F 7→ RF .
Then we extend the renormalization theory of two dimensional Hénon-like
maps to the three dimensional maps. On the remainder of this introduction
we assume that F is three dimensional infinitely renormalizable analytic map.

Assume that F is renormalizable. Let the scaling map ψ1
v ≡ H−1 ◦ Λ−1 and

denote ψ1
c ≡ F ◦ ψ1

v . Moreover, if F is twice renormalizable, then let ψ2
v and

ψ2
c be the corresponding coordinate change maps for second renormalization.

The composition of scaling maps are expressed as follows.

Ψ2
vc = ψ1

v ◦ ψ2
c , Ψ2

cv = ψ1
v ◦ ψ2

c , Ψ2
vv = ψ1

v ◦ ψ2
v

In general, we define the coordinate change map as the conjugation between
F 2n and RnF as follows

Ψn
w
= ψ1

w1
◦ ψ2

w2
◦ · · · ◦ ψn

wn

where w = (w1w2 . . . wn) ∈ {v, c}n is a word of length n. Moreover, the set
Bn

w
is defined as Ψn

w
(B).

The critical Cantor set is defined

OF =
∞⋂

n≥1

⋃

w∈ Wn

Bn
w

6



where w ∈ W n is the word of the Cartesian product of {v, c}. The counter
part of the critical value of one dimensional map is called the tip

{τF} ≡
∞⋂

n≥1

Bn
v

where v = vk. Moreover, F acts as the dyadic adding machine on OF . The
average Jacobian is defined on the critical Cantor set

bF = exp

∫

OF

log JacF dµ

where µ is the unique ergodic measure on OF .

With the above definitions, the Jacobian determinant of RnF has the universal
limit a(x) with exponential convergence.

Theorem 1.3.1 (Universality of JacRnF ). Let F ∈ IB(ε̄) for sufficiently
small ε̄ > 0.

JacRnF = b2
n

a(x)(1 +O(ρn))

where b = bF is the average Jacobian of F , a(x) is the universal function and
ρ ∈ (0, 1).

The number log bF is the sum of the Lyapunov exponents on the Cantor set,
OF . The maximal exponent is zero. However, in contrast with two dimensional
maps, log bF is the sum of two exponents, that is, log bF = log b1 + log b2.
Furthermore, the universality of the Jacobian determinant does not seem to
imply the universality of the map RnF because the Jacobian determinant,

JacRnF = ∂yεn · ∂zδn − ∂zεn · ∂yδn

has four different partial derivatives. In general, the asymptotic expression
of all of these cannot be recovered using only the single number bF and the
universal function. Then instead of constructing the universal geometric the-
ory of the invariant set of the three dimensional maps in IB(ε̄), let us take
subset of IB(ε̄) as invariant classes under renormalization and construct the
geometric properties of Cantor attractor.

Let Hénon-like maps with the condition ∂zε ≡ 0 be the model maps and denote
it to be Fmod. Then the universality of the model map is re-constructed using
the universality of two dimensional Hénon-like maps.

Fmod, n ≡ RnFmod = (fn(x) + b2
n

1 a(x) y (1 +O(ρn)), x, b2
n

2 z + δ̃n(x, y))

7



where fn is the unimodal map converging to f∗ exponentially fast as n → ∞,
b1b2 = bF and ‖ δ̃n‖ = O(ε̄2

n

) with sufficiently small ε̄ > 0. In the class of
model maps, b1 is actually the average Jacobian of the two dimensional Hénon-
like map and b2 is the attracting rate which comes from the third coordinate
direction.

Let us assume that b2 � b1 on the class of model map. Then there exists
an invariant cone field on any given compact invariant set because of the
universality theorem of two dimensional Hénon-like maps. Then there exists
the continuous plane field on the global attractor

AF =
⋂

k≥0

F k(B) ∩ B.

The complementary invariant line field is the set of straight lines which are
perpendicular to xy−plane. Furthermore, Hénon-like map, F which is close
enough to model maps in the C1 sense also has an invariant cone field under
DF . Then The map F is called a small perturbation of the model map Fmod

where ε(x, y, z) = ε(x, y) + ε̃(x, y, z) and ‖∂zε‖ is small enough.

With the existence of the invariant plane and line fields, the pseudo unstable
manifold theorem says the existence of the local invariant Cr surfaces with
3 ≤ r < ∞ at the small neighborhood of AF . Furthermore, there exists
a single invariant surface Q under F such that it contains AF 2n in Bn

vn for
each sufficiently big n ∈ N (Lemma 10.2.1). Additionally if F is infinitely
renormalizable, then there exists an invariant surface Qn under RnF as the
graph of Cr map, ξn from xy−plane to z−axis (Lemma 10.3.1).

Then two dimensional Cr Hénon-like map is defined as follows

F2d, ξ(x, y) = (f(x)− ε(x, y, ξ), x)

where graph(ξ) is a Cr invariant surface of the three dimensional Hénon-like
map F : (x, y, z) 7→ (f(x) − ε(x, y, z), x, δ(x, y, z)). The Cr diffeomorphism
from the invariant surface to xy−plane, πξn

xy, n : (x, y, ξn) 7→ (x, y) on each level
n ∈ N define the renormalization of Cr Hénon-like maps, RnF2d, ξ on xy−plane
which is same as the renormalization using the horizontal diffeomorphism and
dilation

RnF2d, ξ(x, y) = (fn(x)− εn(x, y, ξn), x). (1.3.1)

Similarly, non linear scaling map between kth and nth renormalized Hénon-like
maps is defined as follows

2dΨ
n
k, ξ ≡ πξk

xy, k ◦Ψn
k ◦ (πξn

xy, n)
−1.

8



The properties of invariant surfaces under RnF , the universality theorem of
infinitely renormalizable Cr Hénon-like maps are obtained (Theorem 11.1.3).

Theorem 1.3.2 (Universality of Cr Hénon-like maps with Cr conjugation
for 3 ≤ r <∞). Let Hénon-like map F2d, ξ be the Cr map for some 3 ≤ r <∞
which is defined in (1.3.1). Suppose that F2d, ξ is infinitely renormalizable.
Then

RnF2d, ξ = (fn(x)− b2
n

1, 2d a(x) y (1 +O(ρn)), x)

where fn(x) is the unimodal map which converges to f∗(x) exponentially fast
as n→ ∞ for some 0 < ρ < 1.

Moreover, the asymptotic expression of the scaling map 2dΨ
n
k has the similar

expression of the analytic two dimensional Hénon-like maps (Theorem 11.1.4).

The dynamical properties on Cantor attractor of Hénon-like maps depend
much on the asymptotic expression of the renormalized map and that of scal-
ing maps. RnF2d,ξ and 2dΨ

n
k for Cr Hénon-like maps has the asymptotic ex-

pressions similar to the analytic Hénon-like maps in [CLM]. The geometric
properties of the Cantor attractor of Cr Hénon-like map is the same as that
of Cantor attractor for analytic two dimensional Hénon-like maps.

For example, the Cantor attractor of Cr Hénon-like map also has the geomet-
ric properties, in particular, discontinuity of the invariant line field (Theorem
11.2.2), non-rigidity (Theorem 11.3.2) and typical unbounded geometry (The-
orem 11.4.3). Moreover, all of these dynamical properties are transferred to
the Cantor attractor of three dimensional Hénon-like map F through its in-
variant surfaces.

Let us see the Non rigidity theorem below.

Theorem 1.3.3. Let F, F̃ ∈ IB(ε̄) be small perturbation of model maps. Sup-

pose that b2 � b1 and b̃2 � b̃1. Suppose also that each of F and F̃ has
invariant Cr surfaces which contains the global attracting set. Let OF and OF̃

be the critical Cantor set of F and F̃ respectively. Let φ be a homeomorphism
between OF and OF̃ with φ2d(τF̃ ) = τF . Assume that b1 > b̃1. Then the Hölder
exponent α of φ2d satisfies the following.

α ≤ 1

2

(
1 +

log b1

log b̃1

)

There is another subspace of IB(ε̄) invariant under renormalization. For the
renormalizable maps, the recursive equation of each partial derivatives of δ and
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δ1 which are third coordinate maps of F and RF respectively. For example,
let us consider the recursive formula of ∂zδ1.

∂zδ1(w) =
[
∂yδ ◦ (F ◦H−1(σ0w)) + ∂zδ ◦ (F ◦H−1(σ0w)) · ∂xδ ◦H−1(σ0w)

]

· ∂zφ−1(σ0w) + ∂zδ ◦ (F ◦H−1(σ0w)) · ∂zδ ◦H−1(σ0w)

where φ−1(w) is the first coordinate map of H−1(w). The part in the box of
the above equation also appears on the recursive equation for ∂yδ1 and ∂xδ1.
Thus we can let this common part be the identically zero and consider the set
of Hénon-like maps which satisfies the following equation.

∂yδ ◦ F (w) + ∂zδ ◦ F (w) · ∂xδ(w) ≡ 0 (1.3.2)

where w ∈ ψ1
v(B) ∪ ψ1

c (B). Let the set of Hénon-like maps satisfying above
equation be N .

Theorem 1.3.4. Let the set of Hénon-like maps which satisfies (1.3.2) be N .
Then the set N ∩ IB(ε̄) is invariant under renormalization.

Moreover, for the map, RnF ∈ N ∩ IB(ε̄), we obtain the universal expression
of ∂zδn by Proposition 13.2.1. By the chain rule, the recursive formula of ∂zδn
is as follows by (13.2.1) and induction.

∂zδn(w) = ∂zδn−1 ◦ (Fn−1 ◦H−1n−1(σn−1w)) · ∂zδn−1 ◦H−1n−1(σn−1w)

= ∂zδn−1 ◦ ψn
c (w) · ∂zδn−1 ◦ ψn

v (w)

=
∏

w∈ Wn

∂zδ ◦Ψn
w
(w)

The logarithmic average of the right hand side converges a definite number as
n→ ∞.

1

2n

∑

w∈Wn

log | ∂zδ ◦Ψn
w
(w)| −→

∫

OF

log |∂zδ| dµ

Define this limit as log b2. Then ∂zδn = b2
n

2 (1 + O(ρn)) and it means the con-
tracting rate from the third coordinate map. Moreover, the ratio of b2 and the
average Jacobian b is defined b1,

2that is, b = b1b2.

Then the coordinate change map Ψn
k of the three dimensional Hénon-like maps

2For the Hénon-like map F ∈ IB(ε̄) ∩ N , it is not clear both log b1 and log b2 are
Lyapunov exponents on the Cantor attractor.
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is analyzed by asymptotic expression related to ∂yδk and ∂yεk. Then when
the distance of image of two points under Ψn

k is measured, the distance of
z−coordinate of points is incorporated to the two dimensional distance as the
product b2

k

1 and dilations. In the counter part of two dimensional Hénon-like
map, the contracting of the y−distance is stronger than x−distance contrac-
tion with the factor b1. Then if F ∈ N ∩IB(ε̄), then the method of measuring
distances is essentially same as two dimensional maps. Furthermore, the af-
fection b2 is not visible even if b2 is larger than b1.

Then non-rigidity and the typical unbounded geometry are proved in the space
N ∩ IB(ε̄) but the method used in this space is an analysis of the recursive
equations. Then this method is very different from that in a small pertur-
bation of model maps. In this space the constructed two dimensional Hénon
renormalization with invariant surfaces is applied to the three dimensional
maps.

1.4 An open problem

We have seen that two or higher dimensional Hénon renormalizable maps have
universality but non-rigidity. In the two dimensional Hénon renormalization
theory, the different average Jacobians separate one smooth invariant class
from another. Then the question about rigidity in the set of maps with same
average Jacobian arises. It is suggested in [CLM] as an open problem. In
similar way, the Hénon-like maps in three dimension has the question about
smooth invariant class with the same two contracting rates, b1 and b2.

• If the two different three dimensional Hénon-like maps in IB(ε̄) have
same b1 and b2, then are these maps conjugated by C1 or smoother
map?

If the Hénon-like maps in IB(ε̄) is of the form

(x, y, z) 7→ (f(x)− ε(x, y), x, b2z),

then the above question is the same as rigidity question about two dimensional
Hénon-like maps. This question for the the three dimensional Hénon-like maps
in the whole class IB(ε̄) may be difficult. Then we can restrict our attention
to the space of a small perturbation of model maps or the space N .
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Chapter 2

Notations and conventions

For given map F , if the set A is related to F , then we denote it to be A(F )
or AF and the F can be skipped if there is no confusion without F . The
domain of the function F is denoted to Dom(F ) and the image of the set B
under a function F is denoted by F (B). If F (B) ⊂ B then we call B is an
(forward) invariant set under F . Similarly, if F−1(B) ⊂ B, then we call B is
an backward invariant set under F .

Let N be the set of the natural numbers, {1, 2, 3, . . .} and N+ = N ∪ {0}.
Let the distance between two points p and q be on the metric space X be
distX(p, q). However, let us call the set distance distmin(R, S) as the minimal
distance between two sets, R and S as follows.

distmin(R, S) = inf { dist(r, s) for all r ∈ R and s ∈ S }

Let f : X → X is a continuous function on the metric space X . The stable
manifold at some point p under f as follows.

W s(p) = {q ∈ X | dist(fn(p), fn(q)) → 0 as n→ ∞}

The local stable manifold at p bounded by ε′ > 0 is

W s
ε′(p) = {q ∈ X | dist(fn(p), fn(q)) ≤ ε′ for all n ∈ N ∪ {0}}

where dist is the distance along stable manifold. The (local) unstable manifold
is defines as the set if the distance under f−n is used instead of fn. Without
specified size of the local manifold, we denote the local stable manifold at the
point p to be W s

loc(p) where p is on a certain bounded neighborhood which is
connected on X .

If the unstable manifold is one dimensional, then we can express the curve

12



connecting two points along the unstable manifold in the give space X is
following.

[ p, q ]uw ⊂W u(w)

The square bracket means the given set [ p, q ]uw is homeomorphic image of the
closed interval [−1, 1] under continuous map from R to X . The points p and
q are the end points of the curve.

Denote the set of periodic points of F to be PerF . The orbit of the point w
under the map f is denoted to be Orb(w, f). We can express the (complete)
orbit of w to be Orb(w) unless the map is emphasized or is ambiguous on the
context in the related description. The omega limit set of a point x under the
map F , ω(x) is the set of accumulation points of the forward orbit under F .
Similarly the alpha limit set, α(x) of x under F is the set of accumulation
points of the backward orbit under F . Thus

ω(x) =
⋂

n∈N

{F k(x) : k > n}, α(x) =
⋂

n∈N

{F−k(x) : k > n}

If there exists a neighborhood U of x and N ≥ 0 such that

F n(U) ∩ U = ∅

for all n ≥ N , then x is called a wandering point. If x is not a wandering
point, then it is called nonwandering point and the set of nonwandering point,
ΩF is called non wandering set.

For three dimensional map, let us the projection from R3 to its x−axis, y−axis
and z−axis be πx, πy and πz respectively. Moreover, the projection from R3

to xy−plane be πxy and so on. Furthermore, if there exists a surface which is
embedded on R3 as the graph of the function ξ, for example {(x, y, ξ(x, y))},
then we define the projection from the surface to its domain, say πξ

xy as
(x, y, ξ(x, y)) 7→ (x, y). Denote the partial derivatives of the function f over
x, y and z to be ∂xf , ∂yf and ∂zf respectively. The second partial derivatives
are ∂xxf , ∂xyf and so on. However, for a set S, ∂S without any subscript
means the topological boundary of the set S.

A = O(B) means that there exists a positive number C such that A ≤ CB.
Moreover, A � B means that there exists a positive number C which satisfies
1

C
B ≤ A ≤ CB.
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Chapter 3

Preliminaries

Let us introduce two dimensional Hénon-like maps as a perturbation of one
dimensional maps and define renormalization of two dimensional Hénon-like
map. Many topological properties of two dimensional renormalizable Hénon-
like map are well adapted to the three dimensional Hénon-like maps.

3.1 Hénon-like map as a perturbation of one

dimensional map

Let f : I → I be a C3 or smoother unimodal map with non-degenerate critical
point c ∈ I and f ’s Schwarzian derivative is negative on I. f is called (periodic
doubling) renormalizable map if there exists the closed interval c ∈ J ⊂ IntI
such that J ∩ f(J) = ∅ and f 2(J) ⊂ J , that is, J is invariant under f 2. Then
f 2 : J → J is also a unimodal map on J . We can choose the minimal intervals
Jc = [f 4(c), f 2(c)] and Jv = [f 3(c), f(c)] which is invariant under f 2. More-
over, Jc and Jv are disjoint from each other. By the conjugation of the affine
rescaling from J to I, we can define renormalization Rcf at the critical point
as Rcf is defined as sf 2(s−1x) for some s < −1. The domain of the renormal-
izable map f , I = [f 4(c), f(c)] contains the critical point, the critical value
and one repelling fixed point whose eigenvalue is negative, say β1. Without
loss of generality we may assume that f can be extend on a sufficiently bigger
symmetric interval at the origin which has another fixed point β0 with positive
eigenvalue such that the interval, [−|f(c)|, |f(c)| ] is compactly contained on
this extended interval. Let us say this extended interval of I to be also I in
order to save the notation. Then f has another repelling fixed point on the
(extended) interval I whose eigenvalue is positive, say β0.

Let us f be an infinitely renormalizable map. Then there is the unique fixed
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point f∗ of the (periodic doubling) renormalization operator Rc with the uni-
versal scaling factor σ = 0.73 . . .. The scaling factor of the nth renormalization
converges to σ exponentially fast as n→ ∞.

The graph of f is a parabolic-like curve. Since f is infinitely renormalizable by
the assumption, the two dimensional degenerate map F• : (x, y) 7→ (f(x), x)
on I × I contains the reflected image of the graph of f on the diagonal line
going through the origin. Let us call two fixed points of F• be β0 and β1
like the fixed points of the one dimensional map. Moreover, the parabolic-like
curve {x ∈ I|(f(x), x)} containing the fixed point β0 is the unstable manifold
of β0, W

u(β0) under the degenerate map F•.

Let B be the square region whose center is the origin, that is B = Ih×Iv where
Ih and Iv are the (appropriately extended) symmetric intervals at zero of the
one-dimensional renormalizable map f . Ih and Iv mean that they are parallel
to x-axis and y-axis respectively. The map F : B −→ R2 is called Hénon-like
map if the image of the vertical line is a horizontal line and the image of the
horizontal line is the parabolic-like curve. Then as a small perturbation of the
one dimensional map f , the Hénon-like map F is of the following form.

F (x, y) = (f(x)− ε(x, y), x)

If the Jacobian determinant of F is non-zero at every point, F is called the
Hénon-like diffeomorphism. On the followings, Hénon-like map always means
Hénon-like diffeomorphism unless any other statements are specified. As a
(small) perturbation of the one dimensional map, we assume that the Hénon-
like map F has two saddle fixed points β0 with positive eigenvalues — flip
saddle — and β1 with negative eigenvalues — regular saddle — .

Denote the local stable manifold at w, W s
loc(w) to be the component of the

stable manifold W s(w) which contains the point w in B and keep the similar
notation for the local unstable manifold. If |f ′′(x)| is big enough then W s

loc(β1)
and W u(β0) meets transversally at least two points. Let p0 be the farthest
point from β1 along W

s
loc(β1) which is in the intersection of W u(β0)∩W s

loc(β1).
Moreover, let us call the second and third farthest point from β1 alongW

s
loc(β1)

in W u(β0) ∩W s
loc(β1) be p1 and p2 respectively. p2 is on the opposite side to

p1 from β1 along W s
loc(β1) because β1 has negative eigenvalues. Then we can

define pn similarly for every n ∈ N. Then pn → β1 as n→ +∞.
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β1

(a) A parabolic-like curve of the degen-
erate map as Wu(β0)

bc

bc
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b

b

W s
loc(β1)W s

loc(β0)

β0

p0

p1

p2β1

(b) (Un)stable manifolds of Hénon-like
map

Figure 3.1.1: Unstable manifolds of a degenarate map and a Hénon-like map

3.2 Topological properties of renormalizable

two dimensional Hénon-like map

The renormalization of Hénon-like map was defined on [CLM] as the following.
Let us call the orientation preserving Hénon-like map is renormalizable if the
unstable manifold of β0, W

u(β0) intersects the stable manifold of β1, W
s(β1),

on the single orbit of the points, say OrbZ(w) for some w ∈ B. Let p0 ∈
OrbZ(w) be the point which is farthest point from β1 along the local stable
manifold of β1, W

s
loc(β1). Denote pk = F k(p0) for each k ∈ Z. Then the

forward orbit of p0, Orbn≥0(p0) is on W s
loc(β1) and the local stable manifold

of p−n, W
s
loc(p−n) where n ≤ 0 is pairwise disjoint component of W s(β1) and

W s
loc(p−n) converges to W

s(β1) because p−n converges to β0 as n→ +∞.

Denote W s
loc(p−n) to be M−n for every n ≥ 0. Then W s

loc(β1) is denoted as
M0. Moreover, we can define M1 as the component of W s(β1) whose image
under F is contained on M1 and which does not have any point of OrbZ(w).
It is on the opposite side of M−1 from M0. We may assume thatM1 is a curve
connecting the up and down sides of the square domain B inside. Then we
can easily check the curves [p0, p1]

u
β0

and [p1, p2]
u
β0

does not intersect M1 and
M−1 respectively when F is renormalizable.

On the domain B, the dynamical region for renormalizable Hénon-like maps
is the closure of the component of B \W s(β0) containing β1, say B0 because
it is an (forward) invariant region under F . Let each region between M−n and
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M−n+1 be A−n for every n ≥ 0. Since F (M−n) ⊂ M−n+1 for each n ≥ 0, we
can see F (A−n) ⊂ A−n+1 for each n ≥ 0. But the image of A0 under F is
contained on A−1, that is, F (A0) ⊂ A−1. In other words, W s

loc(β1) intersects
W u(β0) at p1 transversally. SinceM0 is an invariant curve under F and F (M1)
is a part of M−1, if we take a curve γ connecting p1 and a point in M1, then
F (γ) is a curve connecting a point of M−1 and p2 in A−1.

bc
bc

bc

bc

bc

bc

b

b

b b b

Z1

Z2
A0A−2A−3

M1M−1M−2M−3

D

F (D)

W s
loc(β1) M0

β0

p0

p1

p2

p−1p−2p−3

β1

Figure 3.2.1: Regions between local stable manifolds

Let the region above the curve [p−1, p0]
u
β0

in A−1 be Z1 and the region below
the same curve in A−1 be Z2. Let the interior enclosed by two curves [p0, p1]

u
β0

and [p0, p1]
s
β1

be D.

Then for the renormalizable Hénon-like map, the local stable manifolds of p−n
and the regions A−n between two successive local stable manifolds M−n and
M−n+1 have the following properties.

(1) M0 is invariant under F .

(2) F (M−n) ⊂ M−n+1 for each n ≥ 0.

(3) F (M1) ⊂M−1.

(4) F (A−n) ⊂ A−n+1 for each n ≥ 1. In particular, F (A−1) ⊂ A0.
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(5) Let the region on the right side of M1 be A1. Then F (A1) ⊂ A−2.

(6) F (A0) ⊂ Z1 ⊂ A−1.

(7) F (Z1) ⊂ D.

(8) W u(β0) intersects W
s
loc(β1) at p0, p1 and p2 transversally.

(9) F (D) is the interior enclosed by two curves [p1, p2]
u
β0

and [p1, p2]
s
β1

in A−1.

Then the fact that F (A0) ⊂ Z1 ⊂ A−1 and F (Z1) ⊂ D implies F 2(A0) ⊂ D.
Hence D is invariant under F 2 and furthermore any neighbourhood of D in A0

is also invariant under F 2. Since F (D) is also invariant under F 2, D ∪ F (D)
is an invariant domain under F . The maximal invariant region under F is B0

— closure of the component of B \W s(β0) containing the fixed point β1.

Lemma 3.2.1. Let F be the renormalizable Hénon-like map. Then B0 is
invariant under F and for every point w ∈ B0, there exist k ∈ N such that
F k(w) ∈ D.

Proof. W s(β0) is invariant under F and every M−n for some −n ≤ −1 are
components of the stable manifold W s(β0). Then we see that F n(M−n) ⊂M0

where −n ≤ −1. Moreover, F 2(M1) ⊂ M0 because F (M1) ⊂ M−1 ∩ ∂Z1.
Since M0 is the local stable manifold of the fixed point of β1, we see that
F (M0) ⊂ [p0, p1]

s
β1

⊂ ∂D. Then we can choose k = n + 1 where −n ≤ 0 and
k = 3 where −n = 1.

Now let us take a point w /∈ ⋃
n≤1Mn. Then it is sufficient to show that

F k(w) ∈ D for some k ≥ 0. We may assume that w is contained in some region
A−n for some −n ≤ 1 because each region A−n is separated by M−n and B0 is
the union of M−n and A−n. If w ∈ A−n where −n ≤ −1, F n−1(w) is on A−1.
Let us say w′ = F n−1(w). Then w′ is contained in one of the following set —
Z1, [p−1, p0]

u
β0

or Z2. If w
′ ∈ Z2, then by the property (4) of the regions between

components of stable manifold of β1, the image of w′ under F 2 is in Z1, that
is, F 2(w′) ∈ Z1. However, F (Z1) ⊂ D and it implies F 3(w′) ∈ D. Moreover,
the fact that [p−1, p0]

u
β0

⊂ ∂Z1 implies that F (w′) ∈ ∂D for w′ ∈ [p−1, p0]
u
β0
.

For n = 0 case, we see that F 2(A0) ⊂ D. Hence, we can choose k = n + 2 for
n ≥ 0. For n = 1, we know that F (A1) ⊂ A−2. Then we can choose k = 5.

Corollary 3.2.2. Let F be the renormalizable Hénon-like map. Denote the
region between two local stable manifoldsM0 and M1 to be A0. Then F

2(A0) ⊂
D. In particular, any open neighbourhood of D in A0 is invariant under F 2.
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3.3 Properties of renormalization operator of

two dimensional Hénon-like maps

We have the invariant domain D under F 2 for periodic doubling renormaliza-
tion from the previous subsection. However, F 2 is not Hénon-like map because
the image of the vertical line, {x = const.}, under F 2 is not the horizontal line,
{y = const.}. Then we need the non-linear coordinate change map to define
renormalization of Hénon-like maps. We would call this non linear coordinate
change map the horizontal diffeomorphism.

Define horizontal diffeomorphism H as the following.

H(x, y) = (f(x)− ε(x, y), y)

Then by the direct calculation (Lemma 3.4 in [CLM]), the map H ◦F 2◦H−1 is
also a Hénon-like map. It is called pre-renormalization of F and it is denoted
to be PRF . There exists an interval V containing the critical point of f such
that PRF is defined on the region V × I and it is invariant under PRF .1 The
square region with the center as the origin which is the restriction of V × I is
the domain of PRF . The Dom(PRF ) is extendible to the topological region
A1 if necessary. Moreover, the image of the Dom(PRF ) under H−1 is the
region whose boundaries are curves, f(x)− ε(x, y) = const. and y = const.

Thus we define the domain of H as the region enclosed by curves f(x) −
ε(x, y) = const. and y = const. and if this region is the minimal invariant
region under F 2 then it is called B1

v . Moreover, B1
v is compactly contained in

A0. If the map ε(x, y) is identically zero, then H(B1
v) is the square with the

center origin. Furthermore, if the upper bounds of |ε| are sufficiently small,
then H(B1

v) is the rectangle on which the ratio of sides perpendicular to each
other is 1 : 1+O(ε̄). Then the image of the slightly extended region of B1

v under
H is the square with center the origin. We would also say that this extended
region to be B1

v . Then H(B1
v) is invariant under PRF . Let us choose the

expansion Λ(x, y) ≡ (sx, sy) with some s < −1 such that the image of H(B1
v)

under Λ is same as B. By the definition of Λ, we see that H(B1
v) = Λ−1(B).

Define the region B1
c to be F (B1

v). Then the map H−1 from Λ−1(B) to B1
v is

a horizontal map and the map F ◦H−1 from Λ−1(B) to B1
c is a vertical map.

1The closed interval V is the closure of the small neighborhood of Jc. If the rectangle
V ×I has the full height in B, then V contains every interval Jc of maps x 7→ f(x)−ε(x, y0)
for each y0 ∈ Iv. If ε ≡ 0, then we can choose V to be Jc for x 7→ f(x). Furthermore, the
rectangle V × I is contained in the region A

−1.
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For simplicity let us denote the H and H−1 as the following.

H(x, y) ≡ (f(x)− ε(x, y), y) = (φ(x, y), y)

H−1(x, y) ≡ (φ−1(x, y), y)

Then φ−1(x, y) is a perturbation of the map f−1(x) in the two dimensional
domain as if the map φ(x, y) is a perturbation of f . Moreover, φ−1 ◦H = x.
By the definition, H−1 is the horizontal map from Λ−1(B) to B1

v . Similarly by
the direct calculation F ◦H−1 is a vertical map from Λ−1(B) to B1

c . Then B
1
v

is disjoint from B1
c .

H−1 : Λ−1(B) −→ B1
v , (x, y) 7→ (φ−1(x, y), y)

F ◦H−1 : Λ−1(B) −→ B1
c , (x, y) 7→ (x, φ−1(x, y))

bc

bc

bc

bc

b

M1M−1 M0

p0

p1

p−1

β1

B1
c

B1
v

Λ−1(B)

Figure 3.3.1: Restricted pieces for renormalization

Lemma 3.3.1 (Lemma 3.4 on [CLM]). Assume that F is renormalizable and
both f and ε are C2 with the small norm of ε, ‖ε‖ ≤ ε̄, then

H ◦ F 2 ◦H−1 = (f1(x)− ε1(x, y), x)

for some unimodal map f1 on V such that ‖f 2 − f1‖V ≤ Cε̄ for some C > 0
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and ‖ε1‖ = O(ε̄2).

Let us define the (first) renormalization of F with the appropriate scaling
map, Λ(x, y) = (sx, sy) with s < −1 as the following.

RF = Λ ◦H ◦ F 2 ◦H−1 ◦ Λ−1

Moreover, if F is n + 1 times renormalizable, then the renormalized map
Rn+1F is defined recursively, that is, Rn+1F = Λn ◦Hn ◦ (RnF )2 ◦H−1n ◦ Λ−1n

where n ≥ 0 and R0F ≡ F . The map RnF is also a Hénon-like map on the
domain B.

Suppose the Hénon-like map F is an infinitely renormalizable map and let
RnF (x, y) = (fn(x)− εn(x, y), x). Then ‖εn‖ = O(ε̄2

n

) by the above Lemma.
Moreover, RnF converges to the degenerate map F∗ = (f∗(x), x) exponentially
fast as n → ∞ where f∗ is the fixed point of the renormalization operator of
the one dimensional map. The hyperbolicity of the analytic unimodal map is
proved in [Lyu]. The renormalization operator has the codimension one stable
manifold and one dimensional unstable manifold at the fixed point f∗. The
uniform norm of the analytic operator bounds all of Cr norm of the operator.
Then the exponential convergence to the one dimensional fixed point (f∗(x), 0)
of RnF and super-exponential decay of εn of the map RnF implies the vanish-
ing spectrum of DR, the derivative of renormalization operator. Hence, the
unstable manifold at the fixed point of the Hénon renormalization operator is
same as the unstable manifold of the renormalization operator of the unimodal
maps. See the Section 4 on [CLM].
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Chapter 4

Renormalization of the three

dimensional Hénon-like maps

Three dimensional perturbed Hénon-like maps are introduced as a small per-
turbation of two dimensional Hénon-like map.

4.1 Hénon-like maps in three dimension

Let B2d be the square region with the center origin and let this set tbe the
domain of two dimensional Hénon-like map. Let B be the box domain which
is a thickened domain of two dimensional Hénon-like map, that is, B = B2d ×
[−c, c] for some c > 0. The length of the sides parallel to z axis is called the
thickness or height of the domain B of the perturbed Hénon-like map in three
dimension. Let us define the perturbed Hénon-like map on three dimension as
the following with the cube B of which center is the origin. For simplicity, let
us assume that the thickness of B is same as the length of the sides parallel
to x or y axis.

F (x, y, z) = (f(x)− ε(x, y, z), x, δ(x, y, z)) (4.1.1)

where f : Ix −→ Ix is a unimodal map.

Let us express the domain as B = Ix × Iv where Ix is the line parallel to
x-axis and Iv = Iy × Iz where Iy and Iz are lines parallel to y-axis and z-axis
respectively.

Remark 4.1.1. On the following section, some objects defined on the two di-
mensional space has the subscript 2d. For example, B2d is the square domain of
the two dimensional Hénon-like map and F2d is the two dimensional Hénon-like
map defined on B2d. However, same notation without any index indicates the
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three dimensional object. For instance, F and B are the perturbed Hénon-like
map in three dimension and its box domain.

The image of the plane, {x = C} parallel to yz-plane under F is contained
in {y = C} parallel to xz-plane.

x
y

z

b b

F

Figure 4.1.1: Image of {x = const.} under the three dimensional Hénon-like
map

Let us assume that ‖ε‖C3 ≤ ε̄ and ‖δ‖C3 ≤ δ̄ with sufficiently small positive
numbers ε̄ and δ̄. Assume that f is an infinitely renormalizable unimodal
map. Since the norm of the third coordinate of F is sufficiently small, that
is, ‖δ‖C3 ≤ δ̄ < 1, F has only two fixed points like the two dimensional
Hénon-like map by the contraction mapping theorem. Let these two saddle
fixed points be β0 and β1 which is close to the regular and saddle fixed points
of the two dimensional map πxy ◦ F respectively. Moreover, β0 and β1 have
stable manifolds of codimension one and one dimensional unstable manifolds.
The orientation preserving perturbed Hénon-like map is called renormalizable
if W u(β0) and W

s(β1) intersects in a single orbit of a point.

On the local stable manifold of β1, the distance of two points is defined as
the distance along the shortest path connecting two points. This distance is
close to the Euclidean distance on the domain B because of the Corollary
4.1.4 on the following. Let p0 be the intersection point in W u(β0) ∩W s

loc(β1)
which is farthest from β1 on W s

loc(β1). Moreover, we define p1 and p2 to be
the second and third farthest point from β1 in W u(β0)∩W s

loc(β1) on the local
stable manifold W s

loc(β1) respectively. The points pn are similarly defined for
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every n ∈ N. If F is renormalizable, then pn is F n(p0) because W s
loc(β1) is

invariant under F and furthermore we can define pk to be the forward or
backward image of p0 under F k, that is, pk = F k(p0) for each k ∈ Z. Then
the intersection of the unstable manifold of β0 and the stable manifold of β1
is the (full) orbit of p0, that is, W

u(β0)∩W s(β1) = OrbZ(p0). In other words,
every local stable manifolds of pk, W

s
loc(pk) for all k ∈ Z are components of

the stable manifolds of β1, W
s(β1).

The topological properties of the renormalizable two dimensional Hénon-like
maps are well extended to the renormalizable perturbed Hénon-like map in
three dimension. Let B0 be the component of B \W s(β0) containing β1, which
is invariant under F . Denote W s

loc(p−n) to be M−n for n ≥ 0 and define M1

as the component of W s(β1) in B0 such that M1 does not have any point
of OrbZ(p0) and its forward image under F is contained in M−1, namely,
F (M1) ⊂M−1. Let each region in B between Mn and M−n+1 be An for n ≥ 0
and let the region in B on the right side of M1 be A1. Then since W s

loc(β1) is
(forward) invariant under F and it is the common boundary of the regions A−1
and A0, we can see that F (A−1) ⊂ A0 and F (A0) ⊂ A−1. In particular, A0 is
invariant under F 2 and F 2(A0) contains a small neighborhood of [p0, p1]

u
β0

in
A0 and its boundary is disjoint from M1 which is the component of W s(β1)
on the right hand side of W s

loc(β1). Thus denote D to be the region F (A1),
which is invariant under F 2 in A0. Then the following properties are same as
the two dimensional Hénon-like maps.

(1) M0 is invariant under F .

(2) F (M−n) ⊂ M−n+1 for each n ≥ 0.

(3) F (M1) ⊂M−1.

(4) F (A−n) ⊂ A−n+1 for each n ≥ 0. In particular, F (A−1) ⊂ A0.

(5) Let the region on the right side of M1 be A1. Then F (A1) ⊂ A−2.

(6) W u(β0) intersects W
s
loc(β1) at p0, p1 and p2 transversally.

Then the following lemma holds and the proof is similar to that of the two
dimensional Hénon-like map case.

Lemma 4.1.1. Let F be the renormalizable three dimensional Hénon-like map.
Then B0 is the invariant under F and for every point w ∈ B0, there exist k ∈ N

such that F k(w) ∈ D.
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Proof. W s(β0) is invariant under F and everyM−n for some −n ≤ −1 are com-
ponents of the stable manifold W s(β0). Then we see that F n−1(M−n) ⊂ M−1
where −n ≤ −2. Moreover, F (M1) ⊂ M−1. Furthermore, by the definition of
D, we see F (M−1) ⊂ ∂D and F (M0) ⊂ ∂D. Then we can take k = n where
−n ≤ −1, k = 1 where n = 0 and k = 2 where n = 1.

Now let us take a point w /∈ ⋃
n≤1Mn. Then it is sufficient to show that

F k(w) ∈ D for some k ≥ 0. We may assume that w is contained in some
region A−n for some −n ≤ 1 because each region A−n is separated by M−n
and B0 is the union of M−n and A−n. If w ∈ A−n where −n ≤ −1, F n−1(w)
is on A−1. Let us say w

′ = F n−1(w). Then by the definition of D, F (w′) ∈ D.
Moreover, if w ∈ A0 then by the invariance of D under F 2, F 2(w) ∈ D. If
w ∈ A1, then F (w) ∈ A−2. Hence, we can choose k = n where −n ≤ −1,
k = 2 where n = 0 and k = 3 where n = 1.

Corollary 4.1.2. Let F be the renormalizable three dimensional Hénon-like
map. Denote the region between two local stable manifolds M0 and M1 to be
A0. Then F 2(A0) ⊂ D. In particular, any open neighbourhood of D in A0 is
invariant under F 2.

Proof. Let us take any neighborhood of D in A0, say D′. Then we get the
following inclusion order

F 2(D) ⊂ F 2(D′) ⊂ F 2(A0) ⊂ F (A−1) = D ⊂ D′

Hence, F 2(D′) ⊂ D′.

As a result, any (thickened) domain D′ is invariant under F 2. Then we
can choose arbitrary region D′ containing D as an invariant domain under F 2.
Let us take an extended region as the domain such that πxy(D) compactly
contains D2d ∩ A0 in A0 where the region D2d is enclosed by curves, [p0, p1]

s
β1

and [p0, p1]
u
β0
. Denote this extended region to be also D to save the notation

on the following section.

Proposition 4.1.3. Let F (x, y, z) = (f(x) − ε(x, y, z), x, δ(x, y, z)) be a per-
turbed Hénon-like map with ‖ε‖C1 ≤ ε̄ and ‖δ‖C1 ≤ δ̄ where both ε̄ and δ̄ are
sufficiently small positive numbers. Suppose that there are intervals U and
U ′ ⊂ Ih such that f is injective on V ′ c U ′ with

f(U ′) ⊃ U

Then if there exists the map
η : Iv −→ U
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Figure 4.1.2: The local stable manifold of β1, W
s
loc(β1) and the unstable man-

ifold of β0, W
u(β0)

such that ‖Dη‖ ≤ C0(ε̄ + δ̄) for some constant C0 > 0, then the image of
η under F−1 in B, namely, F−1(graph(η)) ∩ (U ′ × Iv) is the graph of some
function ξ : Iv → U ′ with

‖Dξ‖ ≤ C(ε̄+ δ̄)

for some constant C > 0.

Proof. Firstly we show that there exists the unique x ∈ U ′ for each (y′, z′) ∈ Iv

such that F (x, y, z) = (η(y′, z′), y′, z′) ∈ graph(η). Then

φy,z(x) ≡ f(x)− ε(x, y, z) = η(x, δ(x, y, z)) (4.1.2)

The injectivity of f on U ′ with small enough ε̄ implies that f(x)−ε(x, y, z) has
the inverse function for every point (y, z) ∈ Iv. Moreover, η is the contraction
with the small norm ‖δ‖. Then

φ−1y,z ◦ η(x, δ(x, y, z)) : U ′ → U ′

is a well-defined contraction. Thus contraction mapping theorem implies
unique existence of x for (4.1.2). Then F−1(graph(η))∩ (U ′× Iv) is the graph
of some function, say ξ. Secondly, consider the image of the graph of ξ under

F .
(ξ(y, z), y, z) ≡ (x, y, z) 7→ (η(y′, z′), y′, z′)
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Then the formula of the perturbed Hénon-like map implies the following.

η(y′, z′) = η(x, δ(x, y, z)) = f(x)− ε(x, y, z)

By the chain rule,

Dη(y′, z′) = Df ·Dξ(y, z)− ∂ε

∂x
Dξ(y, z)−Dε|Iv(y, z)

= Dη(ξ, δ) ·
(

2Dξ
∂δ
∂x
Dξ +Dδ|Iv

)

= 2
∂η

∂y
Dξ(y, z) +

∂η

∂z

(
∂δ

∂x
Dξ(y, z) +Dδ|Iv

)

Hence, when we solve the above equation in terms of Dξ(y, z), we obtain that

Dξ(y, z) =
Dε|Iv(y, z) + ∂η

∂z
Dδ|Iv(y, z)

Df(x)− ∂ε
∂x

− 2∂η

∂y
− ∂η

∂z
∂δ
∂x

Therefore, ‖Dξ‖ ≤ C(ε̄+ δ̄).

By the above proposition, the function from Iv to U ′ ⊂ Ih with the small
norm of derivative keeps its order under the (graph) transformation F−1. Next
we show that the local stable manifold W s

loc(β1) can be the graph of some
function from Iv to Ih by the standard graph transform technique.

Corollary 4.1.4. W s
loc(β1) is the graph of a function from Iv to Ih with the

norm bounded by C(ε̄+ δ̄) for some constant C > 0.

Proof. Since the β1 is a fixed point of F , πx(β1) is away from the critical point
of f on Ih. Then we can take some neighbourhood B2ρ(πx(β1)) of the πx(β1)
for some ρ > 0 such that |Df(x)| ≥ C > 1 with a uniform constant C on
Bδ(πx(β1)). Denote that U = Bρ and V = B2ρ. Thus let us consider the
family of the functions as following.

GK = {η : Iv → Ih | η (πy(β1), πz(β1)) = πx(β1), ‖Dη‖ ≤ K(ε̄+ δ̄)}

Moreover, we may assume that

diam(η(Iv)) ≤ K(ε̄+ δ̄) · diam(Ih) < ρ0

for some 0 < ρ0 < 1. Then for η ∈ GK , we have η(Iv) ⊂ U . Apply-
ing the Proposition 4.1.3 with small enough ε̄, the connected component of
F−1(graph(η)) containing β1 in B is the graph of the some function η′. If we
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take K > 0 large enough, then we have η′ ∈ GK . Then we can define the graph
transformation T : GK → GK with

T : η −→ η′

This transformation is defined globally on the graph of η. Since the function
f is expanding on U and ε̄+ δ̄ is small, this graph transformation contracts C0

distance on GK . Hence the unique fixed point of T , say η0 is W s
loc(β1) ∈ GK

and it is the graph of the function in GK .

Let the function from Iv to Ih whose graph is the local stable manifold be
ζ . Then by the Proposition 4.1.3 the norm ‖Dζ‖ ≤ C(ε̄+ δ̄) for some C > 0.

4.2 Hénon renormalization of maps in three

dimension

In this section we construct the renormalization operator of three dimensional
Hénon-like maps and the box domain of the conjugated map with the non
linear coordinate change. The region D which contains F (A−1) is an invariant
domain under F 2. But F 2 is not Hénon-like map because the image of the
plane, {x = C} in B under F 2 is not part of the plane, {y = C}. Then for
renormalization operator we need the non-linear coordinate change map. Let
us call this map the horizontal-like diffeomorphism H and it is defined as the
following.

H(x, y, z) = (f(x)− ε(x, y, z), y, z − δ(y, f−1(y), 0)) (4.2.1)

Let the point in B be w = (x, y, z). For simplicity, we express the map H and
H−1 on the following.

H(x, y, z) ≡ (f(x)− ε(w), y, z − δ(y, f−1(y), 0))

H−1(x, y, z) ≡ (φ−1(w), y, z + δ(y, f−1(y), 0))

Then φ−1(w) : B → R is an ε− perturbation of the map f−1(x) in the three
dimensional space as if the map φ(w) is an ε− perturbation of f . Recall Jc
the minimal invariant interval under f 2 containing the critical point of f . Let
V be a closed interval which contains the small neighborhood of every Jc if
the given unimodal maps are f(x)− ε(x, y0, z0) for every (y0, z0) ∈ Iv. Then
H ◦ F 2 ◦H−1 is a Hénon-like map on the domain V . Let UU be the space of
unimodal maps on the set U and HU be the set of perturbed Hénon-like map

28



on the set U .

Proposition 4.2.1. Let H be the horizontal-like diffeomorphism defined on
(4.2.1) and let F = (f(x) − ε(w), x, δ(w)) is C2 the Hénon-like map. Sup-
pose that ‖ε‖C2 ≤ ε̄ and ‖δ‖C2 ≤ δ̄ with sufficiently small positive numbers ε̄
and δ̄. Then there exists a unimodal map f1 ∈ UV such that ‖f1 − f 2‖V <
Cε̄ and the map H ◦ F 2 ◦ H−1 is a Hénon-like map (x, y, z) 7→ (f1(x) −
ε1(x, y, z), x, δ1(x, y, z)) of the class HV×Iv with the norm, ‖ε1‖ = O(ε̄2+ ε̄δ̄)
and ‖δ1‖ = O(ε̄δ̄ + δ̄2).

Proof. Let us calculate φ−1(w) − f−1(x), ε ◦ F ◦ H−1 and ε ◦ F 2 ◦ H−1 for
estimating ‖ε1‖ and ‖δ1‖ later. The fact that H ◦H−1(w) = (x, y, z) implies
that f ◦ φ−1(w)− ε ◦H−1(w) = x. Moreover,

φ−1(w) = f−1(x+ ε ◦H−1(w))
= f−1(x) + (f−1)′(x) · ε ◦H−1(w) + higher order terms

Then we get

φ−1(w)− f−1(x) = (f−1)′(x) · ε ◦H−1(w) + higher order terms (4.2.2)

Let v(x) = ε(x, f−1(x), 0). Then v ◦ f(x) = ε(f(x), x, 0).

ε ◦ F ◦H−1(w)
= ε(x, φ−1(w), δ ◦H−1(w))
= ε(x, f−1(x), 0) + ∂yε(x, f

−1(x), 0) · (φ−1(w)− f−1(x))

+ ∂zε(x, f
−1(x), 0) · δ ◦H−1(w) + h.o.t.

= v(x) + ∂yε(x, f
−1(x), 0) · (f−1)′(x) · ε ◦H−1(w)

+ ∂zε(x, f
−1(x), 0) · δ ◦H−1(w) + h. o. t.

(4.2.3)

Similarly, we estimate ε ◦ F 2 ◦H−1.

ε ◦ F 2 ◦H−1(w)
= ε(f(x)− ε ◦ F ◦H−1(w), x, δ ◦ F ◦H−1(w))
= ε(f(x), x, 0) + ∂xε(f(x), x, 0) · ε ◦ F ◦H−1(w)

+ ∂zε(f(x), x, 0) · δ ◦ F ◦H−1(w) + h. o. t.

= v ◦ f(x) + ∂xε(f(x), x, 0) · ε ◦ F ◦H−1(w)
+ ∂zε(f(x), x, 0) · δ ◦ F ◦H−1(w) + h. o. t.

(4.2.4)

By the straightforward calculation, we obtain the coordinate functions of H ◦
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F 2 ◦H−1.

(x, y, z)

H−1

−−−→ (φ−1(w), y, z + δ(y, f−1(y), 0))

F−−−→ (x, φ−1(w), δ ◦H−1(w))
F−−−→ (f(x)− ε ◦ F ◦H−1(w), x, δ ◦ F ◦H−1(w))
H−−−→ (f(f(x)− ε ◦ F ◦H−1(w))− ε ◦ F 2 ◦H−1(w),

x, δ ◦ F ◦H−1(w)− δ(x, f−1(x), 0))

Thus the first coordinate function of H ◦ F 2 ◦H−1 is

f(f(x)− ε ◦ F ◦H−1(w))− ε ◦ F 2 ◦H−1(w)

By (4.2.2), (4.2.3) and (4.2.4), we get the following estimation.

f(f(x))− ε ◦ F ◦H−1(w))− ε ◦ F 2 ◦H−1(w)
= f 2(x)− f ′(f(x)) · ε ◦ F ◦H−1(w)−

[
ε(f(x), x, 0)

+ ∂xε(f(x), x, 0) · ε ◦ F ◦H−1(w) + ∂zε(f(x), x, 0) · δ ◦ F ◦H−1(w)
]

+ h. o. t.

= f 2(x)− v ◦ f(x)− [f ′(f(x))− ∂xε(f(x), x, 0)]v(x)

− [f ′(f(x))− ∂xε(f(x), x, 0)] ·
[
∂yε(x, f

−1(x), 0) · (f−1)′(x) · ε ◦H−1(w)
+ ∂zε(x, f

−1(x), 0) · δ ◦H−1(w)
]
− ∂zε(f(x), x, 0) · δ ◦ F ◦H−1(w)

+ h. o. t.

Then the unimodal map, f1(x) of the first component of H ◦ F 2 ◦H−1 is the
following.

f 2(x)− v ◦ f(x)− [f ′(f(x))− ∂xε(f(x), x, 0)] · v(x)

Thus ‖f1(x)− f 2(x)‖ = O(‖ε‖). Moreover, ‖ε1(w)‖ = O
(
‖ε‖2 + ‖ε‖ ‖δ‖

)
.

Let us estimate the third coordinate of H ◦ F 2 ◦H−1. Recall δ1(w) = δ ◦ F ◦
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H−1(w)− δ(x, f−1(x), 0).

δ ◦ F ◦H−1(w)− δ(x, f−1(x), 0)

= δ(x, φ−1(w), δ ◦H−1(w))− δ(x, f−1(x), 0)

= ∂yδ(x, f
−1(x), 0) · (φ−1(w)− f−1(x)) + ∂zδ(x, f

−1(x), 0) · δ ◦H−1(w)
+ h. o. t.

= ∂yδ(x, f
−1(x), 0) · (f−1)′(x) · ε ◦H−1(w) + ∂zδ(x, f

−1(x), 0) · δ ◦H−1(w)
+ h. o. t.

Then ‖δ1‖ is O(‖ε‖ ‖δ‖+ ‖δ‖2).

Define pre-renormalization of F as H ◦ F 2 ◦ H−1 and denote it to be PRF .
With the conjugation of the expanding map Λ(x, y, z) = (sx, sy, sz) for some
s < −1, we define the renormalization of the perturbed Hénon-like map F in
three dimension and denote it to be RF .

The domain of the renormalized map is also B, the domain of F . To recover
the domain of the renormalized map, Dom(PRF ) must be the cube of which
center is the origin and the box Dom(PRF ) is invariant under PRF . Let us
take a closed interval as the small neighborhood of each intervals Jc containing
the critical point of the map x 7→ f(x)− ε(x, y0, z0) where (y0, z0) ∈ Iv. Then
this interval can be extended to the symmetric interval at the 0. Let this
extended closed interval be V ′ and take the square in πxy(B), say 2dB0 such
that each sides are parallel to x and y axes and length of each side is same
as that of V ′. After that let us take H−1(2dB0). Then this region is enclosed
two lines parallel to the x−axis and two curves, f(x) − ε(x, y, 0) = Ci where
i = 0, 1. Furthermore, we can extend this region on the three dimensional
domain with the full height, namely, H−1(2dB0)× Iz in B. Since the domain
of H is necessary to be invariant under F 2, we modify the constants C0 and
C1 such that H−1(2dB0)× Iz is the minimal invariant domain under F 2. Then
the actual domain of PRF is the pillar with the rectangle base of which side’s
ratio is 1 : 1 + O(ε̄). Let us slightly extend the short sides of the rectangular
base to be the square one with the origin as the center. Moreover, let us
restrict the height of this cube to make the cube with the same sides with the
origin as the center and call this cube Dom(PRF ). Afterwards, we define the
domain of the horizontal diffeomorphism H as H−1(Dom(PRF )) and denote
this region to be B1

v .

Let B1
c be F (B1

v). By the construction of Dom(PRF ), Λ(Dom(PRF )) is the
original box domain B where Λ(x, y, z) = (sx, sy, sz) is a scaling map with
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s < −1. Thus we express the domain Dom(PRF ) to be Λ−1(B). Then the
map H−1 from Λ−1(B) to B1

v preserves the planes parallel to xz−plane and
the map F ◦H−1 from Λ−1(B) to B1

c preserves the planes parallel to yz−plane.

H−1 : Λ−1(B) −→ B1
v , (x, y, z) 7→ (φ−1(x, y, z), y, z + δ(y, f−1(y), 0))

F ◦H−1 : Λ−1(B) −→ B1
c , (x, y, z) 7→ (x, φ−1(x, y, z), δ ◦H−1(w))

Since the H−1 is the horizontal map and F ◦H−1 is the vertical map, πx(B
1
v)

and πy(B
1
v) are disjoint from πx(B

1
c ) and πy(B

1
c ) respectively.

Definition 4.2.1 (Renormalization). Let V be the (minimal) closed subinter-
val of Ix such that V × Iv is invariant under H ◦F 2 ◦H−1 and let s : V → I be
the orientation reversing affine rescaling. With the rescaling map Λ(x, y, z) =
(sx, sy, sz), The renormalization of the three dimensional Hénon-like map is
defined as Λ ◦H ◦ F 2 ◦H−1 ◦ Λ−1 on the domain B ≡ Ix × Iv.

RF = Λ ◦H ◦ F 2 ◦H−1 ◦ Λ−1

If RF is also renormalizable, we can define the second renormalization of F
as the renormalization of RF . Then if F is n times renormalizable, then the
nth renormalization is defined successively.

RnF = Λn−1 ◦Hn−1 ◦ (Rn−1F )2 ◦H−1n−1 ◦ Λ−1n−1

where Rn−1F is the (n− 1)thth renormalization of F for n ≥ 1.

Let UJ be the set of the unimodal maps on the interval J and HB is the
set of the perturbed Hénon-like maps on the domain B. Let us assume that
the unimodal map on the interval J ⊂ Ix can be extended on Ix. Then there
exists a natural inclusion from UJ to HB.

ı : UJ ↪→ HB

f(x) 7→ (f(x), x, 0)
(4.2.5)

Thus the degenerate maps can be treated as the one dimensional maps in the
space of the perturbed Hénon-like maps. The renormalized map Rcf of the
unimodal map f is defined as s◦f 2◦s−1(x) for some s < −1. Let the perturbed
Hénon-like map such that ε ≡ 0 and δ ≡ 0 be the degenerate map F•, that
is, F• : (x, y, z) 7→ (f(x), x, 0). The corresponding horizontal diffeomorphism
is the map H• : (x, y, z) 7→ (f(x), y, z). Since the renormalization operator is
defined on the non-diffeomorphic Hénon-like map, the renormalized map RF•
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is the following by the direct calculation.

RF•(w) = Λ ◦ (f 2(x), x, 0) ◦ Λ−1
= (s ◦ f 2 ◦ s−1(x), x, 0) (4.2.6)

Hence, the renormalization operator of the perturbed Hénon-like maps is an
extension of the operator of the unimodal maps. Moreover, Proposition 4.2.1
implies that the unimodal map f1 of RF = (f1−ε1, x, δ1) is an ε perturbation
of Rcf , that is,

‖f1 − Rcf‖ ≤ C‖ε‖ ≤ Cε̄

for some C > 0.

Let the N th renormalized map of F be RNF = (fN − εN , x, δN) for N ≥ 1.
Using the induction with the Proposition 4.2.1, we have

‖fN − RcfN−1‖ ≤ C‖εN−1‖ ≤ Cε̄2
N−1

for some C > 0 depending on f and the domain B. The perturbation de-
creases super exponentially fast as N → ∞. Then the renormalized Hénon-
like map, RNF converges to the fixed point of the renormalization operator,
F∗ = (f∗(x), x, 0) exponentially fast.

Lemma 4.2.2. Let F is infinitely renormalizable Hénon-like map with suf-
ficiently small ‖ε‖ ≤ ε̄ and ‖δ‖ ≤ δ̄. Then for all big enough n ≥ 1, RnF
converge to the degenerate map F∗ = (f∗(x), x, 0) exponentially fast as n→ ∞.

Proof. Let the degenerate map be FfN = (fN , x, 0) where RNF = (fN −
εN , x, δN) and let FRN

c f = (RN
c f, x, 0) where RN

c f is the N th renormalized
map of f for N ≥ 1. Then for big enough N , we get the following estimation.

‖RNF − F∗‖ ≤ ‖RNF − FfN‖+ ‖FfN − FRN
c f‖+ ‖FRN

c f − F∗‖
= ‖(εN , 0, δN)‖+ ‖fN − RN

c f‖+ ‖RN
c f − f∗‖

≤ C2

(
ε̄+ δ̄

)2N
+ ‖fN − RN

c f‖+ C0ρ0

for some C0, C2 > 0 and 0 < ρ0 < 1. From the theory of the renormalization
of the unimodal maps, RNk

c f converges to f∗ exponentilly fast as k → ∞ for
sufficiently large N . Using the adapted metric in [PS], we can take N = 1.
Then for every n ≥ 1, we obtain

‖RnF − F∗‖ ≤ C2

(
ε̄+ δ̄

)2n
+ ‖fn −Rn

c f‖+ C0ρ
n
0

for some C0, C1 > 0 and 0 < ρ0 < 1.
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Moreover,

‖fn − Rn
c f‖ ≤‖fn − Rcfn−1‖+ ‖Rcfn−1 − R2

cfn−2‖+ ‖R2
cfn−2 − R3

cfn−3‖+ · · ·
+ ‖Rm−1

c fn−m+1 −Rm
c fn−m‖+ ‖Rm

c fn−m − Rm+1
c fn−m−1‖+ · · ·

+ ‖Rn−1
c f1 − Rn

c f‖

For sufficiently large m and n−m, by Lemma 8 in [dMP] on the space of the
quadratic-like maps we have C0 distance contraction and by the Main Theorem
on [AMdM] we obtain the Cr contractions, r ≥ 3 .1

‖Rm
c fn−m −Rm+1

c fn−m−1‖+ · · ·+ ‖Rn−1
c f1 −Rn

c f‖ ≤ Cmρ
n−m
m + · · ·+ Cnρ

n
n

(4.2.7)

for some 0 < Ci = O(ε̄2
i

) and 0 < ρi < 1 where i = m,m + 1, . . . , n. The
numbers Cis and ρi are independent of n. Thus the sum (4.2.7) is bounded
above by C1ρ

n−m
1 for some C1 > 0 and 0 < ρ1 < 1. Moreover, by the direct

calculations of each terms we obtain

‖fn − Rcfn−1‖+ ‖Rcfn−1 − R2
cfn−2‖+ · · ·+ ‖Rm−1

c fn−m+1 − Rm
c fn−m‖

≤ Cnε̄
2n−1

+ C2
n−1ε̄

2n−2

+ · · ·+ Cm
n−mε̄

2n−m

(4.2.8)
for some 0 < Ci, i = n−m, . . . , n. For sufficiently big n−m, the sum (4.2.8)
is O(ε̄2

n−m

0 ) for ε̄0 < ε̄. Then ‖fn − Rn
c f‖ ≤ C1ρ

n−m
1 +O(ε̄2

n−m

0 ). Hence,

‖RnF − F∗‖ ≤ C2

(
ε̄+ δ̄

)2n
+ C1ρ

n−m
1 +O(ε̄2

n−m

0 ) + C0ρ
n
0 ≤ Cρn

for some C > 0 and 0 < ρ < 1. Therefore, RnF converges to F∗ exponentially
fast.

In the following sections, we suppress the bound of small norms of ε and δ to
be ε̄, that is, we denote ε̄ = max{ε̄, δ̄}.

4.3 Hyperbolicity of renormalization operator

The hyperbolicity of the renormalization operator at its fixed point was proved
by M. Lyubich in [Lyu] using quadratic-like maps. This theory was for the one

1The theorems of on [dMP] and [AMdM] assumed that the maps are infinitely renormal-
izable with bounded combinotorics. On the [AMdM], the infinitely renormalized unimodal
maps f and g has the same bounded type. We assume that every renormalizable functions
has the type of periodic doubling on this article. This fixed and bounded single combino-
torics is much simpler than the actual hypothesis on [dMP] or [AMdM].
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dimensional complex analytic mappings. This hyperbolicity extended to the
renormalization operator of Cr maps on the interval where r = 3 + α if α is
close to one by de Faria, de Melo and Pinto in [dFdMP]. However, the renor-
malization operator of Cr maps is not differentiable. Thus the linear operator
at the fixed point for hyperbolicity should be established. The contraction or
repulsion along the stable and unstable manifold should be considered in the
much bigger space than the space of the analytic maps.

We assume that every perturbed Hénon-like maps are analytic. In the [Lyu],
Lyubich proved that the renormalization operator at the fixed point has the
one dimensional unstable manifold and codimension one stable manifold on
the complex sense. By Theorem 2.4 and Theorem 3.9 in [dFdMP], the renor-
malization of the real analytic map also has the one dimensional unstable
manifold and codimension one stable manifold. The renormalization operator
R of analytic maps has its derivative and the uniform norm bounds the norm
of the derivative of the analytic operator.2

The renormalization operator of the degenerate maps is embedded under the
natural inclusion from the renormalization operator of the one dimensional
maps in the space of renormalizable Hénon-like map. Moreover, since this
embedded operator is a closed subset of the renormalization of the Hénon-like
maps, the quotient space IB(ε̄)/IIx is defined with the quotient norm where Ix

is the interval as the invariant domain of the renormalizable unimodal maps.
Then the super exponential convergence of ‖ εn‖ and ‖ δn‖ to the zero as
n → ∞ by Proposition 4.2.1 implies the hyperbolicity of the renormalization
operator of the perturbed Hénon-like maps.

Lemma 4.3.1. The degenerate map F∗ is the hyperbolic fixed point of the
renormalization operator R of the perturbed Hénon-like maps. The derivative
of the operator at F∗, DR(F∗) acting on the quotient space TIB(ε̄)/TIIx has
vanishing spectrum.

Proof. Let A = TIB(ε̄)/TIIx . The analytic operator DR(F∗) has the norm,
‖DR(F∗)‖ = O

(
(ε̄+ δ̄)2

n)
by Proposition 4.2.1.

Then the vanishing spectrum says that the stable manifold in IB(ε̄) at
the fixed point F∗, say Ws(F∗) is the extension of the stable manifold at f∗,
Ws(f∗) of the unimodal renormalizable maps with the strong stable directions.
The unstable manifold is not extended and it is a one dimensional analytic
manifold on the space IB(ε̄). Furthermore, the faster convergence than any
exponential convergence of εn and δn keeps the hyperbolicity at the fixed point
F∗.

2M. Lyubich pointed out the uniform norm bounds the norm of all derivatives of the
analytic operator.
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Corollary 4.3.2. At the fixed point of the renormalization, F∗, it has one di-
mensional unstable manifold, Wu(F∗) which intersects transversally the stable
manifold, Ws(F∗)
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Chapter 5

Critical Cantor set

The minimal attracting set for two dimensional infinitely renormalizable Hénon-
like maps is the Cantor set which is the dyadic adding machine. The topolog-
ical construction of the invariant Cantor set of three dimensional Hénon-like
map is exactly same as that for two-dimensional Hénon-like map (Corollary
5.2.3 below). Thus we use the same definition and notions of the two dimen-
sional case in this section. The definitions and notions of the three dimensional
Hénon-like maps are basically identical with the two-dimensional case. See
[CLM].

5.1 Branches

Let Ψ1
v ≡ ψ1

v := H−1 ◦Λ−1 be the coordinate change map which conjugates F 2

to RF on Ψ1
v(B) which is invariant under F 2, and let Ψ1

c ≡ ψ1
c := F ◦ψv. The

subscript v and c are associated to the maps with the critical value and the
critical point respectively. Similarly, let ψ2

v and ψ2
c be the coordinate change

maps conjugating RF to R2F . Let

Ψ2
vv = ψ1

v ◦ ψ2
v , Ψ2

cv = ψ1
c ◦ ψ2

v , Ψ2
vc = ψ1

v ◦ ψ2
c , . . .

Moreover, let us define the coordinate change map of the nth level for any
n ∈ N as following.

Ψn
w
= ψ1

w1
◦ · · · ◦ ψn

wn
, w = (w1, . . . , wn) ∈ {v, c}n

where w = (w1, . . . , wn) is the word of length n such that the element v and
c without any relation. Each element of w is either v or c and W n = {v, c}n
is the n-fold Cartesian product of {v, c}.
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Lemma 5.1.1. Let F ∈ IB(ε̄) for n ≥ 1. There exist C > 0 and a domain
depending only on B and ε̄, on which the derivative of the map Ψn

w
is expo-

nentially shrinking for n ∈ N with σ, that is, ‖DΨn
w
‖ ≤ Cσn for every words

w ∈ W n.

Proof. Recall φ−1(x, y, z) is the first coordinate function of H−1.1

H−1(x, y, z) = (φ−1(x, y, z), y, z + δ(y, f−1(y), 0))

F ◦H−1 = (x, φ−1(x, y, z), δ ◦H−1(w))

Moreover, the equation, H−1 ◦H = id implies that φ−1 ◦H(x, y, z) = x, that
is,

φ−1(f(x)− ε(x, y, z), y, z − δ(y, f−1(y), 0)) = x

and then

∂φ−1

∂x
·
(
f ′(x)− ∂ε

∂x

)
= 1

∂φ−1

∂y
+
∂φ−1

∂x
·
(
−∂ε
∂y

)
+
∂φ−1

∂z
·
(
− d

dy
δ(y, f−1(y), 0)

)
= 0

∂φ−1

∂z
+
∂φ−1

∂x
·
(
−∂ε
∂z

)
= 0

(5.1.1)

Moreover, for sufficiently small ε̄ the perturbation of the one-dimensional map
φ−1y,z(x) is a contraction on the neighbourhood on J in I. Then ‖∂φ−1/∂x‖
is bounded away from 1 on the J × Iv and ‖∂φ−1/∂y‖ and ‖∂φ−1/∂z‖ are
comparable with ‖∂ε/∂y + ∂ε/∂z · dδ/dy‖ and ‖∂ε/∂z‖ respectively. Since
the partial derivatives φ−1 over both y and z are small, the coordinate change
maps, ψ1

v = H−1 ◦ Λ−1 and ψ1
c = F ◦H−1 ◦ Λ−1, are contracting faster than

or equal to Λ−1 by the factor σ(1+O(dist(F, F∗))). Furthermore, the norm of
the maps ψn

w is σ(1 + O(ρn)) for some ρ ∈ (0, 1) for each n ∈ N because RnF
converges to F∗ to exponentially fast. Therefore, the composition Ψn

w
of these

maps are contracting by the number O(σn).

1The first coordinate map ofH−1(w), φ−1(x, y, z) is not the inverse function of the some
function φ(w). However, φ−1(w) is a perturbation of f−1(x). More precisely,

f ◦ φ−1(w) − ε ◦H−1(w) = x
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5.2 Pieces

Define B1
v ≡ B1

v(F ) as ψ
1
v(B) and B1

c ≡ B1
c (F ) as F ◦ψ1

v(B) like the definition
on the Section 4.2. Then F (B1

c ) ⊂ B1
v . If the Hénon-like map F is n times

renormalizable, we can define B1
v(R

nF ) and B1
c (R

nF ) as ψn+1
v (B) and Fn ◦

ψn+1
v (B) respectively for each n ≥ 1. Furthermore, the piece B1

c (F∗) is a part
of the parabolic-like curve of x = f∗(y) and B1

v(F∗) is the rectangular box
which contains rectangular domain of the two dimensional Hénon-like map on
it’s interior.

Let us call the set Bn
w

≡ Bn
w
(F ) = Ψn

w
(B) the pieces of the nth level or nth

generation where w ∈ W n. For each n, the number of pieces are 2n. Moreover,
W n can be a additive group under the following correspondence from W to
the numbers with base 2 of mod 2n.

w 7→
n−1∑

k=0

wk+12
k (mod 2n)

where the symbols v and c are corresponding to 0 and 1 respectively. Let
P : W n → W n be the operation of adding 1 in this group. The following
lemma comes from Lemma 5.3 in [CLM].

Lemma 5.2.1. (1) The pieces for the above maps are nested :

Bn
wν ⊂ Bn−1

w
, w ∈ W n−1, ν ∈ W.

(2) The pieces Bn
w
, w ∈ W are pairwise disjoint.

(3) Under F , the pieces are permuted as following. F (Bn
w
) = Bn

P (w) unless

P (w) = vn. If P (w) = vn, then F (Bn
w
) ⊂ Bn

vn .

b b b

ψ1
v ψ2

v ψnv

RnF

FF

F

F

RF

Figure 5.2.1: Coordinate change ψn
v around the tip at each level
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Then the following diagram is commutative.

B

Ψn
w

��

RnF
// B

Ψn
w

��
Ψn

w
(B)

F 2n

// Ψn
w
(B)

Furthermore, Lemma 5.1.1 implies the following corollary.

Corollary 5.2.2. The diameter of each piece shrinks exponentially fast for
each n ≥ 1, that is, diam(Bn

w
) ≤ Cσn for all w ∈ W n where the constant

C > 0 depend only on B and ε̄.

Define the invariant set of the infinitely renormalizable perturbed Hénon-like
map F as follows.

O ≡ OF =

∞⋂

n=1

⋃

w∈Wn

Bn
w
.

Then O is the invariant Cantor set under F . Since each Ψ of Bn
w
is a diffeo-

morphism on its image, passing the limit with the result of Lemma 5.2.1 we
can show that the constructed Cantor set is invariant under F .

Let us consider the inverse limit of W n, W∞ = lim
←−

W n. The elements of this

set are the infinite sequences (w1w2 . . .) of symbols. This space is the set for-
mal power series of numbers with base 2 when v and c corresponds to 0 and 1
respectively.

w 7→
∞∑

k=0

wk+12
k

Then W∞ is the dyadic group and it is also a Cantor set with the topology
induced by the following metric.

∞∑

i=0

|vi − wi|
2i

where v = (v1v2v3 . . .) and w = (w1w2w3 . . .). For detailed construction of the
dyadic group as a Cantor set, see [BB].
The adding machine P : W∞ → W∞ is the operation of adding 1 in this
group. The non negative integers with base 2 are embedded as the set of finite
numbers in this dyadic group. Moreover, F acts on the critical Cantor set like
the adding machine of the dyadic group.
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Corollary 5.2.3. The map F |O is topologically conjugate to the adding ma-
chine P : W∞ −→ W∞. The conjugacy is the following homeomorphism
h : W∞ −→ O.

h : w = (w1w2 . . .) 7→
∞⋂

n=1

Bn
w1...wn

Furthermore, there exists the unique invariant probability measure µ whose
support is the Cantor set O.

Proof. Consider the following diagram.

W∞

h

��

P
// W∞

h

��
O

F
// O

Take a word w ∈ W . Let wi = (w1w2w3 . . . wi) be the first consecutive i
concatenations of the word w = (w1w2w3 . . .). Then by the Lemma 5.2.1,
F (Bi

wi
) = Bi+1

wi+1 if wi 6= vn. Otherwise, F (Bi
wi
) ⊂ Bi+1

wi+1. Each domain Bi
wi

shrinks to a point of OF when i→ ∞. Then passing the limit

F

(
∞⋂

i=1

Bi
wi

)
=
∞⋂

i=1

Bi+1
wi+1

It means F (h(w)) = h(w+1). Then the above diagram is commutative. If two
words v and w have the different ith letter but not before, then Bi

vi
and Bi

wi

are disjoint from each other. Moreover, every point of O has its word and two
different points of O have the different words by construction of the critical
Cantor set. Hence, h is the bijection. The metric of the dyadic group implies
the (uniform) continuity of h. Furthermore, the same topological structure and
continuous bijection implies that h is a homeomorphism between two compact
spaces.

Remark 5.2.1. The formal power series of the numbers with base 2 comes
from the combinatorics of the renormalization. If the combinatorics of the
renormalization is not period doubling but constant p-tupling, then we can
construct the p-adic additive group of the numbers with base p using the
same notions. Compare [Haz] for the p-tupling renormalization of the two
dimensional Hénon-like map.

We will call the set OF constructed above the critical Cantor set of F .
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5.3 Periodic points and the critical Cantor set

There exists a one-to-one correspondence h between the critical Cantor set and
the set of one sided infinite sequences of dyadic numbers by Corollary 5.2.3.
Thus for every w ∈ O, the unique sequence w ∈ W∞ such that h(w) = w.
This corresponding word w to the point w ∈ O is called the address of w. The
subscript wn of the domain Bn

wn
≡ Ψn

wn
(B) is called the address of the box

domain and the length of the address is called the depth of the box. Similarly,
we can define the address wn of the coordinate change map Ψn

wn
. In this case,

the length of the address is called the level of the coordinate change map.

Let us take a word, w = (w1w2w3 . . . wn . . .) as an address. The word of the
first n concatenations, wn = (w1w2w3 . . . wn) is defined as the subaddress of
the word w.

Proposition 5.3.1. Let F be the infinitely renormalizable Hénon-like map,
namely F ∈ IB(ε̄). Then the box domain Bk

wk
contains the two periodic points

with the period 2k for each k ∈ N. Furthermore, Bk
wk

contains 2n periodic
points with the period 2n+k for every n ∈ N.

Proof. The images of the fixed points on the box domain B(RkF ) under Ψk
wk

for each wk are the periodic points in the boxes Bk
wk

b B which are mutually
disjoint. Then Bk

wk
with the fixed address wk contains two periodic points

with the period 2k. Similarly, each box domain Bn
wn

contains two periodic
points with the period 2n. However, the box of depth k and the depth n is
defined as Bk

wk
≡ Ψk

wk

(
B(RkF )

)
and Bn

wn
≡ Ψk

wk

(
Ψn−k

wn−k
(B(RkF ))

)
for every

n > k and k ∈ N. Hence, each Bk
wk

contains the mutually disjoint 2n−k boxes
Bn

wn
where the address wk is the common subaddress of every addresses wn

and k is the maximal length of the all common subaddresses of wn.

Let the image of the fixed point β1(R
kF ) under Ψk

vk
be βk, the periodic point

under F of which period is 2k. Then all periodic points with the period 2k

are contained in the orbit, Orb(βk, F ) for every k ∈ N. Then we can let the
address of βn be vn+1 which is the sequence of 0s of length n + 1. Recall v
is defined to be act as 0 on the sequence of dyadic numbers on the proof of
Corollary 5.2.2. Ψk

vk
(βi(R

kF )) for i = 0, 1 are the periodic points with minimal
period in the box domain Ψk

vn . Moreover, the address of the periodic points
of the minimal period, Ψk

vk
(βi(R

kF )) for i = 0, 1 on each box domain defined
as follows.

wnv = (w1w2w3 . . . wn v) where i = 1

wnc = (w1w2w3 . . . wn c) where i = 0
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Then there is a bijection between every word with the finite length in
⋃

k≥1W
k

and the set of periodic points, PerF , that is, the set
⋃

k≥1W
k has the addresses

of the every periodic points and each periodic points has the distinguishable
address in

⋃
k≥1W

k.

Lemma 5.3.2. Let F be the infinitely renormalizable Hénon-like map, that
is, F ∈ IB(ε̄) with sufficiently small positive ε̄. Then the set of accumulation
points of periodic points of F is OF . In other words, PerF = PerF ∪OF .

Proof. F has 2 k+1 periodic points with the period 2 k for every k ∈ N+. Thus
if the sequence of the periodic points has the bounded maximal period, then it
is a finite sequence. Since any point of the finite sequence is an isolated point,
it has no accumulation point. Let us take any infinite sequence of periodic
points whose period is unbounded. Every periodic points in the sequence has
the address wnv or wnc for some n ∈ N . Select the single box domain on
the depth one, B1

v or B1
c which contains the infinitely many periodic points.

This selected box domain contains two box domains of the depth two. After
repeating this process, we can find a sequence of the addresses {wnk

| k ∈ N }
such that each address wni

is the subaddress of wni+1
where nk → ∞ as

k → ∞. Then the limit point w has the address of the word w whose length
is infinity and w ∈ OF . Then OF contains the set of accumulation points. For
the reverse inclusion, it suffice to show that for each w ∈ OF there exists a
sequence of the periodic points converging to w. By the construction of OF ,
there exist the sequence of the box domain which converges to w. Each box
domain Bk

wk
contains the periodic points such that the common subadress with

maximal length of every periodic points is wk. Hence, the set of accumulation
points of PerF contains OF .

In the conclusion, we see
PerF ∪OF ⊂ PerF

Furthermore, since every periodic points in PerF is isolated, we obtain

PerF ∪OF = PerF
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Chapter 6

Average Jacobian

Let us consider the average Jacobian of the infinitely renormalizable map F
and show that the biggest Lyapunov exponent is 0 on Theorem 6.0.5.

Let the Jacobian determinant of F at w be JacF (w).

log

∣∣∣∣
JacF (y)

JacF (z)

∣∣∣∣ ≤ C for any y, z ∈ B

by some constant C which is not depending on y or z. Moreover, Lemma
5.1.1 says the diameter of the domain Bn

w
converges to zero exponentially fast.

Then this implies the following lemma.

Lemma 6.0.3 (Distortion Lemma). There exist a constant C and the positive
number ρ < 1 satisfying the following estimate.

log

∣∣∣∣
JacF k(y)

JacF k(z)

∣∣∣∣ ≤ Cρn for any y, z ∈ Bn
w

where k = 1, 2, 22, . . . , 2n

Existence of the unique invariant probability measure, say µ, on OF enable us
to define the average Jacobian.

bF ≡ b = exp

∫

OF

log JacF dµ

On each level n, the measure µ on OF satisfies that µ(Bn
wn

∩ OF ) = 1/2n for
every wn where wn is a word of length n.

Corollary 6.0.4. For any piece of Bn
w
on the level n and any point w ∈ Bn

w
,

JacF 2n(w) = b2
n

(1 +O(ρn))
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where b is the average Jacobian of F for some positive ρ < 1.

Proof. Since

∫

Bn
w

log JacF 2ndµ =

∫

O

log JacF dµ = log b,

there exists a point η ∈ Bn
w
such that log JacF 2n(η) =

log b

µ(Bn
w
)
= 2n log b

For any w ∈ Bn
w
, log JacF 2n(z) ≤ Cρn + log JacF 2n(η), and O(ρn) = log(1 +

O(ρn)) for a fixed constant ρ. Then

log JacF 2n(w) = log(1 +O(ρn)) + log JacF 2n(η)

= log(1 +O(ρn)) · b2n

Therefore JacF 2n(w) = b2
n

(1 +O(ρn))

Three Lyapunov exponents χ0, χ1 and χ2 exist for the three dimensional map.
Let χ0 be the maximal one. Since F is ergodic with respect to the invariant
finite measure µ on the critical Cantor set, we get the following inequality.

|µ|χ(x) ≤
∫

OF

log ‖DF (x)‖ dµ(x)

where |µ| is the total mass of µ on OF .

Theorem 6.0.5. The maximal Lyapunov exponent of F on OF is 0.

Proof. Let µn be 2nµ|Bn
w
, an invariant measure under F 2n and let νn be the

(unique) invariant measure on RnF |ORnF
. Then

2nχ0(F, µ) = χ0(F
2n |Bn

vn
, µn) = χ0(R

nF, νn) ≤
∫

Bn
w

log ‖D(RnF )‖ dνn ≤ C

for every n ∈ N, where C is a constant independent of n. The last inequality
comes from the uniformly bounded C1 norm of derivative of RnF . Then the
maximal Lyapunov exponent χ0 ≤ 0. If χ0 < 0, then the support of µ contains
some periodic cycles by Pesin’s theory. But OF does not contain any periodic
cycle because F acts on OF as a dyadic adding machine. Therefore, χ0 = 0
and the sum of the other exponents, χ1 + χ2, is log b.
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Chapter 7

Universality around the tip

The universality of average Jacobian comes from the asymptotic behavior of
the coordinate change Ψn between renormalized map Fn ≡ RnF and F 2n for
each n ∈ N. Ψn

0 conjugate F 2n to Fn. Thus using the chain rule and Corollary
6.0.4, JacFn is the product of the average Jacobian of F 2n and the ratio of the
JacΨn

0 at w and Fn(w).

JacFn(w) = JacF 2n(Ψn
0 (w))

JacΨn
0(w)

JacΨn
0(Fn(w))

= b2
n JacΨn

0(w)

JacΨn
0(Fn(w))

(1 + O(ρn)).

(7.0.1)

where Ψn
0 is Ψn

vn .

Then on Theorem 7.5.1 below, we see that the universality of the Jacobian
of the coordinate change map Ψn

0 implies the universality of JacFn. The
asymptotic expression of non-linear part of Ψn

0 is essential to the universality
of JacΨn

0 .

7.1 Asymptotic of Ψn
k for fixed kth level

For every infinitely renormalizable Hénon-like map F , we have a well defined
tip:

{τ} = {τF} ≡
⋂

n≥0

Bn
vn (7.1.1)

where the pieces Bn
w are defined in the previous sections. Let us denote the

tip of the renormalizations, τk = τ(RkF ) for each k ∈ N. In order to simplify
the notation, we would let the tip move to the origin as a fixed point of each
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Ψ1
v(R

kF ) for every k ∈ N by conjugation of the appropriate translations. Let
us define Ψk+1

k .

Ψk ≡ Ψk+1
k = Ψ1

v(R
kF ) (w + τk+1)− τk (7.1.2)

Let the derivative of the map defined Ψk on (7.1.2) at 0 be Dk ≡ Dk+1
k .

Dk+1
k ≡ Dk = DΨk+1

k (0) = D(Ψ1
v(R

kF ))(τk+1)

= D(Tk ◦Ψ1
v(R

kF ) ◦ T−1k+1)(0)

where Tk : w 7→ w−τk for each k. Then we can decompose Dk into the matrix

of which diagonal entries are 1s and the diagonal matrix.

Dk =




1 tk uk
1
dk 1






αk

σk
σk


 =




αk tkσk ukσk
σk
dkσk σk


 (7.1.3)

Moreover, we can express Ψk+1
k with the linear and non-linear parts.

Ψk+1
k ≡ Ψk(w) = Dk ◦ (id+sk)(w) (7.1.4)

where w = (x, y, z) and sk(w) = (sk(w), 0, rk(y)) = O(|w|2) near the origin.

Comparing the derivative of H−1 ◦Λ−1 at 0 and Dk and (5.2.2), we obtain the
following estimates

tk = ∂yφ
−1
k (τk+1) = ∂xφ

−1
k (τk+1) · ∂yεk(τk) + ∂zφ

−1
k (τk+1) · dk = O(ε̄2

k

)

uk = ∂zφ
−1
k (τk+1) = ∂xφ

−1
k (τk+1) · ∂zεk(τk) = O(ε̄2

k

)

and dk =
d

dy
δk
(
πy(τk+1), f

−1
k (πy(τk+1)), 0

)
= O(ε̄2

k

)

(7.1.5)
where φ−1k (w) = πx ◦ H−1k (w). Furthermore, σk = −σ

(
1 +O(ρk)

)
and αk =

σ2
(
1 +O(ρk)

)
for some ρ ∈ (0, 1) because ∂xφ

−1
k exponentially converges to σ

uniformly as k → ∞.

Lemma 7.1.1. Let sk be the function defined on (7.1.4). For each k ∈ N

(1) | ∂xsk| = O(1), | ∂ysk| = O(ε̄2
k

), | ∂zsk| = O(ε̄2
k

)
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(2) | ∂2xxsk| = O(1), | ∂2xysk| = O(ε̄2
k

), | ∂2yysk| = O(ε̄2
k

)

(3) | ∂2yzsk| = O(ε̄2
k

), | ∂2zxsk| = O(ε̄2
k

), | ∂2zzsk| = O(ε̄2
k

)

(4) | rk(y)| = O(ε̄2
k

), | r′k(y)| = O(ε̄2
k

), |r′′k(y)| = O(ε̄2
k

)

Proof. Ψk has the two expressions, Dk ◦ (id+sk)(w) and Tk ◦H−1k ◦Λk ◦ T−1k+1.
That is,

Ψk = Dk ◦ (id+sk)(w)

= Tk ◦H−1k ◦ Λk ◦ T−1k+1 = H−1k ◦ Λk(w + τk+1)− τk

In order to obtain the asymptotic behavior of the non-linear part of Ψk, we
need to compare the third and the first coordinates of these two expressions
of Ψk. Let τk = (τxk , τ

y
k , τ

z
k ) for each k ≥ 1.

Let us compare the third coordinates of these two expression of Ψk.

σk(dky + z + rk(y)) = πz
(
H−1k ◦ Λk(w + τk+1)− τk

)

= σk(z + τ zk+1) + δ
(
σk(y + τ yk+1), f

−1(σk(y + τ yk+1)), 0
)

− τ zk

Thus we have the following equation.

σkrk(y) = −σkdky + δ
(
σk(y + τ yk+1), f

−1(σk(y + τ yk+1)), 0
)
+ σkτ

z
k+1 − τ zk

Then | rk(y)| ≤ C
(
| dky| + ‖δ‖C0

)
for some C > 0. The domain is bounded

and ‖δ‖ is O(ε̄2
n

). Hence, |rk(y)| = O(ε̄2
k

). Moreover,

r′k(y) = −dk +
d

dy
δ
(
σk(y + τ yk+1), f

−1(σk(y + τ yk+1), 0
)

Then | r′k(y)| = O(ε̄2
k

). The second derivative | r′k(y)| is also controlled by
‖δ‖C2. Then | r′′k(y)| = O(ε̄2

k

).

Comparison of first coordinates implies the following.

αkx+ αksk(w) + σktky + σk(ukz + rk(y)) = φ−1k (σkw + σkτk+1)− πx(τk).
(7.1.6)

It implies the following equations.
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∂xsk = σk∂xφ
−1
k − αk

∂ysk = σk∂yφ
−1
k − σktk − σkr

′
k(y)

∂zsk = σk∂zφ
−1
k − σkuk

(7.1.7)

The norm of εk and δk is uniformly bounded above on the domain B(Fk).
Then by the equations (5.1.1), | ∂xφ−1k | = O(1), | σk ∂yφ−1k | = O

(
ε̄2

k)
and

| σk ∂zφ−1k | = O
(
ε̄2

k)
. Moreover, by (7.1.5) tk and uk is O

(
ε̄2

k)
. Hence,

| ∂xsk| = O(1), | ∂ysk| = O
(
ε̄2

k)
and | ∂zsk| = O

(
ε̄2

k)
.

By the above equation (7.1.7), each second partial derivatives of sk are com-
parable with the second partial derivatives of φ−1 over the same variables be-
cause |r′′k(y)| = O

(
ε̄2

k)
. When calculating each partial derivatives, we obtain

the bounds of each second partial derivatives of φ−1 is O
(
ε̄2

k)
. For example,

the second equation of (5.1.1)

φ−1y + φ−1x · (−εy) + φ−1z ·
(
− d

dy
δ(y, f−1(y), 0)

)
= 0

implies that

φ−1yy + φ−1xy · (−εy) + φ−1x · (−εyy) + φ−1zy ·
(
− d

dy
δ(y, f−1(y), 0)

)

+ φ−1z ·
(
− d2

dy2
δ(y, f−1(y), 0)

)
= 0

Then C2 norms of ε and δ, each bounds of first and second partial derivatives
of φ−1 except φ−1yy itself imply that the bounds of |φ−1yy | is O

(
ε̄2

k)
.

7.2 The estimation of non linear part Snk from

level k to the fixed level n

We consider the behavior of the coordinate change map from kth level to nth
level. Let

Ψn
k = Ψk ◦ · · · ◦Ψn−1, Bn

k = ImΨn
k

By Lemma 5.1.1,

diam(Bn
k ) = O(σn−k) for k < n
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Then combining Lemma 5.1.1 and Lemma 7.1.1, we have the following corol-
lary.

Corollary 7.2.1. For each w ∈ Bn
k where k < n, we have

|∂xsk(w)| = O(σn−k) |∂ysk(w)| = O
(
ε̄2

k

σn−k
)

|∂zsk(w)| = O
(
ε̄2

k

σn−k
)

|rk(y)| = O
(
ε̄2

k

σn−k
)

|r′k(y)| = O
(
ε̄2

k

σn−k
)

Since the origin is the fixed point of each Ψj and Dj is Ψj(0) for every k ≤
j ≤ n, we can let the derivative of Ψn

k at the origin be the composition of
consecutive Dis for k ≤ i ≤ n− 1.

Dn
k = Dk ◦Dk+1 ◦ · · · ◦Dn−1

We can decompose Dn
k to two matrices, the matrix whose diagonal entries are

ones and the diagonal matrix.

Lemma 7.2.2. The derivative of Ψn
k at the origin, Dn

k is decomposed the sheer
and scaling parts as follows.

Dn
k =




1 tn, k un, k

1
dn, k 1






αn, k

σn, k
σn, k




Moreover, αn, k = (σ2)n−k(1+O(ρk)) and σn,k = (−σ)n−k(1+O(ρk)) for some
ρ ∈ (0, 1). Each tn, k, un, k and dn, k are comparable with the tk+1, k, uk+1, k

and dk+1, k respectively and converges to the numbers t∗, k, u∗, k and d∗, k super
exponentially fast as n→ ∞.

Proof. Using the definition of each derivatives of Ψj on (7.1.3) at the fixed
point zero, we obtain the following.

Dn
k =

n−1∏

j=k

Dj =
n−1∏

j=k



αj tj σj uj σj

σj
dj σj σj



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By the straightforward calculation,

Dn
k =




n−1∏

j=k

αj Tn, k Un, k

n−1∏

j=k

σj

n−1∏

j=k

σj

n−1∑

j=k

dj

n−1∏

j=k

σj




(7.2.1)

where

Un, k = σk σk+1 σk+2 · · ·σn−2 σn−1 uk
+ αk σk+1 σk+2 · · ·σn−2 σn−1 uk+1

+ αk αk+1 σk+2 · · ·σn−2 σn−1 uk+2

...

+ αk αk+1 αk+2 · · ·αn−2 σn−1 un−1

Tn, k

= σk σk+1 σk+2 · · ·σn−2 σn−1
[

uk (dk+1 + dk+2 + dk+3 + · · ·+ dn−1) + tk
]

+ αk σk+1 σk+2 · · ·σn−2 σn−1
[
uk+1 ( dk+2 + dk+3 + · · ·+ dn−1) + tk+1

]

+ αk αk+1 σk+2 · · ·σn−2 σn−1
[
uk+2 ( dk+3 + · · ·+ dn−1) + tk+2

]

...

+ αk αk+1 αk+2 · · ·αn−2 σn−1
[
un−1 + tn−1

]

Then we have the followings.

σn, k =

n−1∏

j=k

σj =

n−1∏

j=k

(−σ)(1 +O(ρj)) = (−σ)n−k(1 +O(ρk))

αn, k =
n−1∏

j=k

αj =
n−1∏

j=k

σ2(1 +O(ρj)) = σ2(n−k)(1 +O(ρk))

(7.2.2)

By the definition of dn, k and (7.2.2), each components of the sheer part and
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the scaling part are separated.

dn, k =
n−1∑

j=k

dj

un, k =
n−1∑

j=k

(−σ)j−kuj (1 +O(ρk))

tn, k =
n−1∑

j=k

(−σ)j−k
[
uj

n−2∑

i=j

di+1 + un−1 + tj

]
(1 +O(ρk))

(7.2.3)

Since dj = O
(
ε̄2

j)
, uj = O

(
ε̄2

j)
and tj = O

(
ε̄2

j)
for each j ∈ N, each terms

of the series in (7.2.3) shrinks super exponentially fast. Then the sum dn, k,
un, k and tn, k are comparable with first terms of each series. Moreover, dn, k,
un, k and tn, k converges to some numbers d∗, k, u∗, k and t∗, k as n → ∞ super
exponentially fast respectively.

After reshuffling of Ψn
k we can factor out Dn

k from the map Ψn
k . Then we have

Ψn
k = Dn

k ◦ (id+Sn
k) (7.2.4)

where Sn
k = (Sn

k (w), 0, R
n
k(y)) = O(|w|2) near the origin. When we calculate

directly the composition from H−1k ◦Λ−1k to H−1n−1 ◦Λ−1n−1, R
n
k depends only on

y, the second coordinate of the point.

Proposition 7.2.3. The third coordinate of Sn
k , R

n
k(y) has the following

asymptotic.

|Rn
k | = O

(
ε̄2

k)
, |(Rn

k)
′| = O

(
ε̄2

k

σn−k
)

and |(Rn
k)
′′| = O

(
ε̄2

k

(σ2)n−k
)

for all k < n.

Proof. The proof comes from the recursive formula between each partial deriva-
tives of Sn

k and Sn
k+1. So before proving this lemma we need some intermediate

calculations. For a point w = (x, y, z) ∈ B, let

wn
k+1 =




xnk+1

ynk+1

znk+1


 = Ψn

k+1(w) ∈ Bn−k
vn−k(R

n−kF )
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By (7.2.4), we have




xnk+1

ynk+1

znk+1


 =




αn, k+1 σn, k+1 · tn, k+1 σn, k+1 · un, k+1

σn, k+1

σn, k+1 · dn, k+1 σn, k+1







x+ Sn
k+1(w)

y

z +Rn
k+1(y)




Then each coordinate of wn
k+1 are

xnk+1 = αn, k+1(x+ Sn
k+1(w)) + σn, k+1tn, k+1 · y + σn, k+1un, k+1(z +Rn

k+1(y))

ynk+1 = σn, k+1 · y
znk+1 = σn, k+1 dn, k+1 · y + σn, k+1(z +Rn

k+1(y))
(7.2.5)

Moreover, for any fixed n > k the recursive formula for k is

Dn
k ◦ (id+Sn

k) = Ψn
k = Ψk ◦Ψn

k+1 = Dk ◦ (id+sk) ◦Ψn
k+1

= Dn
k ◦ (id+Sn

k+1) +Dk ◦ sk ◦Ψn
k+1

Thus Ψn
k(w) = Dn

k ◦ (id+Sn
k+1)(w) +Dk ◦ sk(wn

k+1)

(7.2.6)

and note that

Dk ◦ sk(wn
k+1) =




αk tkσk ukσk

σk

dkσk σk







sk(w
n
k+1)

0

rk(y
n
k+1)



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Moreover, the first partial derivatives of each coordinate are

∂xnk+1

∂x
= αn, k+1

(
1 +

∂Sn
k+1

∂x
(w)

)

∂xnk+1

∂y
= αn, k+1

∂Sn
k+1

∂y
(w) + σn, k+1tn, k+1 + σn, k+1un,k+1(R

n
k+1)

′(y)

∂xnk+1

∂z
= αn, k+1

∂Sn
k+1

∂z
(w) + σn, k+1un,k+1

∂ynk+1

∂y
=
∂znk+1

∂z
= σn, k+1

∂znk+1

∂y
= σn,k+1dn, k+1 + σn, k+1(R

n
k+1)

′(y)

∂ynk+1

∂x
=
∂ynk+1

∂z
=
∂znk+1

∂x
= 0

(7.2.7)

In order to estimate of Rn
k(y), compare the third coordinates of the functions

in (7.2.6) (and recall σ−1 = λ). Then

znk = σn, k dn, k · y + σn, k(z +Rn
k(y))

= σn, k dn, k · y + σn, k(z +Rn
k+1(y)) + σk · rk(ynk+1)

Then Rn
k(y) = Rn

k+1(y) + σ−1n, k · σk · rk(ynk+1)

where σ−1n, k · σk is (−λ)n−k−1(1 + O(ρk)). By (7.2.7) , the recursive relation
between Rn

k(y), R
n
k+1(y) and the bounds of rk(y

n
k+1), we obtain the following

formulas.

Rn
k(y) = Rn

k+1(y) +O
(
(−λ)n−k−1rk(ynk+1)

)

(Rn
k)
′(y) = (Rn

k+1)
′(y) +O

(
r′k(y

n
k+1)

)

and (Rn
k)
′′(y) = (Rn

k+1)
′′(y) +O

(
σn−k · r′′k(ynk+1)

)

Hence, by the equation (7.2.5) and the chain rule

|Rn
k | ≤ |Rn

k+1|+K0ε̄
2k

|(Rn
k)
′| ≤ |(Rn

k+1)
′|+K1ε̄

2kσn−k

|(Rn
k)
′′| ≤ |(Rn

k+1)
′′|+K2ε̄

2k(σ2)n−k
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for all k < n. Then,

|Rn
k | = O(ε̄2

k

),

|(Rn
k)
′| = O(ε̄2

k

σn−k)

and |(Rn
k)
′′| = O(ε̄2

k

(σ2)n−k) for all k < n

Lemma 7.2.4. For k < n we have

(1) |∂xSn
k | = O(1), |∂ySn

k | = O(ε̄2
k

), |∂zSn
k | = O(ε̄2

k

)

(2) |∂2xySn
k | = O(ε̄2

k

σn−k), |∂2xzSn
k | = O(ε̄2

k

σn−k)

(3) |∂2yzSn
k | = O(ε̄2

k

), |∂2zzSn
k | = O(ε̄2

k

)

Proof. Compare the first coordinates of Ψn
k in (7.2.6). Thus

xnk = αn, k(x+ Sn
k (w)) + σn, k tn, k · y + σn, k un, k

(
z +Rn

k(y)
)

= αn, k(x+ Sn
k+1(w)) + σn, k tn, k · y + σn, k un, k

(
z +Rn

k+1(y)
)

+ αk · sk(wn
k+1) + uk · rk(ynk+1)

Then we obtain the recursive formula for Sn
k .

Sn
k (w) = Sn

k+1(w) + α−1n, kαk · sk(wn
k+1) + α−1n, kσn, k un, k

(
Rn

k+1(y)− Rn
k(y)

)

+ α−1n, k uk · rk(ynk+1)

Let us take the first partial derivatives of each side of above equation and

use (7.2.7). Then we can have the recursive formulas of each first partial
derivatives of Sn

k (w).
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∂Sn
k

∂x
=
∂Sn

k+1

∂x

(
1 +

∂sk
∂xnk+1

)
+

∂sk
∂xnk+1

∂Sn
k

∂y
=

(
1 +

∂sk
∂xnk+1

)
∂Sn

k+1

∂y
+K1λ

n−k−1

[(
tn, k+1 + un, k+1 · (Rn

k+1)
′(y)
) ∂sk
∂xnk+1

+
∂sk
∂ynk+1

+
(
dn, k+1 + (Rn

k+1)
′(y)
) ∂sk
∂znk+1

]

+K2λ
n−kun, k

(
(Rn

k+1)
′(y)− (Rn

k)
′(y)
)
+K3λ

n−k+1uk · r′k(yk+1
n )

∂Sn
k

∂z
=

(
1 +

∂sk
∂xnk+1

)
∂Sn

k+1

∂z
+K1λ

n−k−1

[
un, k+1

∂sk
∂xnk+1

+
∂sk
∂znk+1

]

where α−1n, k · αk · σn, k+1 = K1(−λ)n−k−1, α−1n, k · σn, k = K2(−λ)n−k and α−1n, k ·
σn, k+1 = K3(−λ)n−k+1.

By Corollary 7.2.1 and Proposition 7.2.3 , we have the following estimation

∣∣∣∣
∂sk
∂xnk+1

∣∣∣∣ = O(σn−k),

∣∣∣∣
∂sk
∂ynk+1

∣∣∣∣ = O(ε̄2
k

σn−k),

∣∣∣∣
∂sk
znk+1

∣∣∣∣ = O(ε̄2
k

σn−k)

Moreover, | tn, k|, |un, k| and |dn, k| are O(ε̄2k). With all these facts, the bounds
of each partial derivatives of Sn

k are on the following.

∣∣∣∣
∂Sn

k

∂x

∣∣∣∣ ≤(1 +O(ρn−k))

∣∣∣∣
∂Sn

k+1

∂x

∣∣∣∣+ Cσn−k

∣∣∣∣
∂Sn

k

∂y

∣∣∣∣ ≤
(
1 +O(ρn−k)

) ∣∣∣∣
∂Sn

k+1

∂y

∣∣∣∣ + Cε̄2
k

∣∣∣∣
∂Sn

k

∂z

∣∣∣∣ ≤
(
1 +O(ρn−k)

) ∣∣∣∣
∂Sn

k+1

∂z

∣∣∣∣ + Cε̄2
k

for some constant C > 0 and ρ ∈ (0, 1).

Hence, using above recursive formulas we have

∣∣∣∣
∂Sn

k

∂x

∣∣∣∣ = O(σ),

∣∣∣∣
∂Sn

k

∂y

∣∣∣∣ = O(ε̄2
k

) and

∣∣∣∣
∂Sn

k

∂z

∣∣∣∣ = O(ε̄2
k

)

for all k < n.
For later use let us calculate the second partial derivatives of wn

k+1 using (7.2.7).
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The second partial derivatives are

∂2xnk+1

∂x2
= αn, k+1

∂2Sn
k+1

∂x2
(w),

∂2xnk+1

∂xy
= αn, k+1

∂2Sn
k+1

∂xy
(w)

∂2xnk+1

∂xz
= αn, k+1

∂2Sn
k+1

∂xz
(w)

∂2xnk+1

∂y2
= αn, k+1

∂2Sn
k+1

∂y2
(w) + σn, k+1un, k+1(R

n
k+1)

′′(y)

∂2xnk+1

∂yz
= αn, k+1

∂2Sn
k+1

∂yz
(w),

∂2znk+1

∂y2
= σn, k+1(R

n
k+1)

′′(y)

(7.2.8)

and other second order partial derivatives are identically 0.

The second partial derivatives of Sn
k are the following.

∂2Sn
k

∂xy
=

(
1 +

∂sk
∂xnk+1

)
∂2Sn

k+1

∂xy
+ αn, k+1

(
1 +

∂Sn
k+1

∂x

)
∂2sk

∂(xnk+1)
2

∂Sn
k+1

∂y

+ σn, k+1

(
1 +

∂Sn
k+1

∂x

)[(
tn, k+1 + un, k+1(R

n
k+1)

′(y)
) ∂2sk
∂(xnk+1)

2

+
∂2sk

∂xnk+1y
n
k+1

+
(
dn, k+1 + (Rn

k+1)
′(y)
) ∂2sk
∂xnk+1z

n
k+1

]

∂2Sn
k

∂xz
=

(
1 +

∂sk
∂xnk+1

)
∂2Sn

k+1

∂xz
+ αn, k+1

(
1 +

∂Sn
k+1

∂x

)
∂Sn

k+1

∂z

+ σn, k+1

(
1 +

∂Sn
k+1

∂x

)
·
[
un, k+1

∂2sk
∂(xnk+1)

2
+

∂2sk
∂xnk+1z

n
k+1

]
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∂2Sn
k

∂yz
=

(
1 +

∂sk
∂xnk+1

)
∂2Sn

k+1

∂yz
+

[
αn, k+1

∂Sn
k+1

∂z

∂Sn
k+1

∂y
+ σn, k+1un, k+1

∂Sn
k+1

∂y

+ σn, k+1

(
tn, k+1 + un, k+1(R

n
k+1)

′(y)
)(∂Sn

k+1

∂z
+K1(−λ)n−k−1un, k+1

)]

· ∂2sk
∂(xnk+1)

2
+ σn, k+1

(
∂Sn

k+1

∂z
+K1(−λ)n−k−1un, k+1

)
∂2sk

∂xnk+1y
n
k+1

+ σn,k+1

[
∂Sn

k+1

∂y
+
(
dn, k+1 + (Rn

k+1)
′(y)
)∂Sn

k+1

∂z

+K4

(
tn, k+1 + un, k+1dn, k+1 + 2un, k+1(R

n
k+1)

′(y)
) ] ∂2sk
∂xnk+1z

n
k+1

+K4
∂2sk

∂ynk+1z
n
k+1

+K4

(
dn, k+1 + (Rn

k+1)
′(y)
) ∂2sk
∂(znk+1)

2

∂2Sn
k

∂z2
=

(
1 +

∂sk
∂xnk+1

)
∂2Sn

k+1

∂z2
+

(
σn, k+1un, k+1

∂Sn
k+1

∂z
+K4u

2
n,k+1

)
∂2sk

∂(xnk+1)
2

+

(
σn, k+1

∂Sn
k+1

∂z
+ 2K4un, k+1

)
∂sk

∂xnk+1z
n
k+1

+K4
∂2sk

∂(znk+1)
2

where K4 = α−1n, kαk σ
2
n, k+1 = O(1).

By Lemma 7.1.7, Corollary 7.2.1, and Proposition 7.2.3 , the bounds of each
second derivatives of sk is the following

∣∣∣∣
∂2sk

∂(xnk+1)
2

∣∣∣∣ = O(σn−k),

∣∣∣∣
∂2sk
∂uv

∣∣∣∣ = O(ε̄2
k

σn−k)

where u, v = xnk+1, y
n
k+1, z

n
k+1 but both u and v are not xnk+1 simultaneously.

With the bounds of first partial derivatives of sk, the estimation of | tn, k|, |un, k|
and |dn, k| and the bounds of second derivatives of sk, we have the bounds of
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second derivatives of Sn
k as follows.

∣∣∣∣
∂2Sn

k

∂xy

∣∣∣∣ ≤
(
1 +O(ρn−k)

) ∣∣∣∣
∂2Sn

k+1

∂xy

∣∣∣∣ + Cε̄2
k

σn−k

∣∣∣∣
∂2Sn

k

∂xz

∣∣∣∣ ≤
(
1 +O(ρn−k)

) ∣∣∣∣
∂2Sn

k+1

∂xz

∣∣∣∣ + Cε̄2
k

σn−k

∣∣∣∣
∂2Sn

k

∂yz

∣∣∣∣ ≤
(
1 +O(ρn−k)

) ∣∣∣∣
∂2Sn

k+1

∂yz

∣∣∣∣ + Cε̄2
k

∣∣∣∣
∂2Sn

k

∂z2

∣∣∣∣ ≤
(
1 +O(ρn−k)

) ∣∣∣∣
∂2Sn

k+1

∂z2

∣∣∣∣ + Cε̄2
k

Hence, |∂2xySn
k | = O(ε̄2

k

σn−k), |∂2xzSn
k | = O(ε̄2

k

σn−k), |∂2yzSn
k | = O(ε̄2

k

), and

|∂2zzSn
k | = O(ε̄2

k

).

7.3 Universal properties of the scaling map Ψ
n
k

On the following Lemma 7.3.3, we would show that the non-linear part of
the coordinate change map id+S(x, y, z) is the small perturbation of the one-
dimensional universal function. The content of this section is to rephrase some
parts of the section 7 in [CLM].

Recall the one dimensional map f∗ : I → I is the fixed point of the (periodic
doubling) renormalization operator of the unimodal maps, namely, Rf∗ = f∗.
Let the critical point of f∗ be c∗ and I = [−1, 1]. Also assume that f∗(c∗) = 1
and f 2

∗ (c∗) = −1. Let us take the intervals J∗c = [−1, f 4
∗ (c∗)] and J∗v =

f∗(J
∗
c ) = [f 3

∗ (c∗), 1]. Then these intervals are the smallest renormalization
invariant intervals under f 2

∗ around the critical point and the critical value
respectively. Observe that the critical point c∗ is in J

∗
c and f∗(J

∗
v ) = J∗c .

Let the onto map s : J∗c → I be the orientation reversing affine rescaling.
Thus s ◦ f∗ : J∗v → [−1, 1] is an expanding diffeomorphism. We can consider
the inverse contraction

g∗ : I → J∗v , g∗ = f−1∗ ◦ s−1

where f−1∗ is the branch of the inverse function which maps J∗c onto J∗v . The
map g∗ is called the presentation function and it has the unique fixed point at
1.

59



By the definition of g∗ implies that

f 2
∗ |J∗v = g∗ ◦ f∗ ◦ (g∗)−1

Then by the appropriate rescaling of the presentation function, g∗, we can
define the renormalization at the critical value v, Rn

vf∗. Inductively we can
define gn∗ on the smallest interval J∗v (n) containing the critical value 1 with
period 2n. Let Gn

∗ : I → I be the diffeomorphism of the rescaled map of gn∗ .

Then the fact that g∗ is the contraction implies the existence of the limit.

u∗ = lim
n→∞

Gn
∗ : I → I

and the convergence is exponentially fast in C3 topology.

Moreover, we see the following lemmas in [CLM].

Lemma 7.3.1 (Lemma 7.1 in [CLM]). For every n ≥ 1

(1) J∗v (n) = gn∗ (I)

(2) Rn
vf∗ = Gn

∗ ◦ f∗ ◦ (Gn
∗ )
−1

(3) u∗ ◦ f∗ = f ∗ ◦ u∗
Lemma 7.3.2 (Lemma 7.3 in [CLM]). Assume that there is the sequence of
smooth functions gk : I → I, k = 1, 2, . . . , n such that ‖gk − g∗‖C3 ≤ Cρk

where the g∗ = limk→∞ gk for some constant C > 0 and ρ ∈ (0, 1). Let
gnk = gk ◦ · · · ◦ gn and let Gn

k = ank ◦ gnk : I → I, where ank is the affine rescaling
of Im gnk to I. Then ‖Gn

k − Gn−k
∗ ‖C1 ≤ C1ρ

n−k, where C1 depends only on ρ
and C.

Let us normalize the functions u∗ and g∗ which have the fixed point at the
origin and the derivatives at the origin is 1. Let

v∗(x) =
u∗(x+ 1)− 1

u′∗(1)

Abusing notation, we denote the normalized function of g∗(x) to be also the
g∗(x) in the following lemma.

Lemma 7.3.3. There exists the positive constant ρ < 1 such that for all k < n
and for every y ∈ Iy and z ∈ Iz

| id+Sn
k ( · , y, z)− v∗( · )| = O(ε̄2

k

y + ε̄2
k

z + ρn−k)

and |1 + ∂xS
n
k ( · , y, z)− v′∗( · )| = O(ρn−k)
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Proof. The map id+Sn
k ( · , y, z) is the normalized function of Ψn

k such that the
derivative at the origin is the identity map, id, and v∗( · ) is also the normalized
map of u∗, which is the conjugation of the renormalization fixed point at the
critical point and the critical value in Lemma 7.3.1. Thus the normalized
map, id+Sn

k ( · , 0, 0) and the one dimensional map, Gn
∗ converge to the same

function v∗( · ) as n → ∞ because the critical value of f and the tip of F
moved to the origin as the fixed point of each function gn∗ by the appropriate
affine conjugation.

By Lemma 4.2.2

distC3( id+sk( · , 0, 0), g∗( · )) = O(ρk)

and by Lemma 7.3.2, we obtain

distC1( id+Sn
k ( · , 0, 0), Gn−k

∗ ( · )) = O(ρn−k) (7.3.1)

Since the Gn
∗ → v∗ exponentially fast, we have the exponential convergence of

the function id+Sn
k ( ·, 0, 0) to v∗( · ). Moreover, by Lemma 7.2.4 we have

|∂ySn
k | = O(ε̄2

k

), |∂zSn
k | = O(ε̄2

k

)

Hence, the above asymptotic and the exponential convergence at the origin
prove the first part of the lemma. Furthermore, C1 convergence of (7.3.1)
implies that

| 1 + ∂xS
n
k ( · , 0, 0)− v′∗( · )| = O(ρn−k)

where ρ ∈ (0, 1).

7.4 The estimation of the quadratic part of Snk
for n

We estimate the asymptotic of Sn
k using the estimation of the partial deriva-

tives and recursive formulas. Then it implies that the estimation of the asymp-
totic of the non-linear part of Ψn

k as n → ∞. In order to simplify notations,
we would treat the case k = 0 and consider the behaviour of Sn

0 instead of Sn
k .

Lemma 7.4.1. The following asymptotic is true

|[ x+ Sn
0 (x, y, z)]− [ v∗(x) + aF, 1 y

2 + aF, 2 yz + aF, 3 z
2]| = O(ρn)

where constants |aF,1|, |aF,2| |aF, 3| are O(ε̄) for some ρ ∈ (0, 1).
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Remark 7.4.1. The notations tn+1, n, un+1, n and dn+1, n are simplified as tn, un
and dn, which is O(ε̄2

n

) like the notations used in (7.1.3) . Moreover, factors
of dilation parts, αn+1, n, σn+1, n are abbreviated as αn, σn respectively. Thus
αn = σ2(1 +O(ρn)) and σn = −σ(1 +O(ρn)). Using the similar abbreviation,
Dn denote Dn+1

n and sn is the sn+1
n .

Proof. For any fixed k ≥ 0, the recursive formula for n > k comes from the
Ψn+1

k = Ψn
k ◦Ψn+1

n . Thus

Sn+1
k (w) = sn(w) +D−1n ◦ Sn

k ◦Dn ◦ (id+sn)(w) (7.4.1)

Let k = 0 for simplicity, and compare each coordinates of the both sides. Then

(Sn+1
0 (w), 0, Rn+1

0 (y))

= (sn(w), 0, rn(y)) +




α−1n α−1n (−tn + dnun) −α−1n un

σ−1n

−σ−1n dn σ−1n







Sn
0 (w)

0

Rn
0 (y)




◦




αn σntn σnun

σn

σndn σn







x+ sn(w)

y

z + rn(y)




By the direct calculation,

(Sn+1
0 (w), 0, Rn+1

0 (y))

= (sn(w), 0, rn(y)) +

(
1

αn

Sn
0 (w)−

1

αn

unR
n
0 (y), 0,

1

σn
Rn

0 (y)

)
◦

(
αn(x+ sn(w)) + σntny + σnun(z + rn(y)), σny, σndny + σn(z + rn(y)

)

= (sn(w), 0, rn(y))

+

(
1

αn

Sn
0

(
αn(x+ sn(w)) + σntny + σnun(z + rn(y)), σny,

σndny + σn(z + rn(y))
)
− 1

αn

unR
n
0 (σny), 0,

1

σn
Rn

0 (σny)

)

Firstly, let us compare the third coordinates of each side of the above equation.
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Using the Taylor’s expansion and Lemma 7.1.1, we obtain

Rn+1
0 (y) = rn(y) +

1

σn
Rn

0 (σny)

=
1

σn
Rn

0 (σny) + cny
2 +O(ε̄2

n

y3) where cn = O(ε̄2
n

)

Then we have the following form of Rn
0 (y).

Rn
0 (y) = any

2 + An(y)y
3

Thus Rn+1
0 (y) =

1

σn

(
an(σny)

2 + An(σny) · (σny)3
)
+ cny

2 +O(ε̄2
n

y3)

Thus an+1 = σnan + cn and ‖An+1‖ ≤ ‖σn‖2‖An‖+O(ε̄2
n

).

Hence, An → 0 and an → 0 exponentially fast as n → ∞. The image of
the vertical plane (y, z) → (0, y, z) under the map id+Sn

0 is the graph of the
function ξn : I

v → R defined as

ξn(y, z) = (Sn
0 (0, y, z), 0, R

n
0(y))

Since Rn
0 (y) is vanished exponentially fast, | ξn(y, z)| = |Sn

0 (0, y, z)| + O(ρn).
Moreover, the second part of Lemma 7.3.3 implies the following equation.

∣∣[ x+ Sn
0 (x, y, z)]− [ v∗(x) + Sn

0 (0, y, z)]
∣∣ = O(ρn) (7.4.2)

Secondly, compare the first coordinates of (7.4.1) at (0, y, z).

Sn+1
0 (0, y, z)

= sn(0, y, z)

+
1

αn

Sn
0

(
αn(x+ sn(0, y, z)) + σntny + σnun(z + rn(y)), σny,

σndny + σn(z + rn(y))
)
− 1

αn

unR
n
0 (σny)

The estimation of |∂2xySn
k |, |∂2xzSn

k | and |∂2yzSn
k |, |∂2zzSn

k | in Lemma 7.2.4 implies
that

∂Sn
0

∂x
(0, y, z) = O(σny + σnz) and

∂Sn
0

∂z
(0, y, z) = O(y + z)

respectively. The order of the tn, un, rn and Taylor’s expansion of Sn
0 at
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(0, σny, σnz) implies that

Sn+1
0 (0, y, z)

= sn(0, y, z) +
1

αn

[Sn
0 (0, σny, σnz)

+
∂Sn

0

∂x
(0, σny, σnz) ·

(
αnsn(0, y, z)) + σntny + σnun(z + rn(y)

)

+
∂Sn

0

∂z
(0, σny, σnz) ·

(
σndny + σnrn(y)

)]
− 1

αn

unR
n
0 (σny)

+O

(
ε̄2

n

3∑

j=0

y3−jzj

)

=
1

αn

Sn
0 (0, σny, σnz) +

2∑

i=0

en, i y
2−izi +O

(
ε̄2

n

3∑

j=0

y3−jzj

)

where en, i = O(ε̄2
n

) for i = 0, 1, 2.

Then we can express Sn
0 (0, y, z) as the quadratic and higher order terms,

Sn
0 (0, y, z) = an, 1 y

2 + an, 2 yz + an, 3 z
2 + An(y, z)

(
3∑

j=0

cj y
3−jzj

)

The recursive formula for Sn
0 (0, y, z) implies that

Sn+1
0 (0, y, z)

=
1

αn

[
an, 1(σny)

2 + an, 2(σny σnz) + an, 3(σnz)
2

+ An(σny, σnz)

(
3∑

j=0

cj (σny)
3−j(σnz)

j

)]
+

2∑

i=0

en, i y
2−izi

+O

(
ε̄2

n

3∑

j=0

y3−jzj

)

Hence, an+1, i =
σ2

αn

an, i +

2∑

j=0

en,j for i = 0, 1, 2 and moreover, ‖An+1‖ ≤

‖An‖ · |σn|3
|αn|

+ O(ε̄2
n

). It implies that an, i → aF, i for i = 0, 1, 2 and

‖An‖ → 0 exponentially fast as n → ∞. The exponential convergence of
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Sn
0 (0, y, z) to the quadratic function of y and z and (7.4.2) proves this global

asymptotic behaviour of Sn
0 (x, y, z).

Remark 7.4.2. The above Lemma can be generalized for Sn
k as follows.

∣∣[ x+ Sn
k (x, y, z)]− [ v∗(x) + aF, 1 y

2 + aF, 2 yz + aF, 3 z
2]
∣∣ = O(ρn−k)

The constants |aF, i| for i = 1, 2, 3 of Sn
k are O(ε̄2

k

).

7.5 Universality of the Jacobian determinant,

JacRnF

Let the nth renormalized map of F be RnF ≡ Fn = (fn − εn, x, δn) and let
Ψn

tip ≡ Ψn
vn from nth level to 0th level. Recall that the tip τF ∈ Bn

vn for each
n. Then Ψn

tip is the original coordinate change rather than the normalized
function Ψn

0 conjugated by translations Tn.
Recall (7.0.1) again.

JacFn(w) = JacF 2n(Ψn
tip(w))

JacΨn
tip(w)

JacΨn
tip(Fnw)

= b2
n JacΨn

tip(w)

JacΨn
tip(Fnw)

(1 +O(ρn)).

Theorem 7.5.1 (Universal limit of Jacobian determinant). For the function
F ∈ IB(ε̄) for sufficiently small ε̄ > 0, we obtain that

JacFn = b2
n

a(x) (1 +O(ρn))

where b is the average Jacobian of F , ρ ∈ (0, 1), and a(x) is the universal
function which is positive.

Proof. Let us consider the affine maps

T : w 7→ w − τ, Tn : w 7→ w − τn

where τn is the tip of RnF . Then we can consider the map

Ln : w 7→ (Dn
0 )
−1(w − τ)

as the local chart of Bn. On these local charts, we write maps with the boldface

65



if the maps are conjugated by its local charts in this proof.

Fn = Tn ◦ Fn ◦ T−1n , id+ Sn
0 = Ln ◦Ψn

tip ◦ T−1n

By the definition of the coordinate change map Ψn
tip and the normalized map

Ψn
0 , we can obtain the following commutative diagram.

Tn(B)

Ψn
0

��

B
Tn

oo
Fn

//

Ψn
tip

��

Fn(B)
Tn

//

Ψn
tip

��

(Tn ◦ Fn)(B)

Ψn
0

��
T (Bn) Bn

T
oo

F 2n

// F 2n(Bn)
T

// (T ◦ F 2n)(Bn)

Since any translation does not affect Jacobian determinant, the ratio of Jaco-
bian determinant of the coordinate change map is following.

JacΨn
tip(w)

JacΨn
tip(Fnw)

=
JacΨn

0(wn)

JacΨn
0 (Fnwn)

=
1 + ∂xS

n
0 (wn)

1 + ∂xSn
0 (Fnwn)

(7.5.1)

where wn = Tn(w). By Theorem 4.2.2, the tip τn converges to τ∞ = (1, c∗, 0)
exponentially fast where c∗ is the critical point of f∗(x). It implies the following
limits

Tn → T∞ : w 7→ w − τ∞

wn = Tn(w) → T∞(w)

Fnwn → F∗ ◦ T∞(w) = T∞ ◦ F∗(w) = (f∗(x)− 1, x− c∗, 0)

and each convergence is exponentially fast.
Hence, Lemma 7.4.1 implies that the following convergence

1 + ∂xS
n
0 → v′∗ (7.5.2)

is exponentially fast.

Combining (7.5.1), (7.5.2) and convergence of Fnwn to the F∗ ◦ T∞, we have

JacΨn
tip(w)

JacΨn
tip(Fnw)

−→ v′∗(x− 1)

v′∗(f∗(x)− 1)
≡ a(x) (7.5.3)

where w = (x, y, z).
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Moreover, this convergence is exponentially fast. The positivity of a(x) comes
from two facts. Firstly, the Jacobian determinant of the orientation preserving
diffeomorphism is non-negative at every point and we assumed that each in-
finitely renormalizable map, F ∈ I(ε̄), is orientation preserving on each level.
Secondly, the renormalization theory of the one dimensional map at the crit-
ical value implies the non vanishing property of v′∗ with the sufficiently small
perturbation.

Remark 7.5.1. The universality of the Jacobian does not imply the universality
of the renormalized map Fn because the Jacobian determinant, ∂yεn · ∂zδn −
∂zεn·∂yδn cannot make the universal expression of each element of the Jacobian
matrix, DFn.
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Chapter 8

The trapping regions and the

global attracting set

The critical Cantor set is defined as the limit of the union of the boxes Bn
wn

.
However, it can be constructed by the topological invariant sets which is called
the trapping regions.

Recall the M−n where n ≥ −1 to be the component of the stable manifold at
β1 and especially M0 ≡ W s

loc(β1) to be the component of the stable manifold
containing β1. Recall the definition of the regions A−n, the region betweenM−n
and M−n+1. Thus let us denote the region D0 ≡ D0(F ) to be F (A−1) ⊂ A0.
Then D0 is invariant under F 2 and it is the ε̄ neighborhood of the curve
[p0, p1]

u
β0

⊂W u(β0) in A0. Moreover, one component of ∂D0∩W s
loc(β1) contains

the point p0 and the other components contains β1 and all of pk where k ≥ 1.

Definition 8.0.1. Let F be the Hénon-like map with sufficiently small ε̄ > 0.
The invariant domain as the ε̄ neighborhood of the curve [p0, p1]

u
β0

⊂ W u(β0)
is called D0(F ) and it is defined as follows.

D0 ≡ D0(F ) = F (A−1)

If F is infinitely renormalizable, the invariant region under F 2n is defined
successively.

Dn ≡ Dn(F ) = Ψn
vn

(
D0(R

nF )
)

where D0(R
nF ) = RnF

(
A−1(R

nF )
)
. The nth trapping region of F for n ≥ 1

is defined as follows.

Trapn ≡
⋃

k≥0

F k(Dn) (8.0.1)
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Remark 8.0.2. The nth trapping region has 2n+1 components in B(F ) because
D0(R

nF ) is invariant under (RnF )2 and by the conjugation Ψn
vn , Dn is invari-

ant under F 2n+1

.

Proposition 8.0.2. Let F ∈ IB(ε̄) an infinitely renormalizable Hénon-like
map. Then the critical Cantor set OF is the intersection of the trapping re-
gions.

Proof. Let us show that Trapn+1 b Trapn for every n ≥ 1. Recall the following

commutative diagram.

B

Ψn
w

��

RnF
// B

Ψn
w

��
Ψn

w
(B)

F 2n

// Ψn
w
(B)

The case that n = 1, by the definition of D1, we see the fact D1 b D0 from
the following set inclusion.

D1 ≡ Ψ1
v

(
D0(RF )

)
= Ψ1

v ◦RF
(
A−1(RF )

)

⊆ Ψ1
v ◦RF

(
B(RF )

)

= F 2 ◦Ψ1
v(B(RF )) = F 2(B1

v) b F 2(A0) ⊂ F (A−1) = D0.
(8.0.2)

Similarly, the commutative diagram is valid between the map RnF and Rn+1F
with some coordinate change map. Then by induction the set relation Dn+1 b

Dn is true and furthermore, Trapn+1 b Trapn for every n ≥ 1 because F is a
diffeomorphism between the domain of F and its image.1

The fixed point β1 is contained in ∂D0 and similarly each fixed point β1(R
nF )

is in ∂D0(R
nF ). By the definition of the point, βn+1 ≡ Ψn

vn(β1), βn+1 is
contained in Dn. Moreover, the fact that Trapn+1 b Trapn, each trapping
region Trapn contains all periodic points with period 2 k+1 where2 k ≥ n but
dose not have any periodic points with period less than 2n+1. Since, every

1If we define the 0th trapping region as the union of D0 and its image under F , that
is, Trap

0
≡ D0 ∪ F (D0), then Trap

1
b Trap

0
. Actually the closure of Trap

0
covers the

maximal compact set in A
−1 ∪ A0 which is invariant under F 2.

2Each Dn contains two periodic points βn and Ψn
vn

(
β0(R

nF )
)
. Moreover, the orbit

of these two periodic points under F covers the all periodic points with the same period
because RnF has two fixed points for every n ∈ N. In other words, every periodic points
with fixed period has at most two different cycles.
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point in the Cantor set OF is the accumulation point of PerF by Lemma 5.3.2,
every trapping region contains the critical Cantor set.

Using the induction with the relation (8.0.2), we see that

Dn ⊂ Bn
vn

The above relation and Lemma 5.2.1 implies that

Trapn ⊂
⋃

wn∈ Wn

Bn
wn

for every n ∈ N. Hence, by the definition of the critical Cantor set and trapping
region, the following set relation holds.

OF ⊂
⋂

n≥1

Trapn ⊂
∞⋂

n=1

⋃

wn∈Wn

Bn
wn

≡ OF

Therefore,

OF =
⋂

n≥1

Trapn

Proposition 8.0.3. Let F be the renormalizable Hénon-like map. Then the
image of β0(RF ) under Ψ1

v = H−1 ◦ Λ−1 is the fixed point of F , β1.

Proof. Observe that F has only two fixed points β0 and β1 with the suffi-
ciently small norm, ‖δ‖C1 . The x and y−coordinates of β0 and β1 are neg-
ative and positive respectively. Let β1 = (βx, βx, z0). Thus βx > 0. Recall
H(w) = (f(x) − ε(w), y, z − δ(y, f−1(y), 0)). Since β1 is the fixed point un-
der F 2, H(β1) = (βx, βx, z0 − δ(βx, f−1(βx), 0) is a fixed point of the pre-
renormalization, PRF = H ◦ F 2 ◦ H−1. Then Λ(H(β1)) is a fixed point of
RF and β0(RF ) = Λ ◦H(β1) because Λ(x, y, z) = (sx, sy, sz) with s < −1
and β0(RF ) is the unique fixed point such that both x and y−coordinates are
negative. Hence, β1 = H−1 ◦ Λ−1

(
β0(RF )

)
.

Corollary 8.0.4. Let F be the infinitely renormalizable Hénon-like map. Then
every periodic points with period 2n are contained in Orb(βn+1) for every n ∈
N.

Proof. Let β0(R
n+1F ) be the regular fixed point under the map Rn+1F . Then

by Proposition 8.0.3, Ψn
n−1

(
β0(R

nF )
)
is β1(R

n−1F ). Then RnF has only one
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periodic point with period 2. Then the image of these two points β0(R
nF ) and

β1(R
nF ) under the conjugation map Ψn

vn are βn and βn+1 respectively. Since
the set F n(Bn

vn) contains βn and βn+1 and the number of periodic points with
period 2n is at most 2n+1, the following set

⋃

wn∈ Wn

Bn
wn

=
2n−1⋃

n=0

F n(Bn
vn)

has all periodic points with period 2n. Then Orb(βn) ∪ Orb(βn+1) contains
all periodic points with period 2n. However, βn is the periodic point with the
period 2n−1. Hence, the orbit of βn+1 contains all periodic points with the
period 2n.

Recall the region B• is the component of B \W s
loc(β0) which contains β1. The

fact that the region Ψ1
v(B) = B1

v contains β1 implies that Ψ1
v(B•) is B

1
v ∩ A0.

Since the region B• is invariant under F
2 and the image of ∂B•\W s

loc(β0) under
F 2 is in B•, B

1
v ∩ A0 contains the ε̄ neighborhood N of the curve [p0, p1]

u
β0

in
B1

v ∩ A0 and ∂N ∩ B1
v ∩ A0 ⊂ W s

loc(β1). We may also assume that N is
F (A−1) ≡ D when we relax the condition that the box B1

v is the image of the
minimal cubic box for renormalization and then allow the ε̄ neighborhood of
B1

v to be B1
v .

Topological properties of the unstable manifolds of two dimensional Hénon-like
maps and the three dimensional Hénon-like maps are similar. The following
lemma is the three dimensional version of the topological properties of the
invariant compact sets under Hénon-like maps. See the Theorem 4.1 in [LM].

Theorem 8.0.5. Let F be the Hénon-like map in IB(ε̄). Then the nonwan-
dering set ΩF is PerF ∪OF .

Proof. Let x be the point on the domain B• which does not converge to the
any orbit of the periodic points. Then by Lemma 4.1.1, there exists a constant
k0 ∈ N depending on x such that F k0(x) ∈ D0. Similarly, for x1 ∈ B•(RF ),
there exists a constant k1 ∈ N such that (RF )k1(x1) ∈ D0(RF ). Observe that

D0 ⊂ B1
v ∩ A0 = Im(Ψ1

v)

Then
Orb

(
(RF )k1(x1)

)
⊂ Orb

(
D0(RF )

)

So that

F k0+2k1(x) ∈ D1 ⊂ Trap1
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Inductively, for every x ∈ B• there exists k ∈ N such that F k(x) ∈ Trapn for
every n ∈ N. Hence, the omega limit set of x, ω(x) is OF .

Clearly, PerF ∪ OF ⊂ ΩF . Let us take a point x ∈ B• \ (PerF ∪ OF ) which is
not convergent to any periodic orbit. Since OF is compact and Trapn → OF

as n → ∞, there exists a neighborhood U of x disjoint from Trapn0
for some

n0 ∈ N. Moreover, by the above argument there exist k ∈ N such that
F k(U) ⊂ Trapn0

for each fixed n0 ≥ 1. However, the fact that x /∈ OF implies
that x /∈ TrapN for all sufficiently large N . Hence, x is wandering. Let us
consider the non-periodic points which converges to the periodic orbit

x ∈
⋃

w∈ PerF

W s(w)

Let us take a non-periodic point x ∈ W s(β1) \ W s
loc(β1). Observe that the

set D0 ∪ F (D0) ≡ Trap0 is forward invariant under F and Trap0 ∩ W s(β1) ⊂
W s

loc(β1). By Lemma 4.1.1 , for each x, F k(x) ∈ Trap0 for some k ∈ N.
Moreover, Trap0 is a topological handle body. So that we can choose the
neighborhood U of x which is contained in Trap0. Thus if x ∈ W s(β1)\Trap0,
then x is wandering.

Let the component of ∂D0 ∩ W s
loc(β1) which contains p 0 and β1 be U0 and

V0 respectively. Then the set V0 contains {p i | i ∈ N } ∪ {β1}. Recall F is
renormalizable and then pn = F n(p 0) for each n ∈ Z. Furthermore, we can
define Un and Vn as the component of ∂

(
F n(D0)

)
∩ W s

loc(β1) which contains
pn and β1 respectively for every n ∈ N. Then the following is true.

(1) Each F n(D0) is the handle body of which boundary in W s
loc(β1) is Un

and Vn for every n ∈ N+.

(2) Un is disjoint from Vn for every n ∈ N+.

(3)
⋃

i≥ k+1

(
Ui ∪ Vi

)
b Vk for every k ∈ N+.

(4) F 2k(D0) ⊂ A0 and F 2k+1(D0) ⊂ A−1 for every k ∈ N+.

(5) F n+3(D0) ∪ F n+2(D0) b F n+1(D0) ∪ F n(D0) for every n ∈ N.

Let us take a point x ∈ W s
loc(β1) ∩ Trap0. If x ∈ U0, then x is wandering.

Since {pn} → β1 as n → ∞ exponentially fast, the diameter of Vn shrinks to

zero as n → ∞ also. If x ∈ V0, then x ∈ F k
(
Trap0

)
\ F k+2

(
Trap0

)
for some
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k ∈ N+. Then by the above property (5), x is wandering. Since F is infinitely
renormalizable, the same fact is true for the map RnF on B•(R

nF ) for every
n ∈ N. Moreover, since the disjointness is preserved under the conjugation

map, every non-periodic points in
⋃

w∈ PerF

W s(w) is wandering. Hence, every

points in B• \
(
PerF ∪OF

)
are wandering. Therefore,

ΩF = PerF ∪OF

Let Γj for j ≥ 1 and Γ be smooth curves. Let us say that the Γj converge to
Γ as j → ∞ if the curve Γj converges in the C1-topology and the each Γj and
Γ has the smooth parametrization.

The following Lemma 8.0.6 and Theorem 8.0.7 and their proofs are same as
Lemma 4.4 and Theorem 4.1 on [LM] respectively except that the map F is
three dimensional Hénon-like map.

Lemma 8.0.6. Let F ∈ IB(ε̄) with sufficiently small ε̄ > 0. Let Γ is a curve
contained in W u(βn) for n ≥ 1. Then there are curves Γj ⊂W u(β0) such that
F tj (Γj) → Γ as tj → ∞.

Proof. If the periodic point βn is in the interior of the curve Γ ⊂ W u(βn),
then

⋃
i≥ 0 F

i(Γ) = W u(βn). Then we may assume that the curve in W u(βn)
contains the fixed point βn. Let us use induction for the proof. For n =
1, W u(β0) and W s

loc(β1) meets transversally at all of pi for i = 0, 1, 2, . . ..
Moreover, pn → β1 as n → ∞. Then by the inclination Lemma (for example,
see [Rob] Theorem 11.1 and its references) there exist arcs Γj for j ≥ 1 such
that pj ∈ Γj with the uniformly positive length and the time tj → ∞ such
that

F tj (Γj) → Γ ⊂ W u(β1)

Take an arc Γn ⊂W u(βn) and then we may assume that Γn = Ψn
0 (Γ̂) with Γ̂ ⊂

W u(β1(R
nF )). Since RnF ∈ IB(ε̄

2n) with sufficiently small ε̄, W u(β0(R
nF ))

and W s
loc(β1(R

nF )) meets transversally at all of pi(R
nF ) for i = 0, 1, 2, . . .

and moreover, pn(R
nF ) → β1(R

nF ) as n → ∞. Then the inclination Lemma
implies that

(
RnF

)t̂j (Γ̂j) → Γ̂ ⊂W u(β1(R
nF )) (8.0.3)

for every n ∈ N+.
Suppose that
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F tj, k(Γk
j ) −−−−→

j →∞
Γk ⊂W u(βk)

for k = 1, 2, 3, . . . , n. Since Ψn
0 is a diffeomorphism and βn+1 is defined as

Ψn
0 (β1(R

nF )), the convergence (8.0.3) is equivalent to the following.

F 2n t̂j (Ψn
0(Γ̂j)) −−−−→

j →∞
Ψn

0 (Γ̂) ⊂W u(βn+1) (8.0.4)

Hence, the arc Γn ⊂ W u(βn+1) can be approximated by some arcs in W u(βn)
and arcs in W u(βn) can be approximated by some arcs in W u(β0), that is,

F ti(Γi) −−−→
i→∞

Γn ⊂W u(βn)

for each n ∈ N. Therefore, every curve of W u(βn) can be approximated by
some curves in W u(β0).

For the map F : B → R3, the set
⋂

k≥0 F
k(B) is called the global attracting

set. Then it is the maximal backward invariant subset of B. Let us show
the maximality of

⋂
k≥ 0 F

k(B). Let the set Z be a backward invariant set

in B. Thus F k(Z) ⊂ F k(B) for each k ∈ N+. Since F k(Z) ⊂ F k+1(Z) for
every k, passing the limit Z ⊂ ⋂k≥ 0 F

k(B). For the infinitely renormalizable
perturbed Hénon-like map F ∈ IB(ε̄), take the following set

AF = OF ∪
⋃

w∈PerF

W u(w) ∩B (8.0.5)

Then AF is backward invariant and AF ∩B• is completely invariant under F .
The image of W u(β0) under F is extended outside of B.

Theorem 8.0.7. Let F ∈ IB(ε̄) the infinitely renormalizable Hénon-like map
with sufficiently small ε̄ > 0. Then

AF =
⋂

k≥ 0

F k(B) ∩B =W u(β0) ∩B

Proof. The fact that AF is backward invariant under F implies that

AF ⊂
⋂

k≥ 0

F k(B) ∩B

For the opposite inclusion, take a point x ∈ ⋂
k≥ 0 F

k(B) ∩ B. If x ∈ OF

then x ∈ AF . Let us assume that x /∈ OF . Since the global attracting set
is backward invariant, F−k(x) ∈ B for all k ∈ N+. The alpha limit set of x,
α(x) is the set of accumulation of the backward image of x under F . Then
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it is completely invariant closed set in B and moreover, α(x) ⊂ ΩF for every
x ∈ ⋂ k≥ 0 F

k(B)∩B. Since x /∈ OF , x /∈ Trapn for all sufficiently large n ∈ N.
The fact that F (Trapn) ⊂ Trapn implies that F−i(x) /∈ Trapn for all i ∈ N.
Then α(x) ∩OF = ∅. Hence, α(x) ⊂ PerF . It means that

x ∈
⋃

w∈PerF

W u(w) ∩ B.

Then

AF =
⋂

k≥0

F k(B) ∩B (8.0.6)

The set W u(β0) ∩ B is backward invariant. Then

W u(β0) ∩ B ⊂
⋂

k≥0

F k(B) ∩B = AF .

For the opposite inclusion, recall Lemma 5.3.2, the critical Cantor set OF is
the set of accumulation points of PerF . Then OF ⊂ ∪n≥0Orb(βn). Moreover,
by Lemma 8.0.6, every unstable manifold of periodic points are contained in
W u(β0). Hence, Definition 8.0.5 implies that

W u(β0) ∩B = AF .

Corollary 8.0.8. Let F ∈ IB(ε̄) the infinitely renormalizable Hénon-like map
with sufficiently small ε̄ > 0. Then W u(βn) ∩ Bn

vn is the invariant set under
F 2n, which is maximal backward invariant set under F 2nfor each n ∈ N.

Proof. Theorem 8.0.7 implies that if F ∈ IB(ε̄), then W u(β0(RnF )) is the
maximal backward invariant set on B(RnF ) under RnF for each n ∈ N. Since
F 2n(w) = Ψn

vn ◦ RnF ◦ (Ψn
vn)
−1(w) on Bn

vn and Bn
vn is Ψn

vn(B(RnF )), the
backward maximality on B(RnF ) under RnF is inherited to F 2n on the Bn

vn

by the conjugation for each n ∈ N. In particular, the stable (respectively
unstable) manifold at a point moves to that of the corresponding point by the
conjugation Ψn

vn . Hence, Ψ
n
vn

(
W u(β0(RnF ))

)
= W u(βn) and W u(βn) ∩Bn

vn is
the invariant set under F 2n which is maximal of the backward invariant under
F 2n .

The above Corollary says that there exists the global attracting set under F 2n ,
AF 2n on each domain Bn

vn for each n ∈ N. Then this fact suggests the term
locally global attracting set, which seems to be almost self contradictory.
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Chapter 9

Small perturbation of model

maps

The university of Jacobian does not imply asymptotic formula of ε or δ in
general. However, with particular assumptions the dynamics of the critical
Cantor set is well-controlled using Lyapunov exponents on it. The maximal
exponent of the three dimensional Hénon-like map is 0 and it has two other
exponents log b1 and log b2 which are strictly less than zero. In particular, if
∂zε ≡ 0, then one of these exponents comes from the two dimensional Hénon-
like map and the other one represents how much z−directions are attracted.
See Proposition 9.1.1. If the attraction of the third coordinate is sufficiently
stronger than the other attractions uniformly on the compact invariant set,
then there exists the dominated splitting on the given set under sufficiently
high iterates of DF−1 by Lemma 9.2.3.

9.1 Renormalizable model maps

Let us take a two dimensional Hénon-like map F2d(x, y) = (f(x) − ε(x, y), x)
which is infinitely renormalizable. We can consider the three dimensional
perturbed Hénon-like map F (x, y, z) = (f(x)− ε(x, y), x, δ(x, y, z)) as a per-
turbation of two dimensional Hénon-like map. See the condition ∂zε ≡ 0. Let
these maps be the model maps and denote Fmod. In contrast with the general
three dimensional Hénon-like map, Fmod has the special ε(w) such that ε de-
pends only on the first two variables x and y. The map εn in Fmod, n of on each
level n depends only on x and y using the direct calculation of H ◦ F 2 ◦H−1
and the induction. See Proposition 4.2.1.

Proposition 9.1.1. Let Fmod be the three dimensional Hénon-like model map
in IB

(
ε̄
)
with sufficiently small ε̄ > 0. Then εn(w) in RnFmod depends only

76



on x and y as follows.

Fmod, n(x, y, z) = (fn(x)− εn(x, y), x, δn(x, y, z))

Furthermore, εn and δn has following form.

εn(x, y) = b2
n

1 a(x) y (1 +O(ρn))

δn(x, y, z) = (b2
n

2 z + δ̃n(x, y))(1 + O(ρn))

where a(x) is the non-vanishing diffeomorphism on the Ix on B, ‖δ̃n(x, y)‖ =
O
(
ε̄2

n)
for some ρ ∈ (0, 1).

Proof. The direct calculation Λ ◦H ◦ F 2 ◦H−1Λ−1(w) with induction implies
that εn(w) = εn(x, y). In other words, The two dimensional map F2d, n is
the composition of the projection on xy−plane and the model map, that is,
F2d, n = πxy ◦Fmod, n for every n ∈ N where Fmod, n ∈ IB

(
ε̄
)
. Then εn(x, y) has

the universal expression for each n ∈ N because of universality theorem of the
two dimensional Hénon-like map. See Theorem 7.9 in [CLM]. The universal
function, ∂yεn(x, y) = b2

n

1 a2d(x) (1 + O(ρn)). Moreover, the fact that ∂zε ≡ 0
implies that JacFmod, n = ∂yεn ∂zδn−∂zεn ∂yδn = ∂yεn∂zδn. Then by Theorem
7.5.1, the following holds.

JacFmod, n = b2
n

a(x) (1 +O(ρn)) = b2
n

1 a2d(x) (1 +O(ρn)) ∂zδn

Then it is sufficient to show that the a(x) is same as a2d(x), the universal
function of two dimensional map πxy ◦ Fmod, n.

Recall (7.5.3). a2d(x) is the two dimensional version of the following limit.

a(x) = lim
n→∞

JacΨn
tip(w)

JacΨn
tip(Fnw)

Lemma 7.4.1 implies that the map x + Sn
0 (w) is asymptotically the sum of

the universal function v(x) of the variable x and the quadratic homogeneous
polynomials of the other variables. Then both two and three dimensional
Jacobian determinant of Ψn

tip, namely, JacΨn
tip = 1 + ∂xS

n
0 converges to the

universal one-dimensional map v′(x − 1). Moreover, the ratio of Ψn
tip(w) and

Ψn
tip(Fnw) of both two and three dimensional Hénon-like maps has the same

universal limit a(x) by (7.5.3).

Hence, the fact that b = b1b2 and exponential convergence of JacFn implies
that ∂zδn = b2

n

2 (1 +O(ρn)).
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9.2 Invariant splitting of tangent bundle on

invariant compact sets

The infinitely renormalizable model map, Fmod has the invariant constant sec-
tions, Ess = {(0 0 1)} ·R. If the contraction of DFmod along this subbundle is
strongest, then there exists an invariant cone field by Lemma 9.2.3.

For the given w0 = (x, y, z), let us denote wi = (xi, yi, zi) = F i(x, y, z). The
DFmod is the following matrix.

DFmod =




DF2d

0

0

∂xδ ∂yδ ∂zδ




For simplicity, let us express the above matrix as the block matrix

DFmod(x, y, z) =

(
A1 0

C1 D1

)
≡
(
A1(w) 0

C1(w) D1(w)

)

where A1 = DF2d(x, y), 0 =
(
0
0

)
, C1 = (∂xδ(w) ∂yδ(w)) and D1 = ∂zδ(w).

Let each component of the derivative of FN
mod(w) at w0 be AN , 0, CN and DN

as follows.

DFN
mod(x0, y0, z0) =

(
AN 0

CN DN

)
≡
(
AN (w0) 0

CN(w0) DN(w0)

)
(9.2.1)

Then for each N ≥ 1,

AN =

N−1∏

i=0

DF2d(xN−1−i, yN−1−i), DN =

N−1∏

i=0

∂zδ(wN−1−i)

Moreover,

(
AN 0

CN DN

)
=

(
A(wN−1) 0

C(wN−1) D(wN−1)

)
·
(
AN−1 0

CN−1 DN−1

)
(9.2.2)
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Let A0 and D0 ≡ 1 for notational compatibility. Then we have the expression
of CN as follows.

CN =

N−1∑

i=0

Di(wN−1−i)C(wN−1−i)AN−1−i

=
N−1∑

i=0

[
i−1∏

j=0

∂zδ(wN−1−j)

]
·
(
∂xδ(wN−1−i) ∂yδ(wN−1−i)

)

·
[
N−i−1∏

i=0

DF2d(xi, yi)

]

In order to prove the existence of the invariant splitting of the tangent bundle
under the map DFN

mod, it suffice to show that there exists the invariant cone
field under DFN

mod with uniform expansion or contraction. Denote the cone
field with the vertical direction (0 0 1) with some positive number γ at w to
be

C(γ)w = {u+ v | (u, v) ∈ R2 × R and ‖u‖ < γ ‖v‖ } (9.2.3)

The cone field on a given compact invariant set Γ is the union of the cones at
every points in Γ.

C(γ) =
⋃

w∈Γ

C(γ)w (9.2.4)

In order to construct the invariant splitting, we need to show that

DF−Nmod (C(γ))wN
⊂ C

(
1

2
γ

)

w0

at every point w0 of the invariant set under F−Nmod for N ∈ N. Let ‖DF‖
the operator norm of DF . The minimum expansion rate (or the strongest

contraction rate) of DF is defined by the equation, ‖DF−1‖ =
1

m(DF )
.

The Jacobian determinant of F2d is ∂yε(x, y). Since F2d is an orientation
preserving diffeomorphism from B2d ≡ Dom(F2d) to its image, ∂yε(x, y) has
the positive infimum. Denote this infimum to be m2d, that is,

m2d = inf
(x, y)∈B(F2d)

{ ∂yε(x, y)} .
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Similarly, define m2d, n = inf
(x, y)∈B(RnF2d)

{ ∂yεn(x, y)} for the nth renormalized

model map, F2d, n ≡ RnF2d. Denote the two dimensional coordinate change
map from level n to k to be 2dΨ

n
k . Thus the derivative of Ψn

0 at the tip as
follows.

D2dΨ
n
0 =

(
αn, 0 (1 + ∂xS

n
0 ) αn, 0 ∂yS

n
0 + σn, 0 tn, 0

0 σn, 0

)
(9.2.5)

Proposition 9.2.1. Let Fmod ∈ IB(ε̄) with sufficiently small ε̄ > 0. Then the
infimum of the derivative of the two dimensional map, m(DF 2n

2d ) � σnb2
n

1 in
Bn

vn for every n ∈ N.

Proof. Firstly, let us show that m(DF 2n

2d ) . σnb2
n

1 .

1

m(DF2d)
= ‖DF−12d ‖ ≥

∥∥∥∥
1

∂yε

(
0 ∂yε
−1 f ′(x)− ∂xε

)(
1
0

)∥∥∥∥ ≥ 1

∂yε(x, y)

Then m(DF2d) ≤ ∂yε(x, y) = JacF2d for every point (x, y). Similarly, since
F2d is infinitely renormalizable, m(DF2d, n) ≤ ∂yεn(x, y) = JacF2d, n for every
n ∈ N. Then m(DF2d, n) ≤ m2d, n. Let us estimate upper bound of the norm
of DF−2

n

2d .

‖DF−2n2d ‖ ≥
∥∥DΨn

0 ·DF−12d, n ·D(Ψn
0)
−1
(
1
0

)∥∥

=

∥∥∥∥DΨn
0 ·DF−12d, n ·

1

αn, 0 (1 + ∂xS
n
0 )

(
1
0

)∥∥∥∥

=

∥∥∥∥DΨn
0 ·

−1

∂yεn · αn, 0 (1 + ∂xSn
0 )

(
0
1

)∥∥∥∥

=

∥∥∥∥
−1

∂yεn · αn, 0 (1 + ∂xS
n
0 )

·
(
αn, 0 ∂yS

n
0 + σn, 0 tn, 0
σn, 0

)∥∥∥∥
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≥
∥∥∥∥

−1

sup
w∈B(RnF )

{∂yεn} · sup
w∈B(F )

{1 + ∂xS
n
0 )}

· 1

αn, 0

(
αn, 0 ∂yS

n
0 + σn, 0 tn, 0
σn, 0

)∥∥∥∥

(∗) ≥ 1

C0b
2n
1

∥∥∥∥
σn, 0
αn, 0

(αn, 0

σn, 0
∂yS

n
0 + tn, 0
1

)∥∥∥∥

(∗∗) ≥ 1

C0C1b2
n

1 σ
n
(1− C2ε̄)

≥ 1

Cσnb2
n

1

where C and Ci for i = 0, 1, 2 are some positive numbers. By the universality
of the two dimensional Hénon-like maps, 1 + ∂xS

n
0 (w) = v′∗(x) +O(ρn) where

v∗(x) is a diffeomorphism on its domain and ∂yεn � b2
n

1 . Moreover, | σn, 0| �
σn, αn, 0 � σ2n, | tn,0| = O(ε̄), and ∂yS

n
0 = aF y + O(ρn) for aF = O(ε̄).

Then the inequality (∗) and (∗∗) holds. For the detailed proof about the
above asymptotic of the two dimensional Hénon-like maps, see the Section 7
in [CLM]. Hence,

1

m(DF 2n
2d )

≥ 1

Cσnb2
n

1

for each n ∈ N

Secondly, let us show that m(DF 2n

2d ) & σnb2
n

1 . Let us observe the following fact
which is used later. For the vector

(
v1
v2

)
whose length is 1, that is, v21 + v

2
2 = 1,

the following inequality holds by the Cauchy-Schwarz inequality.

∥∥∥∥
(
a b
c d

)(
v1
v2

)∥∥∥∥ ≤
√
a2 + b2 + c2 + d2 (9.2.6)

Moreover, if ad− bc 6= 0, then

∥∥∥∥∥

(
a b
c d

)−1(
v1
v2

)∥∥∥∥∥ ≤ 1

(ad− bc)2

√
a2 + b2 + c2 + d2 (9.2.7)

F−2
n

2d = Ψn
0 ◦ F−12d, n ◦ (Ψn

0 )
−1

Then

‖DF−2n‖ ≤ ‖DΨn
0‖ · ‖DF−12d, n‖ · ‖D(Ψn

0)
−1‖
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By the (9.2.6) and (9.2.7), the upper bounds of norms are following.

‖DΨn
0‖2 =

∥∥∥∥
(
αn, 0 (1 + ∂xS

n
0 ) αn, 0 ∂yS

n
0 + σn, 0 tn, 0

0 σn, 0

)∥∥∥∥
2

≤ sup
w∈B(RnF )

{α2
n, 0(1 + ∂xS

n
0 )

2 + (αn, 0 ∂yS
n
0 + σn, 0 tn, 0)

2 + σ2
n}

‖DF−12d, n‖2 =
∥∥∥∥

1

∂yεn

(
0 ∂yεn
−1 f ′n(x)− ∂xεn

)∥∥∥∥
2

≤ sup
w∈B(RnF )

{
1

(∂yεn)2
(
(∂yεn)

2 + 1 + (f ′n(x)− ∂xεn)
2
)}

Hence,

‖DF−2n2d ‖2

≤ sup
w∈B(RnF )

{α2
n, 0(1 + ∂xS

n
0 )

2 + (αn, 0 ∂yS
n
0 + σn, 0 tn, 0)

2 + σ2
n}

· sup
w∈B(RnF )

{
1

(∂yεn)2
(
(∂yεn)

2 + 1 + (f ′n(x)− ∂xεn)
2
)}

· sup
w∈B(F )

{
1

α2
n, 0(1 + ∂xSn

0 )
2 · σ2

n, 0

·
[
α2
n, 0(1 + ∂xS

n
0 )

2 + (αn, 0 ∂yS
n
0 + σn, 0 tn, 0)

2 + σ2
n

]}

≤ C0

b2
n+1

1 σ2n

for some C0 > 0. Then

1

m(DF 2n
2d )

≤ C

b2
n

1 σ
n

for n ∈ N

Lemma 9.2.2. Let the AN , 0, CN and DN be components of DFN
mod defined

on (9.2.1) and suppose that ‖D‖ � m2d on B. Then ‖CN‖ ≤ κ‖AN‖ for some
κ > 0 which is independent of N . Moreover, ‖CN · A−1N ‖ is bounded above by
the some κ0 > 0 independent of N .

Proof. Let us calculate the upper bounds of ‖Di‖ and the lower bounds of
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m(Ai+1).

‖Di‖ ≤
i−1∏

j=0

‖∂zδ(wN−1−i)‖ ≤ (C1b2)
i (9.2.8)

for some C1 > 0. Recall

Ai+1 =
i∏

j=0

DF2d(xi−j , yi−j)

and m(A) = ‖DF−12d ‖−1. Then by Proposition 9.2.1, we obtain that

1

m(Ai+1)
≤

i∏

j=0

‖DF−12d (xj , yj)‖ ≤ 1

m(A)i+1
≤
(

K

‖∂yε‖

)i+1

≤
(
C2

b1

)i+1

(9.2.9)

for some C2 > 0. Let us assume that b2 < C1C2b1. Then

‖CN+1‖ =
∥∥∥

N∑

i=0

Di(wN−i)C(wN−i)AN−i

∥∥∥ ≤
N∑

i=0

‖Di‖‖C‖
‖AN‖
m(Ai+1)

≤ ‖C‖‖AN‖
N∑

i=0

‖Di‖
m(Ai+1)

≤ C0ε̄‖AN‖
N∑

i=0

‖Di‖
m(Ai+1)

≤ C0ε̄‖AN‖
N∑

i=0

(
C1 b2

)i
(
C2

b1

)i+1

≤ C0ε̄‖AN‖
C2

b1

∞∑

i=0

(
b2
b1

· C1C2

)i

=
C0C2

b1 − C1C2b2
‖AN‖ = κ0‖AN‖

(9.2.10)

where κ0 =
C0C2

b1 − C1C2b2
. By the recursive relation (9.2.2), we get the following

estimation.

D(wN)CN = CN+1 − C(wN)AN
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Then by the above estimation (9.2.10), we have

‖D(wN)CN‖ ≤ ‖CN+1‖+ ‖C(wN)‖‖AN‖
C3b2‖CN‖ ≤ κ0‖AN‖+ C0ε̄‖AN‖

for some K > 0. Hence,

‖CN‖ ≤ κ0 + C0ε̄

C3b2
‖AN‖ = κ‖AN‖

where κ =
κ0 + C0ε̄

C3b2
.

Let us calculate AN−1−i · A−1N (w0).

AN (w0) =

N−1∏

j=0

A(wN−1−j) =

i∏

j=0

A(wN−1−j) ·
N−1∏

j=i+1

A(wN−1−j)

=

i∏

j=0

A(wN−1−j) ·
N−2−i∏

k=0

A(wN−2−i−k)

= Ai+1(wN−1−i) · AN−1−i(w0)

Then

AN−1−i(w0) · A−1N (w0) = AN−1−i(w0) ·
[
A(wN)

]−1

= AN−1−i(w0) ·
[
AN−1−i(w0)

]−1 ·
[
Ai+1(wN−1−i)

]−1

=
[
Ai+1(wN−1−i)

]−1
(9.2.11)

Then by the similar calculation of (9.2.10),
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‖CN(w0)A
−1
N (wN)‖

=
∥∥∥

N−1∑

i=0

Di(wN−i)C(wN−i)AN−i · A−1N (wN)
∥∥∥ ≤

N−1∑

i=0

‖Di‖‖C‖‖A−1i+1‖

≤ ‖C‖
N−1∑

i=0

‖Di‖
m(Ai+1)

≤ C0ε̄
N−1∑

i=0

‖Di‖
m(Ai+1)

≤ C0ε̄
N−1∑

i=0

(
C1 b2

)i
(
C2

b1

)i+1

≤ κ0
(9.2.12)

where κ0 is defined above.

Lemma 9.2.3. Let Fmod be the model map in IB(ε̄) for sufficiently small ε̄ >
0. Suppose that b2 � b1. Then the cone field C(γ) is invariant under DF−1mod

for all sufficiently small γ > 0. More precisely, C(γ)w ⊂ DF−1mod

(
C(1

2
γ)
)
Fmod(w)

on every point of the any given compact set, Γ which is (completely) invariant
under F .

Proof. Let us take any vector (u v) ∈ R2 × R in the cone field C(γ) such that
‖u‖ < γ0‖v‖ where γ0 < γ. we may assume that v = 1.

DF−Nmod

(
u

1

)
=

(
A−1N 0

−D−1N CNA
−1
N D−1N

)(
u

1

)
=

(
A−1N · u

−D−1N CNA
−1
N · u+D−1N

)

For the invariance of the cone field, it suffices to show that

‖A−1N · u‖
‖ −D−1N CNA

−1
N · u+D−1N ‖ ≤ 1

2
γ0.

Observe that

−D−1N CNA
−1
N · u+D−1N = D−1N (−CNA

−1
N · u+ 1)

Let us take small enough γ such that κ0 ‖u‖ ≤ 1
2
. Then by (9.2.12), we see
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that ‖ − CNA
−1
N · u+ 1‖ ≥ 1

2
. Then

‖A−1N · u‖
‖ −D−1N CNA

−1
N · u+D−1N ‖ ≤ ‖A−1N ‖‖u‖

1
2
‖D−1N ‖ ≤ 2m(DN)

m(AN )
‖u‖ ≤ 2

(
Kb2
b1

)N

· γ0

for someK > 0 and for all sufficiently small γ0 < γ. Hence, the cone field C(γ0)
contracts with the uniform rate under DF−Nmod for all N ∈ N if b2 � b1.

Remark 9.2.1. Whenever we assume that b2 < b1, there exists a big enough n0

such that b2
n0

2 � σn0b2
n0

1 . Then we may assume that b2 � b1 instead of taking
Rn0F in order to separate two exponents.

9.3 small perturbation of the model maps with

invariant cone field

The invariance of the cone field of the DFmod holds under the sufficiently small
continuous perturbation of entries in DFmod. Let us express the perturbation
of the given model map Fmod(w) = (f(x)− ε(x, y), x, δ(w)).

F (w) = (f(x)− ε(x, y)− ε̃(w), x, δ(w)) (9.3.1)

Recall the definition of the cone field (9.2.3) and (9.2.4).

C(γ) =
⋃

w∈Γ

C(γw)w =
⋃

w∈Γ

{u+ v | (u, v) ∈ R2 × R and ‖u‖ < γw ‖v‖ }

for every γw is positive and γ = supw∈Γ{γw} where Γ is an invariant compact

set under F . If γ = supw∈Γ{γw} is bounded, we call γ the width of the cone
field with the direction (0 0 1). Let us consider two cones, C1 and C2 at the
same point w. If C1 ⊂ C2 ∪ {w}, then we say that the cone C1 is properly
contained in the cone C2.
Let us denote the derivative of F as the matrix.

DF =

(
A B

C D

)
=




DF2d

∂zε(w)

0

∂xδ ∂yδ ∂zδ


 (9.3.2)
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where DF2d =

(
f ′(x)− ∂xε(w) −∂yε(w)

1 0

)
.

By the universality of the two dimensional Hénon-like maps, ∂yε(x, y, z0) � b1
for each z0 ∈ Iz. If ‖∂zε‖ is sufficiently small, especially smaller than b1, then
by the Taylor’s theorem, ∂yε(x, y, z) � b1. Moreover, by Proposition 9.2.1,
∂yε(x, y, z) � m(A).

If F is sufficiently close to Fmod in the C1 sense, then DF invariant cone
field which is same as the cone field invariant under DFmod. On the following
lemma, we quantify the perturbation of ‖ ∂zε‖ to obtain the invariant cone
field under DF , the derivative of the perturbation of Fmod.

Lemma 9.3.1. Let Fmod and F be infinitely renormalizable maps, that is,
F ∈ IB(ε̄). Let F be a perturbation of the model map Fmod defined on (9.3.1)

with b2 � b1. Suppose that
‖∂zε‖

m(A) ·m(∂zδ)
≤ ρ γ for some positive ρ < 1 where

γ is the width of the invariant cone field of Fmod. Suppose also that ‖∂zε‖ is

sufficiently small such that
m(A)

m(A−BD−1C)
≤ 1 + ε0 for any given number

ε0 > 0. Then F has the invariant cone field C(γ) such that C(γ)w properly con-

tained in DF−1
(
C(1

2
γ)
)
F (w)

on every point of the any given compact invariant

set Γ under F .

Proof. Let us denote DF to be

(
A B
C D

)

similar to (9.3.2). Then D = ∂zδ. By the direct calculation, DF−1 is

(
A−1 + ζ11 ζ12

−D−1C(A−1 + ζ11) D−1ζ22

)

where ζ12 = −(A− BD−1C)−1BD−1, ζ11 = −ζ12CA−1 and ζ22 = 1− Cζ12.

Since ‖ζ12‖ ≤ ‖B‖
m(A− BD−1C) ·m(D)

and B =

(
∂zε(w)

0

)
, the small enough

‖∂zε‖ implies that ‖ζ12‖ ≤ ρ̄ γ for some ρ̄ ≤ (1 + ε0)ρ. Moreover, if γ is small

enough then ‖ζ11‖ has the same upper bound of ‖ζ12‖ up to the uniform con-

stant multiple because ‖CA−1‖ is uniformly bounded by Lemma 9.2.2. How-
ever, ζ22 is close to 1. Take the vector (u v) ∈ R2 × R such that ‖u‖ < γ‖v‖.
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Then we can normalize the vector v letting it be 1. Then ‖u‖ < γ.

DF−1

(
u

1

)
=

(
A−1 + ζ11 ζ12

−D−1C(A−1 + ζ11) D−1ζ22

)(
u

1

)

=

(
(A−1 + ζ11) · u+ ζ12

−D−1C(A−1 + ζ11) · u+D−1ζ12

)

Let us calculate
‖(A−1 + ζ11) · u+ ζ12‖

‖ −D−1C(A−1 + ζ11) · u+D−1ζ12‖
in order to obtain the

invariance of the cone field. Observe that

(A−1 + ζ11) · u+ ζ12 = A−1u+ ζ12(−CA−1u+ 1)

D−1C(A−1 + ζ11) · u+D−1ζ12 = D−1
[
C(A−1 + ζ11) · u+ 1− Cζ12

]

Then with the sufficiently small γ, ‖(A−1+ ζ11) ·u+ ζ12‖ ≤ c0‖A−1u‖ for some

c0 > 0 and ‖−D−1C(A−1+ζ11) ·u+D−1ζ12‖ ≥ 1
2
‖D−1‖. Hence, by the similar

proof of Lemma 9.2.3

‖(A−1 + ζ11) · u+ ζ12‖
‖ −D−1C(A−1 + ζ11) · u+D−1ζ12‖

≤ c0‖A−1u‖
1
2
‖D−1‖ ≤ 2c0 ·m(A)‖u‖

m(D)
≤ 2c0

Kb2
b1

γ

Then the cone field C(γ) is properly contained in DF−1(C(γ)).

Definition 9.3.1. Let Fmod ∈ IB(ε̄) be the model map defined as follows.

Fmod(x, y, z) = (f(x)− ε(x, y), x, δ(x, y, z))

Suppose that ε(x, y) � b1 where b1 is the average Jacobian of the two dimen-
sional map πxy ◦ Fmod. Let the set C(γ) = ⋃w∈Γ C(γw)w be the invariant cone
field under DF−1mod for sufficiently γ > 0 such that C(γ) is properly contained in
DF−1mod(C(γ)) on the given compact invariant set Γ under F . Let us define the
small perturbation of the model map Fmod if the Hénon-like map F satisfies
the following conditions.

(1) F is of the form in (9.3.1) and infinitely renormalizable.

(2) ‖Dε̃‖ is sufficiently small such that ‖∂y(ε(x, y) + ε̃(w))‖ � b1.
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(3) ‖∂z ε̃‖ sufficiently small implies that the cone field CF =
⋃

w∈Γ CF
w exists

such that

(a) Every cone CF
w is contained properly in DF−1(C(γ)F (w)) at every

point w ∈ Γ.

(b) Every cone CF
w for all w ∈ Γ contains the constant direction (0 0 1).
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Chapter 10

Invariant surfaces under the

small perturbation of model

maps

The existence of the invariant cone field on the invariant compact set implies
the existence invariant splitting of the tangent bundle, in particular, the in-
variant plane field and the line field. The invariant plane field implies the
existence of the local invariant surfaces by the pseudo-(un)stable manifold
theorem. For instance, there exist surfaces invariant under F 2p on the suffi-
ciently small neighborhood of the periodic points with period 2p. The periodic
point βN with the sufficiently close to the tip has the pseudo unstable mani-
fold which contains all periodic points with period greater than N by Lemma
10.2.1. Since each point of the critical Cantor set is the accumulation point of
periodic points, every pseudo-unstable manifolds at βN as invariant surfaces
also contains the Cantor set in the small neighborhood of βN . Moreover, using
the scoping map, Ψn

vn as the smooth conjugation between F 2n and RnF , it is
shown that there exist global invariant surfaces as the graph from Ix × Iy to
Iz under RnF for every sufficiently large n ∈ N by Lemma 10.3.1.

10.1 Pseudo-unstable manifold on the com-

pact invariant set

If there is the splitting of the contraction or expanding ratio is sufficiently large
on the compact invariant set, there exists Cr pseudo (un)stable manifolds at
every points on this set by Lemma 10.1.1.

Definition 10.1.1. Let T : E → E be a continuous linear map of the Banach
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space E. T is ρ−pseudo hyperbolic if there is a T invariant splitting of E =
E1 ⊕E2 and there exist constants 0 < λ < ρ < µ such that

(1) Let the restriction of T on E1 be T1. It is an isomorphism and

‖ T n
1 (v)‖ ≥ C1 µ

n‖v‖ for all n ∈ N and v ∈ T1 and for some C1 > 0.

(2) Let the restriction of T on E1 be T1.

‖ T n
2 (v)‖ ≤ C2 λ

n‖v‖ for all n ∈ N and v ∈ T2 and for some C2 > 0.

If there exists a compact invariant set under a map (for example, diffeo-
morphism) f and there is an invariant splitting with the pseudo-hyperbolicity,
then there exist the strong stable and pseudo-unstable (or pseudo-stable and
strong unstable) manifold which are locally invariant under f . Then we can
use the strong stable manifold theorem and pseudo-unstable manifold theorem.

Definition 10.1.2. Let f : B −→ B be a differentiable map and ρ is a positive
number and d(w, q) be the distance between two points w and q in B. The
pseudo-stable and pseudo-unstable set at a point w ∈ B is the followings.

W ps(w) =

{
q ∈ B

∣∣∣ d(f
n(w), fn(q))

ρn
→ 0 as n→ ∞

}

W pu(w) =

{
q ∈ B

∣∣∣ d(f
−n(w), f−n(q))

ρ−n
→ 0 as n→ ∞

}

The local pseudo-stable and unstable set is defined as following.

W ps
ε (w) =

{
q ∈ B

∣∣∣ d(f
n(w), fn(q))

ρn
≤ ε for all n ∈ N+

}

W pu
ε (w) =

{
q ∈ B

∣∣∣ d(f
−n(w), f−n(q))

ρ−n
≤ ε for all n ∈ N+

}

If ρ = 1, then the above definitions are same as the usual (local) stable and
unstable set. More generally, let us introduce the definition of the dominated
splitting.

Definition 10.1.3. Let F : M → M be a C1 map and Γ be a compact
completely invariant set under F , that is, F (Γ) = Γ. The compact invariant
set Γ has the dominated splitting if

(1) The tangent bundle over Γ has an invariant subbundles — TΓM = E1⊕
E2

91



(2) ‖DF n|E1(x)‖‖DF n|E2(Fn(x))‖ ≤ Cλn, for all x ∈ Γ and n ≥ 0.

Moreover, the dominated splitting implies that invariant sections w 7→ E1(w)
and w 7→ E2(w) are continuous by Theorem 1.2 in [New]. Furthermore, any
dominated splitting has the adapted metric if every tangent spaces in the in-
variant tangent subbundle has the same constant dimension, that is, dimEi(w)
for i = 1, 2 is independent of w but dependent of each subbundle Ei. For the
proof of the existence of adapted metric, see [Gou].

The following lemma and its complete proof is the Theorem IV.1 and the proof
of it in [Shub].

Lemma 10.1.1 (Pseudo-unstable manifold theorem). Let Γ be an (compact)
invariant set for the Cr diffeomorphism of M (which is a finite dimensional
manifold). Suppose that the restricted tangent bundle TΓM has a continuous
Df invariant splitting

TΓM = E1 ⊕ E2

and there are constants 0 < λ < ρ < µ and 0 < λ < 1 such that

‖Df(x) v‖ ≤ λ‖v‖ for all x ∈ Λ and v 6= 0 in E2

and ‖Df(x) v‖ ≥ µ‖v‖ for all x ∈ Λ and v 6= 0 in E1

with the adapted metric in TΓM . Then there exist a positive number ε and for
every point x ∈ Γ there exist two embedded discs W ss

ε (x), local strong stable
manifold and W pu

ε (x), local pseudo-unstable manifold which are tangent at x
to E2(x) and E1(x) respectively. The W pu

ε (x) satisfies the following.

(1) If λρ−j < 1 for 1 ≤ j ≤ r, then W pu
ε (x) is Cr.

(2) The map x 7→ W pu
ε (x) and x 7→ W ss

ε (x) are continuous on Γ.

(3) f(W pu
ε (x)) ∩ Bε(x) ⊆ W pu

ε (f(x)), where

Bε(x) = { y ∈ M | d(x, y) < ε }

(4) TheW pu
ε (x) varies continuously as Crembedded discs, that is, if dimE2 =

k, then there is a neighborhood U of x and the continuous map Θ : U →
Embr(Dn,M) such that

Θ(x)(0) = x and Θ(x)(Dn) = W pu
ε (x)

where Embr(Dn,M) is the set of Cr embedding from Dn to M .
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Let us denote E1 on Lemma 10.1.1 to be Epu and call it the invariant tangent
subbundle with the pseudo unstable direction. Similarly, let us denote E2

to be Ess and call it the invariant tangent subbundle with the strong stable
direction. If we take the invariant splitting at any point w which satisfies
the assumption of (1) in the Lemma 10.1.1, then W pu

ε (w) is the graph of a
Cr map from Epu(w) to Ess(w). Moreover, it is tangent to Epu(w) at each
w ∈ Γ. The lower bounds of the size of the invariant manifolds is uniformly
away from 0 at all points in Γ. Thus the splitting TwM = Epu(w)⊕Ess(w) at
w ∈ Γ implies that we have the heteroclinic transversal intersection on every
sufficiently small neighborhood of each point.

Remark 10.1.1. The existence of Cr invariant surfaces which are tangent to the
invariant planes under DF comes from the pseudo-unstable manifold theorem.
The proof of this theorem is similar to the proof of the unstable manifold the-
orem on the hyperbolic compact set. However, it requires to use the smooth
cut-off function as an extension of some specific map. Moreover, the smooth-
ness of the pseudo-unstable manifold is based on how much strong the splitting
of the invariant directions under DF is on the compact invariant set. Then
the pseudo-unstable manifold can be just finitely many differentiable although
it can be any number depending on the splitting.

Proposition 10.1.2. Let Γ be a compact invariant set under f : B → B
where B is the compact manifold. Suppose that the tangent bundle on Γ has an
invariant splitting under Df and this splitting is ρ−pseudo hyperbolic. Then
there exists η > 0 for any ε′ > 0 such that if d(x, y) < η for any two points
x, y in Γ, then the local pseudo-stable and pseudo-unstable manifolds meet
transversally each other at a single point, say q, that is, W pu

ε′ (x) t W ps
ε′ (y) =

{q}.
Proof. The invariant splitting of the tangent bundle with the invariant cone
fields implies that the angle of two subspaces of the tangent space at each point
w ∈ Γ, ](Epu(w), Eps(w)) is positive (and has the uniform positive minimal
angle). Moreover, since two locally invariant manifolds at w are tangent of
Epu(w) and Eps(w) respectively. Furthermore, by the splitting of the tangent
space TwB, we have the equation dim(TwB) = dim(Epu(w)) + dim(Eps(w)).
Then the dimension of the intersection of two manifolds is zero, because
dim(TwB) − dim(Epu(w))− dim(Eps(w)) = 0 and the dimension of subman-
ifold is same as the dimension of the tangent subspace. Thus for sufficiently
small ε′, the intersection is connected and then it should be a single point.
The compactness of the invariant set implies the existence of η independent of
w ∈ Γ.

Remark 10.1.2. The assumption of Proposition 10.1.2 does not exclude the
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possibility that the compact manifold or Γ has boundaries. However, in or-
der to keep the constant dimension of the intersection set we assume that the
boundary of B and Γ is disjoint if these boundaries exist. However, the max-
imal global invariant set AF has its image under F outside B. Then in order
to apply Proposition 10.1.2, we need to take the smaller invariant set than
AF . We can choose the set as an invariant compact set, for example, one of
the sets W u(β0) ∩B• or W u(β1) and so on.

Let Own
= OF ∩Bn

wn
and let Perwn

= Per ∩Bn
wn

where wn = (w1w2 . . . wn) is
the word of length n. Thus Pervk contains the periodic points βn for all n ≥ k
and its iterated images under F 2k by Corollary 8.0.8.

10.2 Pseudo unstable manifolds as the Cr in-

variant surfaces under F

Recall the periodic point βn on the domain of F as follows.

βn+1 ≡ Ψn
vn

(
β1(R

nF )
)

for n ≥ 1. Then βn+1 is a periodic point with period of 2n. Furthermore, the
sequence {βn} converges to the tip of F , τF as n→ ∞.

Let us take a convex neighborhood N of βN in B for sufficiently big N ∈ N

such that

(1) τF ∈ N

(2) ∂
(
W pu

ε′ (βN) ∩ N
)
⊂ ∂N and ∂

(
W pu

ε′ (βN) ∩ BN−1
vN−1

)
⊂ ∂BN−1

vN−1

(3) BN−1
vN−1 ⊂ N .

(4) W pu
ε′ (βN) ∩ N is connected and simply connected.

(5) W pu
ε′ (βN) t W ss

loc(q) for every periodic points q in N and the intersection
point is unique for each point q.

(6) W pu
ε′ (βN) is the graph of a Cr function η from Epu(βN) to E

ss(βN) with
‖Dη‖ ≤ C for some positive C independent of N .
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Let QβN
= W pu

ε′ (βN) ∩N . Then QβN
is connected and it is the embedded Cr

disc in BN−1
vN−1 .

By the pseudo unstable manifold theorem, the local embedded disc W pu
ε′ (w) at

each point w is the graph of Cr function from Epu(w) to Ess(w). If F ∈ IB(ε̄)
is the small perturbation of the model maps, then W pu

ε′ (w) is the graph of
Cr map, ξ from Ix × Iy to Iz after C1 coordinate change. Furthermore, C1

norm of ξ is bounded because invariant cone field with z−direction contains
(0 0 1) and the angles between the invariant plane field and the line field has
uniformly positive infinmum.

Lemma 10.2.1. Let F ∈ IB(ε̄) be a small perturbation of the model map
for sufficiently small ε̄ > 0. Suppose that b2 � (b1)

r for some r ∈ N.
Then for sufficiently large N ∈ N, W pu

ε′ (βN ) contains PervN ∪OvN . Moreover,

W pu
ε′ (βN) ∩ BN−1

vN−1 is the graph of Cr map from Ix × Iy to Iz.

Proof. For sufficiently large N , βN can be arbitrarily close the tip τF . Then
there exists a pseudo unstable manifold of βN in N which satisfies the above
conditions. Let QβN

= W pu
ε′ (βN) ∩ N . Since b2 � b1 � 1, W u

ε′(βN) ∩ N ⊂
W pu

ε′ (βN) ∩ N by the definition of the pseudo unstable manifold. However,
the neighborhood the periodic point βN contains the invariant domain un-
der F 2N around the tip, that is, BN−1

vN−1 ⊂ N by the condition of N . Then

W u(βN) ⊂ W pu(βN) in B
N−1
vN−1 . Moreover, since W u(βn) ⊂ W u(βN ) for every

n ≥ N by Theorem 8.0.7, QβN
contains the unstable manifolds of every peri-

odic points with period 2n for n ≥ N .

Suppose that q ∈ QβN
∩ W ss(βn) is different from βn. Then F 2n(q) → βn

as n → ∞, that is, βn is the accumulation point of the sequence {F 2n(q)}.
However, the fact that QβN

is invariant under F 2N and QβN
t W ss(βn) implies

that QβN
accumulate itself at βn. It contradicts that QβN

is the embedded disc
in N . Then q = βn. Hence, the single surface QβN

in BN−1
vN−1 which contains

every periodic points βn for n ≥ N is the only piece of W pu(βN)∩BN−1
vN−1 . The

surface QβN
is the graph from Epu(βN ) to Ess(βN) by the transversal inter-

section between Epu(βN ) and Ess(βN ).The strong stable manifolds W ss(βn)

for all n ∈ N are transversal to Ix × Iy. Then by the C1 coordinate change,
W pu(βN) ∩ BN−1

vN−1 is the graph of Cr map from Ix × Iy to Iz.

10.3 Invariant surfaces on each levels

There exists an invariant surface Q under F on πxy(B
n
vn) as the graph of the

Cr function ξ with ‖Dξ‖ ≤ Cε̄ only if b2 � b1 and ‖∂zε‖ � b2. Then

95



the image of Q under the smooth conjugation
(
Ψn

vn

)−1
is also an invariant

surface under RnF with the same property. It means that there exists the
Cr semi-conjugation between RnF and a certain two dimensional Hénon-like
maps RnF2d, ξ at every deep level n.

Lemma 10.3.1. Let Q be an invariant surface under F ∈ IB(ε̄) as the graph
of a Cr function ξ on πxy(B

n
vn) such that ‖Dξ‖ ≤ C0ε̄ for some C0 > 0 and

πxy(Q) = πxy(B
n
vn). Then Qn ≡

(
Ψn

vn

)−1
(Q) is an invariant surface under

RnF as the graph of a Cr function ξn on πxy
(
B(RnF )

)
such that ‖Dξn‖ ≤ Cε̄

for some C > 0. In particular, ‖∂xξn‖ ≤ C1ε̄σ
n for some C1 > 0.

Proof. Let us denote the graph(ξ) and the image of graph(ξ) under
(
Ψn

vn

)−1
as follows.

graph(ξ) = (x, y, ξ(x, y)) = (x, y, z)
(
Ψn

vn

)−1(
graph(ξ)

)
≡ {(x′, y′, z′)} ≡ Qn

By Lemma 7.2.2, we observe the following.

x = αn, 0(x
′ + Sn

0 (w
′)) + tn, 0 σn, 0 · y′ + un,0 σn, 0 (z

′ +Rn
0 (y
′)) (10.3.1)

y = σn, 0 · y′ (10.3.2)

z = dn, 0 σn, 0 · y′ + σn, 0 (z
′ +Rn

0 (y
′)) (10.3.3)

where w′ = (x′, y′, z′). Firstly, let us show that Qn = {(x′, y′, z′)} is the
graph of a function ξn, that is, z

′ = ξn(x
′, y′). By the equations (10.3.2) and

(10.3.3), we see that

y′ =
y

σn, 0
(10.3.4)

z′ =
z − dn, 0 · y

σn, 0
−Rn

0

(
y

σn, 0

)
(10.3.5)

Thus

z′ =
ξ(x, σn, 0 y

′)

σn, 0
− dn,0 · y′ − Rn

0 (y
′)

Then if x is well defined by x′ and y′, then z′ is also a well defined function in
terms of x′ and y′. The invariant surface Q intersects only faces of Bn

vn which
satisfies {(x, y, z) | πx ◦ Ψn

0 (x, y, z) = const. } and {y = const. }. The map
Ψn

0 is a diffeomorphism between B(RnF ) and Bn
vn and furthermore, the image

of each face of B(RnF ) is also corresponding faces of Bn
vn . Since B(RnF ) is
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the box domain and it’s four faces are {x = const.} and {y = const.}, the
projected image of the surface and the box to the xy−plane are same as each
other, that is, πxy(Qn) = πxy(B(RnF )). Then for each z′ ∈ πz(Qn) there exists
x′ and y′ such that (x′, y′, z′) ∈ Qn. Moreover,

πx ◦Ψn
0(x
′, y′, z′) = x.

Furthermore, there exist x′ and y′ which determines x because Ψn
0 is a diffeo-

morphism for each x ∈ πxy(B
n
vn). Let us show that if x is defined, then it is

uniquely determined in terms of x′ and y′. On the equations between (x, y, z)
and (x′, y′, z′), the variable x is only contained in (10.3.1). Let us define the
map G(x, y, x′) as follows.

G(x, x′, y′) = − x+ αn, 0 (x
′ + Sn

0 (w
′)) + tn, 0 σn, 0 · y′ + un, 0 σn, 0 (z

′ +Rn
0 (y
′))

= − x+ αn, 0

(
x′ + Sn

0

(
x′, y′, z′

))
+ tn, 0 σn, 0 · y′

+ un,0
(
ξ(x, y)− dn, 0 σn, 0 · y′

)

Then

∂xG(x, x
′, y′) = − 1 + αn, 0 · ∂zSn

0 · ∂xz′ + un, 0 ∂xξ

= − 1 +
αn, 0

σn, 0
∂zS

n
0 · ∂xξ + un,0 ∂xξ

Recall that αn, 0 � σ2n and σn, 0 � (−σ)n. Lemma 7.2.4 implies that ∂zS
n
0 =

O(ε̄) and Lemma 7.2.2 implies that | un, 0| ≤ Cε̄ for some C > 0. Then the
partial derivative of G over x is away from zero.

| ∂xG(x, x′, y′)| ≥ 1− C0 ε̄
2σn − C1 ε̄

2 ≥ c > 0 (10.3.6)

where the positive numbers C0 and C1 are uniform constants for all n ∈ N

with sufficiently small ε̄. The implicit function theorem implies that the x
is a well defined function in terms of x′ and y′ on some neighborhood of the
point (x′, y′). Furthermore, it is globally well defined as the Cr function of x′

and y′ by the continuation using the neighborhoods of every points because
of (10.3.6). Hence, z′ is well defined as the function of variables x′ and y′ on
the πxy

(
Dom(RnF )

)
and denote z′ to be ξn(x

′, y′). Observe that Sn
0 (w

′) =
Sn
0 (x

′, y′, ξn(x
′, y′)).

Let us calculate the norm ‖Dξn(x′, y′)‖. By the chain rule, the following holds.
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∂ξn
∂x′

=
∂ξn
∂x

· ∂x
∂x′

∂ξn
∂y′

=
∂ξn
∂x

· ∂x
∂y′

+
∂ξn
∂y

· ∂y
∂y′

By the (10.3.5) and Lemma 7.4.1, we see that

∂ξn
∂x′

=
1

σn, 0
· ∂xξ

[
αn, 0

(
1 + ∂x′Sn

0 (w
′)
)
+ un, 0 σn, 0 ·

∂ξn
∂x′

]

∂ξn
∂y′

=
1

σn, 0
· ∂xξ

[
αn, 0 ∂y′S

n
0 (w

′) + tn, 0 σn, 0 + un, 0 σn, 0

( ∂ξn
∂y′

+ (Rn
0 )
′(y′)

)]

+ ∂yξ − dn, 0 − (Rn
0 )
′

(
y

σn, 0

)

(10.3.7)
Since σn, 0 � (−σ)n, αn, 0 � σ2n for each n ∈ N and ‖∂y′Sn

0 (w
′)‖ ≤ C3 ε̄ for

some C3 > 0 by Proposition 7.2.3, the estimation of each partial derivatives
of ξn is the following.

∥∥∥∂ξn
∂x′

∥∥∥ ≤ ‖∂xξ‖C0σ
n ≤ Cε̄ σn

∥∥∥∂ξn
∂y′

∥∥∥ ≤ ‖∂xξ‖C1ε̄ σ
n + ‖ ∂xξ · tn, 0 + ∂yξ − dn, 0‖+ C2ε̄ σ

n ≤ Cε̄

for some C > 0. Therefore, ‖Dξn‖ ≤ Cε̄.

Remark 10.3.1. In general, the renormalized map of a small perturbation of the
model is not a small perturbation of model map on the deeper level. Moreover,
the model map itself does not give any information about ∂yδn on each level
n. Then in order to obtain invariant surfaces on the successive levels, we used
the scope map (Ψn

vn)
−1 instead of constructing universal expression of small

perturbation of model maps on each level.
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Chapter 11

Applications of two dimensional

theory to the invariant surface

As F is a sufficiently small perturbation of the model maps with b2 � b1,
we have obtained a Cr invariant surface Qn of RnF for every sufficiently deep
level. Moreover, the invariant surface is the graph of a Cr map, ξn from Ix×Iy
to Iz. Then using the graph map (x, y, ξn) 7→ (x, y), Cr Hénon-like maps is
defined on the πxy(B) on each level. Moreover, we can define the coordinate
change map in the similar way. The Cr Hénon-like maps on each level is
actually the renormalized map defined by the conjugation with the horizontal
diffeomorphism by Lemma 11.1.1. The dynamical and geometric properties
of Cr Hénon-like maps are valid in the invariant surfaces Qn, for instance,
non existence of the continuous invariant line field, non-rigidity on the Cantor
set and unbounded geometry of Cantor set. These negative results on the
invariant surface is also valid on the three dimensional analytic Hénon-like
map in no time.

11.1 Universality of Cr two dimensional Hénon-

like map from invariant surfaces

Let F ∈ IB(ε̄) be a small perturbation of the given model map Fmod ∈ IB(ε̄)
with the sufficiently small ε̄ > 0. Let Qn and Qk be invariant surfaces under
RnF and RkF respectively and assume that k < n. Then by Lemma 10.3.1,
we may assume that Ψn

k is the coordinate change map from level n to k such
that Ψn

k(Qn) ⊂ Qk. Let us define the Cr two dimensional Hénon-like map

2dFn, ξ on level n as follows.
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2dFn, ξ ≡ πξn
xy ◦RnF |Qn

◦ (πξn
xy)
−1 (11.1.1)

where the map (πξn
xy)
−1 : (x, y) 7→ (x, y, ξn(x, y)) is a Cr diffeomorphism on

the domain of two dimensional map, πxy(B). In particular, the map F2d, ξ is
defined as follows

F2d, ξ(x, y) = (f(x)− ε(x, y, ξ), x) (11.1.2)

where graph(ξ) is a Cr invariant surface of the three dimensional map F :
(x, y, z) 7→ (f(x)− ε(x, y, z), x, δ(x, y, z)).

Let us assume that 3 ≤ r < ∞. By Lemma 10.3.1, the invariant surfaces, Qn

and Qk are the graph of Cr maps ξn(x, y) and ξk(x, y) respectively.

The coordinate change map 2dΨ
n
k, ξ is defined as the map which satisfies the

following commutative diagram.

(Qn, τn)

πξn
xy, n

��

Ψn
k

// (Qk, τk)

πξk
xy, k

��
(2dBn, τ2d, n)

2dΨ
n
k, ξ

// (2dBk, τ2d, k)

where Qn and Qk are invariant Cr surfaces with 3 ≤ r <∞ of RnF and RkF
respectively and πξn

xy, n and πξk
xy, k are the inverse of the graph maps, (x, y) 7→

(x, y, ξn) and (x, y) 7→ (x, y, ξk) respectively.

Using translations Tk : w 7→ w − τk and Tn : w 7→ w − τn, we can let the
tip move to the origin as the fixed point of the new coordinate change map,
Ψn

k := Tk ◦ Ψn
k ◦ T−1n , which is defined on Section 7.1. Thus due to the above

commutative diagram, the corresponding tips in 2dBj for j = k, n is changed
to the origin. Let πxy ◦ Tj be T2d, j for j = k, n. This origin is also the fixed
point of the map 2dΨ

n
k, ξ := T2d, k ◦ 2dΨ

n
k, ξ ◦ T−12d, n where T2d, j = πxy, j ◦ Tj with

j = k, n.

By the direct calculation, we obtain the expression of the map 2dΨ
n
k, ξ as follows.
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2dΨ
n
k, ξ = πξk

xy, k ◦Ψn
k(x, y, ξn)

= πξk
xy, k ◦




αn,k tn, k σn, k un, k σn, k
σn, k

dn, k σn, k σn, k






x+ Sn
k, ξ

y
ξn +Rn

k(y)




=
(
αn, k(x+ Sn

k, ξ) + tn, k σn, k y + un, k σn, k(ξn +Rn
k(y)), σn, k y

)

(11.1.3)

where Sn
k, ξ = Sn

k (x, y, ξn(x, y)). Then

Jac 2dΨ
n
k, ξ = det

(
αn, k(1 + ∂xS

n
k, ξ + ∂zS

n
k, ξ · ∂xξn) + un, k σn, k ∂xξn •
0 σn, k

)

= σn, k
(
αn, k(1 + ∂xS

n
k, ξ + ∂zS

n
k, ξ · ∂xξn) + un, k σn, k ∂xξn

)

(11.1.4)
If F ∈ IB(ε̄) has the invariant surfaces as the graph from Ix×Iy to Iz on every

level, then 2dΨ
k+1
k, ξ is the conjugation between (2dFk, ξ)

2 and 2dFk+1, ξ for each
k ∈ N. Then the two dimensional map F2d, ξ is called the formally infinitely
renormalizable map with Cr conjugation. Moreover, the map defined on the
equation (11.1.3) with n = k + 1, 2dΨ

k+1
k, ξ preserves the horizontal line and is

the inverse of the horizontal map

(x, y) 7→ (fk(x)− εk(x, y, ξk), y) ◦ (σkx, σky)

by Lemma 11.1.1 as follows.

Lemma 11.1.1. Let the coordinate change map between (2dFk, ξ)
2 and 2dFk+1, ξ

be 2dΨ
k+1
k, ξ which is defined on (11.1.3) as the conjugation. Then

2dΨ
k+1
k, ξ = H−1k, ξ ◦ Λ−1k

for every k ∈ N where Hk, ξ(x, y) = (fk(x) − εk(x, y, ξk), y) and Λ−1k (x, y) =
(σkx, σky).

Proof. Recall the definitions of the horizontal-like diffeomorphism Hk and it’s
inverse, H−1k as follows.

Hk(w) = (fk(x)− εk(w), y, z − δk(y, f
−1
k (y), 0))

H−1k (w) = (φ−1k (w), y, z + δk(y, f
−1
k (y), 0))
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Observe that Hk ◦H−1k = id and fk ◦ φ−1k (w)− εk ◦H−1k (w) = x for all points
w ∈ B. Then if we choose the set σk · graph(ξk+1) ⊂ B, then the similar
identical equation holds.

By the definition of the map 2dΨ
n
k, ξ, the following equations hold.

2dΨ
k+1
k, ξ (x, y) = πξk

xy ◦Ψk+1
k ◦ (πξk+1

xy )−1(x, y)

= πξk
xy ◦Ψk+1

k (x, y, ξk+1)

= πξk
xy ◦H−1k ◦ Λ−1k (x, y, ξk+1)

= πξk
xy ◦H−1k (σkx, σky, σkξk+1)

(∗) = πξk
xy

(
φ−1k (σkx, σky, σkξk+1), σky, ξk(φ

−1
k , σky)

)

= (φ−1k (σkx, σky, σkξk+1), σky )

(11.1.5)

In the above equation, (∗) comes from the fact that H−1k ◦Λ−1k ( graph(ξk+1)) ⊂
graph(ξk).

Let us calculate Hk, ξ ◦ 2dΨ
k+1
k, ξ (x, y). The second coordinate function of it is

just σky. The first coordinate function is following.

fk ◦ φ−1k (σkx, σky, σkξk+1)

− εk
(
φ−1k (σkx, σky, σkξk+1), σky, ξk(φ

−1
k , σky)

)

(∗) = fk ◦ φ−1k (σkx, σky, σkξk+1)− εk ◦H−1k (σkx, σky, σkξk+1)

= σkx

Hence, Hk, ξ ◦ 2dΨ
k+1
k, ξ (x, y) = (σkx, σky). However, Hk, ξ ◦

(
H−1k, ξ(x, y) ◦

Λ−1k (x, y)
)
= (σkx, σky). Therefore, by the uniqueness of the inverse map

of Hk, ξ(x, y),

2dΨ
k+1
k, ξ = H−1k, ξ ◦ Λ−1k .

Recall the topological definition of the renormalizability, that is, W u(β0) ∩
W s(β1) is the single orbit of intersection point under F . It does not involve
the analyticity of Hénon-like maps. Then this definition can be applied to
the Cr Hénon-like maps. Moreover, Lemma 11.1.1 enable us to define the
renormalization of the two dimensional Cr Hénon-like maps as the extension
of renormalization of the analytic Hénon-like maps. Let f : I → I is the
unimodal map and J ⊂ int(I) which contains the critical point such that
J ∩ f(J) = ∅ and f 2(J) ⊂ J .
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Definition 11.1.1. Let F : (x, y) 7→ (f(x) − ε(x, y), x) be a Cr Hénon-like
map with r ≥ 3. If F is renormalizable, then RF , the renormalization of F is
defined as follows.

RF = (Λ ◦H) ◦ F 2 ◦ (H−1 ◦ Λ−1)

where H(x, y) = (f(x) − ε(x, y), y). Define the linear scaling map Λ(x, y) =
(sx, sy) if s : J → I is the orientation reversing affine scaling and J is minimal
such that J × I is invariant under H ◦ F 2 ◦H−1 .

If F is renormalizable n times, then the above definition can be applied to
RkF for 1 ≤ k ≤ n successively. The two dimensional map 2dFn, ξ with the
Cr function ξn is same as RnF2d, ξ by Lemma 11.1.1 and the above definition.
Thus if the maps 2dFn, ξ are defined on every n ∈ N, then the map 2dFn, ξ is
denoted to be RnF2d, ξ and it is called the nth renormalization of F2d, ξ.

Recall that every invariant surfaces as the pseudo unstable manifold in Lemma
10.2.1 contains the global attracting set, in particular, the critical Cantor set
OF . Then the ergodic measure on the critical Cantor set restricted to the
surface Q, say µ|Q, is same as the measure µ without restriction. Moreover, the
critical Cantor set, OF2d, ξ

is the image of OF under πξ
xy and it is independent of

invariant surfaces because all invariant surfaces contains the global attracting
set. Then we suppress ξ in the notation of the Cantor set, that is, OF2d, ξ

≡
OF2d

.

The ergodic measure on OF2d
is defined as the push forward measure µ on OF

by the map πξ
xy. That is to say, OF2d

≡ πξ
xy(OF ) and the ergodic measure on

OF2d
is defined as (πξ

xy)∗(µ) ≡ µ2d, ξ where µ is the ergodic probability measure
on OF . In particular, it is defined as follows.

µ2d, ξ

(
πξ
xy(OF ∩Bn

w
)
)
= µ2d, ξ

(
πξ
xy(OF ) ∩ πξ

xy(B
n
w
)
)
=

1

2n

The fact that πξ
xy(OF ) is independent of ξ implies that µ2d, ξ is independent of

ξ. Then we denote this measure to be µ2d.

Let us define the average Jacobian of F2d, ξ.

b1, 2d = exp

∫

OF2d

log JacF2d, ξ dµ2d

This average Jacobian is independent of the surface map ξ because every
invariant surfaces has the same invariant tangent bundle under DF on the
global attracting set AF which contains OF2d

.
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Lemma 11.1.2. Let F ∈ IB(ε̄) for sufficiently small ε̄ > 0 with b1 � b2.
Suppose that there exist invariant Cr surface with 3 ≤ r < ∞ under RnF for
every n ∈ N+ and each surface contains the global attracting set of each RnF
such that graph (ξn) is the invariant surface where ξn is Cr map from Ix × Iy

to Iz. Let RnF2d, ξ be πξn
xy ◦ Fn|Qn

◦ (πξn
xy)
−1 for each n ≥ 1. Then

JacRnF2d, ξ = b2
n

1, 2d a(x)(1 +O(ρn))

where b1, 2d is the average Jacobian of F2d, ξ, ρ ∈ (0, 1) and a(x) is the universal
function of x.

Proof. By the distortion Lemma 6.0.3 and Corollary 6.0.4, we obtain

JacF 2n

2d, ξ = b2
n

1, 2d(1 +O(ρn))

Moreover, the chain rule implies that

JacRnF2d, ξ = b2
n

1, 2d

Jac 2dΨ
n
0, ξ(w)

Jac 2dΨn
0, ξ(R

nF2d, ξ(w))
(1 +O(ρn))

where w = (x, y). After letting the tip on every level move to the origin by the
appropriate linear map, the equation (11.1.4) implies the Jacobian of Ψn

0, ξ(w).

Jac 2dΨ
n
0, ξ = σn, 0

(
αn, 0 · ∂x

(
x+ Sn

0 (x, y, ξn)
)
+ un, 0 σn, 0 · ∂xξn

)
(11.1.6)

Then in order to have the universal limit of the Jacobian, we need the asymp-
totic expression of the following.

(1) ∂x
(
x+ Sn

0 (x, y, ξn)
)

(2)
σn, 0
αn, 0

∂xξn

By Lemma 7.4.2,

x+ Sn
0 (x, y, ξn) = v∗(x) + aF, 1 y

2 + aF, 2 y · ξn + aF, 3 (ξn)
2 +O(ρn)

with C1 convergence. Then

∂x
(
x+ Sn

0 (x, y, ξn)
)
= v′∗(x) + aF, 2 y · ∂xξn + 2 aF, 3 · ξn · ∂xξn +O(ρn)

By the equation (10.3.7) on Lemma 10.3.1, we see ‖∂xξn‖ ≤ Cε̄ σn. Then
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∂x
(
x+ Sn

0 (x, y, ξn)
)
= v′∗(x) +O(ρn) (11.1.7)

By the equation (10.3.7) on Lemma 10.3.1,

σn, 0
αn, 0

∂ξn
∂x

= ∂xξ(x̄, ȳ)

[
1 + ∂xS

n
0 (x, y, ξn) +

σn, 0
αn, 0

un, 0
∂ξn
∂x

]

σn, 0
αn, 0

∂ξn
∂x

=
∂xξ(x̄, ȳ)

1− un, 0 ∂xξ(x̄, ȳ)

[
1 + ∂xS

n
0 (x, y, ξn)

]

where (x̄, ȳ) ∈ B(F2d, ξ). Thus (x̄, ȳ) converges to the origin (0, 0) as n → ∞
exponentially fast by Corollary 5.2.2.

diam(2dΨ
n
0, ξ) ≤ diam(Ψn

0 ) ≤ Cσn

for some C > 0. In addition to the exponential convergence of ∂xξ(x̄, ȳ) to
∂xξ(0, 0), un,0 converges to u∗, 0 super exponentially fast. Then,

σn, 0
αn, 0

∂ξn
∂x

=
∂xξ(0, 0)

1− u∗, 0 ∂xξ(0, 0)
v′∗(x) +O(ρn) (11.1.8)

Let (x′, y′) = w′ = 2dFn, ξ(w). Then

Jac 2dΨ
n
0, ξ(w)

Jac 2dΨ
n
0, ξ(w

′)
=

1 + ∂x(S
n
0, ξ(w)) +

σn, 0
αn, 0

un, 0 ∂xξn(x, y)

1 + ∂x(Sn
0, ξ(w

′)) +
σn, 0
αn, 0

un, 0 ∂xξn(x′, y′)
(11.1.9)

where Sn
0 (x, y, ξn) = Sn

0, ξ(x, y). The translation does not affect Jacobian de-
terminant and each translation from tip to the origin converges to the map
w 7→ τ∞ exponentially fast. Then by the similar calculation in Theorem 7.5.1,
the equation (11.1.9) converges to the following universal function exponen-
tially fast.
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lim
n→∞

Jac 2dΨ
n
0, ξ(w)

Jac 2dΨ
n
0, ξ(w

′)
=

v′∗(x− 1) +
u∗, 0 ∂xξ(πxy(τF ))

1− u∗, 0 ∂xξ(πxy(τF ))
v′∗(x− 1)

v′∗(f∗(x− 1)) +
u∗, 0 ∂xξ(πxy(τF ))

1− u∗, 0 ∂xξ(πxy(τF ))
v′∗(f∗(x− 1))

=

v′∗(x− 1)
(
1 +

u∗, 0 ∂xξ(πxy(τF ))

1− u∗, 0 ∂xξ(πxy(τF ))

)

v′∗(f∗(x− 1))
(
1 +

u∗, 0 ∂xξ(πxy(τF ))

1− u∗, 0 ∂xξ(πxy(τF ))

)

=
v′∗(x− 1)

v′∗(f∗(x− 1))
≡ a(x)

(11.1.10)

Theorem 11.1.3 (Universality of Cr Hénon-like maps with Cr conjugation
for 3 ≤ r < ∞). Let Hénon-like map F2d, ξ be the Cr map with 3 ≤ r < ∞
which is defined on (11.1.2). Suppose that F2d, ξ is infinitely renormalizable.
Then

RnF2d, ξ = (fn(x)− b2
n

1, 2d a(x) y (1 +O(ρn)), x) (11.1.11)

where fn(x) is the unimodal map which converges to f∗(x) exponentially fast
as n→ ∞ for some 0 < ρ < 1.

Proof. By the smooth conjugation of two dimensional map and Fn|Qn
, we see

that

RnF2d, ξ = (fn(x)− εn(x, y, ξn), x)

Denote εn(x, y, ξn) to be εn, ξn(x, y). By Lemma 11.1.2, we have the universal

expression of Jacobian determinant of two dimensional map, ∂yεn, ξn(x, y) =
b2

n

1, 2d a(x)(1 +O(ρn)). Then

εn, ξn(x, y) = b2
n

1, 2d a(x) y (1 +O(ρn)) + Un(x).

The map Un(x) which depends only on the x variable can be incorporated to
fn(x).
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Theorem 11.1.4. Let RkF2d, ξ be the Cr Hénon-like map defined as πξk
xy ◦

RkF |Qk
◦ (πξk

xy)
−1 for all sufficiently big k ∈ N where RkF ∈ IB(ε̄

2k) with
invariant surfaces Qk ≡ graph(ξk) under RkF . Let the conjugation between

RnF2d, ξ and
(
RkF2d, ξ

)2n−k

be 2dΨ
n
k, ξ. Then the map 2dΨ

n
k, ξ is expressed as

follows.

(
1 2dtn, k

1

)(
αn, k

σn, k

)(
x+ 2dS

n
k (w)

y

)

=
(
αn, k ( x+ 2dS

n
k (w)) + σn, k · 2dtn, k · y, σn, k y

)
(11.1.12)

where

D2dΨ
n
k, ξ(0) =

(
1 2dtn, k

1

)(
αn, k

σn, k

)(
x
y

)
, (11.1.13)

σn, k = (−σ)n−k(1 + O(ρk)) and αn, k = σ2(n−k)(1 + O(ρk)). Moreover, x +

2dS
n
k (w) has the asymptotic

x+ 2dS
n
k (w) = v∗(x) + aF, k y

2 +O(ρn−k)

where | aF, k| = O(ε2
k

).

Proof. By Lemma 11.1.1, the coordinate change map, 2dΨ
n
k, ξ is the composi-

tion of the inverse of horizontal diffeomorphisms with linear scaling as follows.

H−1k, ξ ◦ Λ−1k ◦H−1k+1, ξ ◦ Λ−1k+1 ◦ · · · ◦H−1n, ξ ◦ Λ−1n

Then after reshuffling non-linear and linear parts separately by the direct cal-
culations and letting the tip move to the origin by the appropriate translations
on each levels, the coordinate change map is of the form (11.1.12). In order
to estimate 2dS

n
k (w), the recursive formulas of the first and the second par-

tial derivatives of 2dS
n
k (w) are required. However, analyticity does not affect

the calculation of any recursive formulas of derivatives. Cr map with r ≥ 3
is sufficient. Then the exactly same calculation in Section 7.2 in [CLM] can
be used. Since the recursive formulas with same estimations are applied to

2dS
n
k (w), we just observe the following estimation

x+ 2dS
n
k (w) = v∗(x) + aF, k y

2 +O(ρn−k)

where |aF, k| = O(ε2
k

).

Let us denote 2d tk+1, k to be 2d tk for simplicity. Compare the derivative of

H−1k, ξ ◦ Λ−1k and the form (11.1.13) with n = k + 1. Then b2
k

1, 2d � 2d tk for
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each k ∈ N. Hence, the Cr infinitely renormalizable Hénon-like maps (which
are defined by the Cr conjugation from an invariant surface of the three di-
mensional map RnF ) has the Universality theorem and the asymptotic of the
coordinate change maps which is similar to the analytic maps.

11.2 Non existence of the continuous invariant

line field on Qn

The Cr conjugation (x, y) 7→ (x, y, ξn(x, y)) between RnF2d, ξ and F |Qn
is as

smooth as the invariant surface Qn on each level n. Since every invariant
surfaces contain the global attracting set which has periodic points and the
critical Cantor set, any differentiable invariant properties on OF is same as
the properties on OF2d

by the Cr conjugation.

Lemma 11.2.1. Let F2d, ξ be a Cr Hénon-like map for 3 ≤ r < ∞. Suppose
that there exists the Cr conjugation between three dimensional map F ∈ IB(ε̄)
restricted to its invariant surface, F |Q and F2d, ξ. If F2d, ξ is the infinitely
renormalizable map defined on Definition 11.1.1, then F2d, ξ has no continuous
invariant line field on the critical Cantor set. Especially, every invariant line
fields is discontinuous at the tip.

Proof. Cr infinitely renormalizable Hénon-like map for 3 ≤ r < ∞ has the
Universality theorem (Theorem 11.1.3) and estimation of scaling map Ψn

k by
Lemma 11.1.4 similar to the analytic maps. Then actual proof of this theorem
is essentially same as the proof of the analytic case. See Theorem 9.7 in [CLM]
or Theorem 4.2.2 on [Haz].

Theorem 11.2.2. Let F ∈ IB(ε̄) be a small perturbation of the model maps
with b2 � b1. Let Q be an invariant surface under F which contains the global
attracting set. Then F |Q has no continuous invariant line fields on the critical
Cantor set, OF . Especially if there exists invariant line field on OF , then it is
discontinuous at the tip.

Proof. We may assume that the map F ∈ IB(ε̄) which is a small perturbation
of model map with b2 � b1 has an invariant surface Q which is the graph of
Cr map ξ, namely, Q = graph(ξ) from P to Iz. Let P the domain of the two
dimensional Hénon-like map, F2d, ξ in particular, the square domain with the
center origin on the xy−plane. For the notational simplicity, we suppress ξ in
the notation of two dimensional map in this proof. For example, F2d, ξ = F2d.
Let TOF2d

P be the tangent bundle on the critical Cantor set of DF2d. For each
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point w ∈ OF2d
, let us assume that TOF2d

P is decomposed to the invariant

subspaces E1
2d ⊕ E2

2d under DF2d. In order to simplify the notation let the
graph map (x, y) 7→ (x, y, ξ) be just ξ.

Then TOF
Q has the splitting with invariant subspaces, E1 ⊕E2 under DF | Q.

Since Q is a Cr invariant surface under F and it contains the critical Cantor
set OF , the following diagram is commutative.

TOF2d
P

π

��

(Dξ, ξ)
// TOF

Q

π′

��
OF2d

ξ
// OF

where the tangent map is defined as (Dξ, ξ)(v, w) = (Dξ(w) ·v, ξ(w)) for each
(v, w) ∈ TOFξ

P and both π and π′ are the projections from the bundle to the

base space, that is, for each (v, w) ∈ bundle, π(v, w) = w and π′(v, w) = w
respectively.

Furthermore, the image of any invariant tangent subbundle of TOF2d
P is an

invariant subbundle of TOF
Q. Then without loss of generality, we may assume

that (Dξ, ξ)(E1
2d) = E1. Let γ and γ′ be the invariant sections under F2d and

F |Q respectively.

E1
2dOO

γ

(Dξ, ξ)
// E1

OO

γ′

OF2d

ξ
// OF

Since ξ is Cr function, the tangent map (Dξ, ξ) is continuous at (v, w) ∈ E1
2d.

Hence, the section γ is continuous if and only if γ′ is continuous because ξ is a
diffeomorphism. However, any invariant line field under DF2d on the Cantor
set OF2d

is not continuous at the tip, τF2d
by Lemma 11.2.1. Hence, there is

no continuous invariant line field under DF |Q on any Cr invariant surface Q
under F .
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11.3 Non rigidity of Hénon-like maps on the

invariant surfaces

If two dimensional analytic Hénon-like maps F2d and F̃2d in IB(ε̄) have different

average Jacobians, b1 and b̃1, then any conjugation φ2d between OF2d
and

ÕF2d
is at most Hölder continuous at corresponding tips by Theorem 10.1 in

[CLM]. This theorem relies on Universality theorem and the estimation of the
tilt, tk depending only on the average Jacobian b rather than analyticity of
the Hénon-like map. However, Cr infinitely renormalizable Hénon-like maps
defined by the invariant surfaces has Universality theorem, Theorem 11.1.3 and
the universal estimation of the scaling maps, Theorem 11.1.4. These theorems
are similar to the corresponding theorems of the analytic maps. Then if we
follow the proof of the non rigidity theorem in [CLM] with Cr setting, then
the same conclusion would appear.

Theorem 11.3.1. Let F2d, F̃2d ∈ IB(ε̄) be the two dimensional Cr Hénon-like

maps. Let OF2d
and O

F̃2d
be the critical Cantor set of F2d and F̃2d respectively.

Let b1 and b̃1 are average Jacobians of F2d and F̃2d respectively. Let φ2d be a
homeomorphism between OF2d

and O
F̃2d

with φ2d(τF̃2d
) = τF2d

. Assume that

b1 > b̃1. Then the Hölder exponent α of φ2d satisfies the following.

α ≤ 1

2

(
1 +

log b1

log b̃1

)

Theorem 11.3.2. Let F, F̃ ∈ IB(ε̄) be the small perturbation of model maps

with Cr invariant surfaces Q and Q̃ respectively. Suppose that the average

Jacobian of F |Q and F̃ |Q is b1 and b̃1 respectively and also suppose that b1 > b̃1.
Let the homeomorphism φ between two critical Cantor sets, OF and OF̃ with
φ(τF̃ ) = τF be the map defined on Theorem 11.3.1. Then the Hölder exponent
of φ is same as φ2d if the distance on the critical Cantor sets is induced by the
Riemannian metric on each invariant surfaces Q and Q̃.

Proof. Let F and F̃ ∈ IB(ε̄) be small perturbations of model maps. We may

assume that there exist invariant surfaces under RnF and RnF̃ respectively
for every n ∈ N. Then the map φ between two critical Cantor sets of the three
dimensional maps F and F̃ is defined as follows.

φ := π−1xy ◦ φ2d ◦ π̃xy (11.3.1)
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Every Cr map F2d, ξ on the critical Cantor set is independent of the invariant
surface graph(ξ) because all invariant surfaces contains OF . Then we suppress
the notation ξ in the two dimensional map F2d. The following diagram is
commutative. Then φ is the conjugation between F and F̃ on each critical
Cantor set. Moreover, πxy, π̃xy and φ2d maps the tip of each domain to the tip
of its image. Then we may assume that φ(τF̃ ) = τF .

OF

F

��

OF2d
//πxy oo φ2d

F2d

��

O
F̃2d

oo π̃xy

F̃2d

��

O
F̃

F̃

��

φ

vv

OF OF2d
//πxy oo φ2d O

F̃2d

oo π̃xy O
F̃

φ

ll

The above commutative diagram implies the following equation.

φ ◦ F̃ = π−1xy ◦ φ2d ◦ (π̃xy ◦ F̃ ) = π−1xy ◦ (φ2d ◦ F̃2d) ◦ π̃xy
= (π−1xy ◦ F2d) ◦ φ2d ◦ π̃xy = F ◦ (π−1xy ◦ φ2d ◦ π̃xy)
= F ◦ φ

Since both πxy and π̃xy is differentiable, it is locally Lipschitz map near the
tips of each Cantor set. If φ2d is Hölder continuous with the Hölder exponent
α, then φ := π−1xy ◦ φ2d ◦ π̃xy is also Hölder continuous map with the same
exponent of φ2d. Then the non rigidity with Hölder conjugation between the
two critical Cantor sets with different Lyapunov exponent is same as that of
two dimensional Hénon-like maps.

The Riemannian distance dR between two points is the minimal distance along
the path which connects two points on the surface. Since the invariant surfaces
is the graph of Cr function ξ or ξ̃ and we may assume that C2 norm of each
surfaces is uniformly bounded, dR(ξ(w1), ξ(w2)) ≤ C dist(w1, w2) for every
w1, w2 on the small neighborhood of the tip where C depends only on ‖ξ‖C2.
Then πxy, π̃xy and inverses of these maps are locally Lipschitz function between
the invariance surface and xy−plane. The composition of Hölder map and
Lipschitz maps does not change the exponent of Hölder map. Then φ and φ2d

has the same Hölder exponent.
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11.4 Unbounded geometry on the Cantor set

Recall the pieces Bn
w

≡ Bn
w
(F ) = Ψn

wn
(B) on the nth level or nth generation

which is defined on the Chapter ?? where the word, wn = (w1 . . . wn) ∈ W n :=
{v, c}n has length n. Recall that W n is the additive group of numbers with
base 2 (mod 2n) and

wn = (w1 . . . wn) 7→
n−1∑

k=0

wk+12
k

is the one to one correspondence between words of length n and the additive
group. Denote the subset of the critical Cantor set on each pieces to Ow ≡
Bn

w
∩ O. Then by the definition of Ow, Lemma 5.2.1 and Corollary 5.1.1, we

have the following facts.

(1)

OF =
⋃

w∈Wn

Ow

(2) F (Bn
w
) ⊂ Bn

w+1 for every w = (w1 . . . wn) ∈ W n.

(3) diam(Bn
w
) ≤ Cσn for some C > 0 depending only on B and ε̄.

Then we can define boxing of the Cantor set of nth generation.

Definition 11.4.1. Let F ∈ I(ε̄). A collection of the simply connected sets
with non-empty interior Bn = {Bn

w
b Dom(F ) |w ∈ W n} is called boxing of

OF if

(1) Ow b Bn
w
for each w ∈ W n.

(2) Bn
w
and Bn

w′ has disjoint closure if w 6= w′.

(3) F (Bn
w
) ⊂ Bn

w+1 for every w ∈ W n.

(4) Each element of Bn is nested for each n, that is,

Bn+1
wν ⊂ Bn

w
, w ∈ W n, ν ∈ {v, c}

On the above definition, the elements of boxing are just topological boxes.
However, the geometry of the boxing can depend on not only F but also the

112



boxing itself. Then we define canonical boxing, Bn
can which is the set of pieces

Bn
w

≡ Ψn
w
(B). Let us say that Dom(F2d) := B2d in order to distinguish the

domain of three dimensional Hénon-like map from that of two dimensional
map.

Let the minimal distance between two boxes B1, B2 be the infimum of the
distance between all points of each boxes and call this distance distmin(B1, B2).

Definition 11.4.2. The boxingBn defined on the Definition 11.4.1 has bounded
geometry if

distmin(B
n+1
wv , B

n+1
wc ) � diam(Bn+1

wν ) for ν ∈ {v, c}
diam(Bn

w
) � diam(Bn+1

wν ) for ν ∈ {v, c}

for all w ∈ W n and for all n ≥ 0.

Moreover, if the boxing has bounded geometry, then we just call OF has
bounded geometry. If the given boxing does not have bounded geometry,
then we call OF has unbounded geometry.

The proof of the (un)bounded geometry of the Cantor set requires to compare
the diameter of boxes and the minimal distance of two adjacent boxes in the
boxing. In order to compare these quantities, we would use the maps, Ψn

k(w),
Fk(w) and Ψk

0(w) with the two points w1 = (x1, y1, z1) and w2 = (x2, y2, z2) in
the domain of Fn(w), namely, Dom(RnF ). Let us each successive image of wj

under Ψn
k(w), Fk(w) and Ψk

0(w) be ẇj, ẅj and
...
wj for j = 1, 2.

wj
�

Ψn
k // ẇj

�

Fk // ẅj
�

Ψk
0 // ...wj

Denote ẇj = (ẋj , ẏj, żj) and the points ẅj and
...
wj have the similar coordinate

expressions. Let S1 and S2 be the (path) connected set on R3. If πx(S1) ∩
πx(S2) contains at least two points, then this intersection is called the x−axis
overlap or horizontal overlap of S1 and S2. Moreover, we say S1 overlaps S2

on the x−axis or horizontally.

Let F2d be an infinitely renormalizable two dimensional Hénon-like map and b1
be the average Jacobian of F2d. Then the unbounded geometry of the Cantor
set depends on Universality theorem and the asymptotic of the tilt, −tk � b2

k

1

but it does not depend on the analyticity of the map. The section 5.3 in [Haz]
contains the proof of unbounded geometry Cantor set under the assumption
ẋ1 − ẋ2 = 0. The infinitely renormalizable Cr Hénon-like maps defined by
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the invariant surfaces has Universality theorem and the asymptotic of the tilt
−2dtk � b2

k

1 .

Lemma 11.4.1. Let F be an infinitely renormalizable Cr Hénon-like maps
defined by the invariant surfaces. Let us choose two points w1 = (x1, y1) and

w2 = (x2, y2) in 2dB
1
v(R

nF ) ∩ ORnF and 2dB
1
c (R

nF ) ∩ ORnF respectively.
Suppose that 2dB

n−k
wv (RkF ) overlaps 2dB

n−k
wc (RkF ) on the x−axis for some

w ∈ W n−k. Then for all sufficiently large k and n with k < n, we have the
following estimate.

distmin(2dB
n
wv, 2dB

n
wc) ≤ C0 b

2k

1 σ
2kσn−k

for some C0 > 0. Moreover,

diam(2dB
n
wv) ≥ C1σ

2(n−k)σk

for some C1 > 0.

Proof. The proof is the analytic case because it depends on the universality
theorem and asymptotic of the tilt −2dtk � b2

k

1 . Every Cr infinitely renormal-
izable maps defined by the invariant surfaces, RnF2d, ξ has the universal limit
F∗(w) = (f∗(x), x, 0) as n → ∞. This limit is same as the limit of analytic
two dimensional Hénon-like maps, RnF2d in IB(ε̄). Then we can adapt the
proof of the analytic case with the analytic fixed point of renormalization, F∗
and universal convergence of the renormalized maps. See Proposition 5.3.4
and Proposition 5.3.6 in [Haz] with the periodic doubling combinatorics of
renormalization operator.

The unbounded geometry on the critical Cantor set holds if we choose n > k
such that b2

k

1 � σn−k for every sufficiently large k ∈ N. The fact that b2
k

1 �
σn−k for n > k is the necessary and sufficient condition two adjacent boxes

2dB
n−k
vn−kv

(RkF ) and 2dB
n−k
vn−kc

(RkF ) has the x−axis (or horizontal) overlap.

Remark 11.4.1. The x−axis overlapping with the parameter b1 ∈ [0, 1] is the
Gδ dense subset with full Lebesgue measure in [0, 1] by Theorem 5.5.1 in [Haz]
also.

Proposition 11.4.2. Let F ∈ I(ε̄) be three dimensional Hénon-like map with
b2 � b1. Suppose that there exists an invariant surface under RkF , Qk :=
graph (ξk) from Ix × Iy to Iz. Then Euclidean distance of any two points
q1, q2 in Qk ⊂ Dom(RkF ) is comparable with the two dimensional distance,
dist(πxy(q1), πxy(q2)).
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Proof. The invariance of the surface under means that RkF (Qk) ⊂ Qk, that
is,

RkF (x, y, ξ) = (fk(x)− εk(x, y, ξ), x, δk(x, y, ξ)) ∈ graph(ξk)

Thus

ξk (fk(x)− εk(x, y, ξk), x) = δk(x, y, ξk)

Then ‖Dξk‖ ≤ ‖ ξk‖C1 ≤ ‖δk‖C1 ≤ Cε̄2
k

on πxy(Qk ∩RkF (B)).

The mean value theorem implies that

dist(πz(q1), πz(q2)) ≤ ‖Dξk‖ dist(πxy(q1), πxy(q2))

for any points q1 and q2 on Sk. Then

dist(πxy(q1), πxy(q2)) ≤ dist(q1, q2)

≤ dist(πxy(q1), πxy(q2)) + dist(πz(q1), πz(q2))

≤ dist(πxy(q1), πxy(q2)) + Cε̄2
k

dist(πxy(q1), πxy(q2))

= (1 + Cε̄2
k

) dist(πxy(q1), πxy(q2))

Theorem 11.4.3. Let the three dimensional Hénon-like map, F ∈ I(ε̄) be
a small perturbation of the model map with b2 � b1. Suppose that F has
an invariant surface Q as the graph of Cr map ξ from Ix × Iy to Iz for
some 3 ≤ r <∞. Suppose also that Bn−k

vv (RkF ) overlaps Bn−k
vc (RkF ) on the

x−axis for v = vn−k ∈ W n−k. Then the critical Cantor set OF has unbounded
geometry.

Proof. The box on the invariant surface, Q is defined as the image of the
box, 2dB

n
w
of two dimensional Hénon-like map under the graph map (x, y) 7→

(x, y, ξ) for every n ∈ N. For the minimal distance between two boxes, it is
sufficient to know that each box on the invariant surface Q is contained in
the three dimensional box with the same word. By Proposition 11.4.2, the
minimal distance between two boxes on the surface and xy−plane with same
words is comparable. Then the upper bound of the minimal distance of two
dimensional box is also a upper bound of the three dimensional box up to the
uniform constant independent of n. By Lemma 11.4.1, we have

distmin(B
n
wv, B

n
wc) ≤ C0 b

2k

1 σ
2kσn−k

for the word w = vn−k−1cvk ∈ W n.
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By Proposition 11.4.2, diameters of the two dimensional box, 2dB
n
w

on the
xy−plane and box on the surface Q, namely, Q ∩ Bn

w
is comparable for all

sufficiently large n ∈ N. The box of the three dimensional map F , Bn
w
contains

the box, Q∩Bn
w
with same word w. Then the diameter of Bn

w
is greater than

that of Q∩Bn
w
. However, if the word w is fixed the lower bound of diam2dB

n
w

is also a lower bound of diamBn
w

up to the uniform constant independent of
n. By Lemma 11.4.1, we have

diam(Bn
wv) ≥ C1σ

2(n−k)σk

for the word w = vn−k−1cvk on the above inequality for the minimal distance.
The condition of x−axis overlapping of the adjacent two boxes in three dimen-
sion is same as the condition of the two dimension because of the existence
of the invariant surface as the graph from the plane to z−axis. Then we may
assume that

b2
k

1 � σn−k

for all sufficiently large k. Hence, distmin(B
n
wv, B

n
wc) ≤ Cσk diam(Bn

wv) for
some C > 0. Therefore, the critical Cantor set has unbounded geometry.
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Chapter 12

Another invariant space under

renormalization

12.1 Definition of the invariant subspace from

recursive formulas about δ

Let F be a renormalizable three dimensional Hénon-like map. Recall pre-
renormalization of F , PRF is defined as follows.

PRF = H ◦ F 2 ◦H−1

where H(w) = (f(x) − ε(w), y, z − δ(y, f−1(y), 0)). Recall the renormalized
map RF is defined as Λ ◦ PRF ◦ Λ−1 where Λ(w) = (sx, sy, sz) for the ap-
propriate number s < −1 from the renormalized one dimensional map, f(x).
Denote σ0 = 1/s

Let the first coordinate map of H−1(w) be φ−1(w). Then

H−1(w) = (φ−1(w), y, z + δ(y, f−1(y), 0))

By the direct calculation PRF is as follows.

PRF (w) = (f(f(x)− ε ◦ F ◦H−1(w))− ε ◦ F 2 ◦H−1(w),
x, δ ◦ F ◦H−1(w)− δ(x, f−1(x), 0))

Let the perturbed part of the first coordinate map of PRF be Pre ε1(w). Let
the third coordinate map of PRF be Pre δ1(w). Moreover, Pre ε1(w) and
Pre δ1(w) is defined as the corresponding parts of PRkF for each k ∈ N.
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Denote partial derivatives of the composition as follows.

∂x{P ◦Q(w)} ≡ ∂xP (Q(w)) ∂xP at Q(w) is ∂xP ◦Q(w)

The similar notation is defined for partial derivatives over any other variables
also.

Then the relation between Pre εk(w) and εk(w) (and between Pre δk(w) and
δk(w) respectively).

Pre εk(w) = σk−1 · εk ◦
(

1

σk−1 · w

)
and Pre δk(w) = σk−1 · δk ◦

(
1

σk−1 · w

)

Thus each partial derivatives of εk (and δk) at a point w are the partial deriva-
tives of Pre εk(w) (and Pre δk(w) respectively) over the same variables at the
point with the linear scaling, σk−1w for every k ∈ N. For example,

∂yεk(w) = ∂y
(
Pre εk

)
◦ (σk−1w)

Let us calculate the recursive formula of each partial derivatives of Pre δ1(w).
By the definition of the pre-renormalization and the recursive formula (B.0.4),
∂xPre δ1 is the following.

∂x
(
Pre δ1

)
(w)

= ∂x(δ ◦ F ◦H−1(w)− δ(x, f−1(x), 0))

=
[
∂yδ ◦ (F ◦H−1(w)) + ∂zδ ◦ (F ◦H−1(w)) · ∂xδ ◦H−1(w)

]
· ∂xφ−1(w)

+ ∂xδ ◦ (F ◦H−1(w))− d

dx
δ(x, f−1(x), 0)

Similarly, by the recursive formula (B.0.5) ∂yPre δ1 is the following.

∂y
(
Pre δ1

)
(w)

=
[
∂yδ ◦ (F ◦H−1(w)) + ∂zδ ◦ (F ◦H−1(w)) · ∂xδ ◦H−1(w)

]
· ∂yφ−1(w)

+ ∂zδ ◦ (F ◦H−1(w)) ·
[
∂yδ ◦H−1(w) + ∂zδ ◦H−1(w) ·

d

dy
δ(y, f−1(y), 0)

]

The equation (B.0.6) implies that ∂zPre δ1 is expressed in terms of sum or
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products of the partial derivatives of the maps on the previous level.

∂z
(
Pre δ1

)
(w)

=
[
∂yδ ◦ (F ◦H−1(w)) + ∂zδ ◦ (F ◦H−1(w)) · ∂xδ ◦H−1(w)

]
· ∂zφ−1(w)

+ ∂zδ ◦ (F ◦H−1(w)) · ∂zδ ◦H−1(w)

Definition 12.1.1. In the space of the infinitely renormalizable maps, let us
denote the set of three dimensional Hénon-like maps to be N if the following
equations are satisfied

∂yδ ◦ (F ◦H−1(σ0w)) + ∂zδ ◦ (F ◦H−1(σ0w)) · ∂xδ ◦H−1(σ0w) ≡ 0

∂yδ ◦ (F 2 ◦H−1(σ0w)) + ∂zδ ◦ (F 2 ◦H−1(σ0w)) · ∂xδ ◦ (F ◦H−1(σ0w)) ≡ 0
(12.1.1)

for all w ∈ B1.

12.2 Invariance of the space N under renor-

malization

Recall the following definitions.

Λ−1n (w) = σn · w, ψn+1
v = H−1n (σnw), ψn+1

c = Fn ◦H−1n (σnw)

Proposition 12.2.1. Let F be an infinitely renormalizable Hénon-like map.
Denote RkF to be Fk and let Hk is the horizontal-like diffeomorphism of Fk.
Let B be the cubic box which is the domain of Fk for all k ∈ N. Then the
following is true

ψk
v ◦ ψk+1

c (w) = F 2
k−1 ◦H−1k−1(σk−1w

′) ∈ F 2
k−1 ◦Hk−1(σk−1B)

ψk
c ◦ ψk+1

v (w) = Fk−1 ◦H−1k−1(σk−1w
′) ∈ Fk−1 ◦Hk−1(σk−1B)

ψk
c ◦ ψk+1

c (w) = F 3
k−1 ◦H−1k−1(σk−1w

′) ∈ Fk−1 ◦Hk−1(σk−1B)

where w′ = H−1k (σkw) for every k ∈ N.

1The domain of each renormalized map, RnF is denoted to be B(RnF ). However, all
of B(RnF ) are the same sized cubic with the center origin and each sides are parallel to the
each axes in the rectangular coordinate. Then we condensed the notation B(RnF ) to B.
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Proof. Let us prove that the image of σk−1w
′ under each function F i

k−1 ◦H−1k−1

is contained in the set F j
k−1 ◦Hk−1(σk−1B) for i = 1, 2, 3 and j = i (mod 2).

w′ = H−1k (σkw) = H−1k ◦ Λ−1k (w)

Since H−1k ◦ Λ−1k (B) ⊂ B, σk−1w
′ is contained in σk−1B only if w ∈ B. More-

over, Fk−1 ◦Hk−1(σk−1w) = ψk
c (w) by the definition of ψk

c . However, the set
ψk
c (B) is invariant under F 2

k−1. Then we observe that following.

F 3
k−1 ◦H−1k−1(σk−1w

′) ∈ F 3
k−1 ◦Hk−1(σk−1B) ⊂ Fk−1 ◦Hk−1(σk−1B) (12.2.1)

Next let us prove the equality part of the Proposition. Recall the definition of

the renormalization, Fk = Λk−1 ◦Hk−1 ◦ F 2
k−1 ◦H−1k−1 ◦ Λ−1k−1.

ψk
v ◦ ψk+1

c (w)

= H−1k−1

(
σk−1 ψ

k+1
c (w)

)

= H−1k−1

(
σk−1 Fk ◦H−1k (σkw)

)

= H−1k−1

(
Λ−1k−1 ◦ Fk ◦H−1k (σkw)

)

=
(
H−1k−1 ◦ Λ−1k−1

)
◦
(
Λk−1 ◦Hk−1 ◦ F 2

k−1 ◦H−1k−1 ◦ Λ−1k−1 ◦H−1k

)
(σkw)

= F 2
k−1 ◦H−1k−1 ◦

(
Λ−1k−1 ◦H−1k

)
(σkw)

= F 2
k−1 ◦H−1k−1(σk−1w

′)
(12.2.2)

By the definitions of ψk
c and ψk+1

v , we obtain the following equation.

ψk
c ◦ ψk+1

v (w) = Fk−1 ◦H−1k−1 ◦
(
σk−1 ◦H−1k

)
(σkw)

= Fk−1 ◦H−1k−1(σk−1w
′)

Recall the equation ψk
c = Fk−1◦ψk

v . Then by the similar calculation of (12.2.2),
we obtain the following.

ψk
c ◦ ψk+1

c (w) = F 3
k−1 ◦H−1k−1 ◦

(
Λ−1k−1 ◦H−1k

)
(σkw)

= F 3
k−1 ◦H−1k−1(σk−1w

′)

Hence, the second part of the proposition, ψk
c ◦ψk+1

c (w) ∈ Fk−1 ◦Hk−1(σk−1B)
holds.
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In the rest of this paper, we use the notation q(y) and qk(y) as follows.

q(y) =
d

dy
δ(y, f−1(y), 0), qk(y) =

d

dy
δk(y, f

−1
k (y), 0) (12.2.3)

for each k ∈ N. Similarly, we can define q(x) or qk(x). Moreover, the value of
qk at different point, for instance at σky is expressed as qk ◦ (σky) and so on.

Theorem 12.2.2. Let the set of Hénon-like maps defined on (12.1.1) be N .
The space N in the space of infinitely renormalizable maps, IB(ε̄) is invariant
under renormalization, that is, if F ∈ IB(ε̄) ∩ N , then RF ∈ IB(ε̄) ∩N .

Proof. Suppose the following equation holds for F ∈ IB(ε̄) ∩N

∂yδn ◦ (Fn ◦H−1n (σnw)) + ∂zδn ◦ (Fn ◦H−1n (σnw)) ·∂xδn ◦H−1n (σnw) ≡ 0

∂yδn ◦ (F 2
n ◦H−1n (σnw)) + ∂zδn ◦ (F 2

n ◦H−1n (σnw)) ·∂xδn ◦ (Fn ◦H−1n (σnw))

≡ 0
(12.2.4)

for n = 0, 1, 2, . . . , k − 1 and for every w ∈ B. Then it suffice show that the
above equation holds for n = k by induction. Recall ψk+1

v = H−1k (σkw) and
ψk+1
c = Fk ◦H−1k (σkw) for k ∈ N ∪ {0}.

Let us express each partial derivatives of δk in terms of ∂xδk−1, ∂yδk−1 and
∂zδk−1.

∂yδk ◦
(
Fk ◦H−1k (σkw)

)

= ∂yδk ◦ ψk+1
c (w)

= ∂zδk−1 ◦
(
Fk−1 ◦H−1k−1

(
σk−1Fk ◦H−1k (σkw)

))

·
[
∂yδk−1 ◦H−1k−1

(
σk−1Fk ◦H−1k (σkw)

)

+ ∂zδk−1 ◦H−1k−1

(
σk−1Fk ◦H−1k (σkw)

)
· qk−1 ◦ (σk−1φ−1k (σkw))

]

= ∂zδk−1 ◦
(
ψk
c ◦ ψk+1

c (w)
)
·
[
∂yδk−1 ◦

(
ψk
v ◦ ψk+1

c (w)
)

+ ∂zδk−1 ◦
(
ψk
v ◦ ψk+1

c (w)
)
· qk−1 ◦ (σk−1φ−1k (σkw))

]
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∂zδk ◦
(
Fk ◦H−1k (σkw)

)

= ∂zδk ◦ ψk+1
c (w)

= ∂zδk−1 ◦
(
Fk−1 ◦H−1k−1

(
σk−1Fk ◦H−1k (σkw)

))

· ∂zδk−1 ◦H−1k−1

(
σk−1Fk ◦H−1k (σkw)

)

= ∂zδk−1 ◦
(
ψk
c ◦ ψk+1

c (w)
)
· ∂zδk−1 ◦

(
ψk
v ◦ ψk+1

c (w)
)

(12.2.5)

∂xδk ◦
(
H−1k (σkw)

)
= ∂xδk ◦ ψk+1

v (w)

= ∂xδk−1 ◦
(
Fk−1 ◦H−1k−1

(
σk−1H

−1
k (σkw)

))
− qk−1 ◦ (σk−1φ−1k (σkw))

= ∂xδk−1 ◦
(
ψk
c ◦ ψk+1

v (w)
)
− qk−1 ◦ (σk−1φ−1k (σkw))

(12.2.6)
Then

∂yδk ◦
(
Fk ◦H−1k (σkw)

)
+ ∂zδk ◦

(
Fk ◦H−1k (σkw)

)
· ∂xδk ◦

(
H−1k (σkw)

)

= ∂yδk ◦ ψk+1
c (w) + ∂zδk ◦ ψk+1

c (w) · ∂xδk ◦ ψk+1
v (w)

= ∂zδk−1 ◦
(
ψk
c ◦ ψk+1

c (w)
)
·
[
∂yδk−1 ◦

(
ψk
v ◦ ψk+1

c (w)
)

+ ∂zδk−1 ◦
(
ψk
v ◦ ψk+1

c (w)
)
· qk−1 ◦ (σk−1φ−1k (σkw))

]

+ ∂zδk−1 ◦
(
ψk
c ◦ ψk+1

c (w)
)
· ∂zδk−1 ◦

(
ψk
v ◦ ψk+1

c (w)
)

·
[
∂xδk−1 ◦

(
ψk
c ◦ ψk+1

v (w)
)
− qk−1 ◦ (σk−1φ−1k (σkw))

]

= ∂zδk−1 ◦
(
ψk
c ◦ ψk+1

c (w)
)
·
[
∂yδk−1 ◦

(
ψk
v ◦ ψk+1

c (w)
)

+ ∂zδk−1 ◦
(
ψk
v ◦ ψk+1

c (w)
)
· ∂xδk−1 ◦

(
ψk
c ◦ ψk+1

v (w)
) ]

(12.2.7)
By Proposition 12.2.1 , observe the following relations

ψk
v ◦ ψk+1

c (w) ∈ F 2
k−1 ◦Hk−1(σk−1B), ψk

c ◦ ψk+1
v (w) ∈ Fk−1 ◦Hk−1(σk−1B).

Moreover, by the same proposition we see

Fk−1 ◦ ψk
c ◦ ψk+1

v (w) = ψk
v ◦ ψk+1

c (w) (12.2.8)

Hence, the first part of the equation holds by induction.

Recall that Fk = Λk−1◦Hk−1◦F 2
k−1◦H−1k−1◦Λ−1k−1. Let us calculate the following

equation for later use.
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H−1k−1 ◦
(
σk−1 · F 2

k ◦H−1k (σkw)
)

= H−1k−1 ◦
(
σk−1 ·

(
Λk−1 ◦Hk−1 ◦ F 2

k−1 ◦H−1k−1 ◦ Λ−1k−1

)
◦ Fk ◦H−1k (σkw)

)

= F 2
k−1 ◦H−1k−1 ◦

(
σk−1 · Fk ◦H−1k (σkw)

)

= F 2
k−1 ◦H−1k−1 ◦ σk−1 · ψk+1

c (w)

= F 2
k−1 ◦ ψk

v ◦ ψk+1
c (w)

(12.2.9)

Let us express each partial derivatives of δk in terms of ∂xδk−1, ∂yδk−1 and
∂zδk−1.

∂yδk ◦
(
F 2
k ◦H−1k (σkw)

)

= ∂yδk ◦
(
Fk ◦ ψk+1

c (w)
)

= ∂zδk−1 ◦
(
Fk−1 ◦H−1k−1

(
σk−1F

2
k ◦H−1k (σkw)

))

·
[
∂yδk−1 ◦H−1k−1

(
σk−1F

2
k ◦H−1k (σkw)

)

+ ∂zδk−1 ◦H−1k−1

(
σk−1F

2
k ◦H−1k (σkw)

)
· qk−1 ◦ (σk−1 · σkx))

]

= ∂zδk−1 ◦
(
F 2
k−1 ◦ ψk

c ◦ ψk+1
c (w)

)
·
[
∂yδk−1 ◦

(
F 2
k−1 ◦ ψk

v ◦ ψk+1
c (w)

)

+ ∂zδk−1 ◦
(
F 2
k−1 ◦ ψk

v ◦ ψk+1
c (w)

)
· qk−1 ◦ (σk−1 · σkx))

]

(12.2.10)

∂zδk ◦
(
F 2
k ◦H−1k (σkw)

)

= ∂zδk ◦
(
Fk ◦ ψk+1

c (w)
)

= ∂zδk−1 ◦
(
Fk−1 ◦H−1k−1

(
σk−1F

2
k ◦H−1k (σkw)

))

· ∂zδk−1 ◦H−1k−1

(
σk−1F

2
k ◦H−1k (σkw)

)

= ∂zδk−1 ◦
(
F 2
k−1 ◦ ψk

c ◦ ψk+1
c (w)

)
· ∂zδk−1 ◦

(
F 2
k−1 ◦ ψk

v ◦ ψk+1
c (w)

)

(12.2.11)
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∂xδk ◦
(
Fk ◦H−1k (σkw)

)
= ∂xδk ◦ ψk+1

c (w)

= ∂xδk−1 ◦
(
Fk−1 ◦H−1k−1

(
σk−1Fk ◦H−1k (σkw)

))
− qk−1 ◦ (σk−1 · σkx))

= ∂xδk−1 ◦
(
Fk−1 ◦ ψk

v ◦ ψk+1
c (w)

)
− qk−1 ◦ (σk−1 · σkx))

(12.2.12)
Then

∂yδk ◦
(
F 2
k ◦H−1k (σkw)

)

+ ∂zδk ◦
(
F 2
k ◦H−1k (σkw)

)
· ∂xδk ◦

(
Fk ◦H−1k (σkw)

)

= ∂yδk ◦
(
Fk ◦ ψk+1

c (w)
)
+ ∂zδk ◦

(
Fk ◦ ψk+1

c (w)
)
· ∂xδk ◦

(
Fk ◦ ψk+1

v (w)
)

= ∂zδk−1 ◦
(
F 2
k−1 ◦ ψk

c ◦ ψk+1
c (w)

)
·
[
∂yδk−1 ◦

(
F 2
k−1 ◦ ψk

v ◦ ψk+1
c (w)

)

+ ∂zδk−1 ◦
(
F 2
k−1 ◦ ψk

v ◦ ψk+1
c (w)

)
· qk−1 ◦ (σk−1 · σkx))

]

+ ∂zδk−1 ◦
(
F 2
k−1 ◦ ψk

c ◦ ψk+1
c (w)

)
· ∂zδk−1 ◦

(
F 2
k−1 ◦ ψk

v ◦ ψk+1
c (w)

)

·
[
∂xδk−1 ◦

(
Fk−1 ◦ ψk

v ◦ ψk+1
c (w)

)
− qk−1 ◦ (σk−1 · σkx))

]

= ∂zδk−1 ◦
(
F 2
k−1 ◦ ψk

c ◦ ψk+1
c (w)

)
·
[
∂yδk−1 ◦

(
F 2
k−1 ◦ ψk

v ◦ ψk+1
c (w)

)

+ ∂zδk−1 ◦
(
F 2
k−1 ◦ ψk

v ◦ ψk+1
c (w)

)
· ∂xδk−1 ◦

(
Fk−1 ◦ ψk

v ◦ ψk+1
c (w)

) ]

(12.2.13)

By Proposition 12.2.1 , ψk
v ◦ ψk+1

c (w) ∈ F 2
k−1 ◦Hk−1(σk−1B), that is,

ψk
v ◦ ψk+1

c (B) ⊂ F 2
k−1 ◦Hk−1(σk−1B)

for all w ∈ B. Furthermore, since the region Hk−1(σk−1B) is invariant under
F 2,

F 2
k−1 ◦ ψk

v ◦ ψk+1
c (w) ⊂ F 2

k−1 ◦Hk−1(σk−1B).

Hence, the second part of the condition (12.2.4) for n = k holds. Therefore,
the space, N ∩ IB(ε̄) is invariant under renormalization.

Then if F ∈ IB(ε̄) ∩ N , then the recursive formula of the partial derivatives
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of δk+1(w) in terms of the partial derivatives of δk(w) is following.

∂xδk+1(w) = ∂xδk ◦ (Fk ◦H−1k (σkw))−
d

dx
δk(σkx, f

−1
k (σkx), 0)

∂yδk+1(w) = ∂zδk ◦ (Fk ◦H−1k (σkw))

·
[
∂yδk ◦H−1k (σkw) + ∂zδk ◦H−1k (σkw) ·

d

dy
δk(σky, f

−1
k (σky), 0)

]

∂zδk+1(w) = ∂zδk ◦ (Fk ◦H−1k (σkw)) · ∂zδk ◦H−1k (σkw)
(12.2.14)

Corollary 12.2.3. Let F ∈ N ∩IB(ε̄) and the third coordinate function of F
be δ(w). Then

∂yδ ◦Ψn+1
vnc (w) + ∂zδ ◦Ψn+1

vnc (w) · ∂xδ ◦Ψn+1
cnv (w) ≡ 0 (12.2.15)

for every n ∈ N.

Proof. Firstly recall the fact that Ψn
w
(B) is invariant under F 2n for every

w ∈ W n. Moreover, recall also the fact that Fn(w) = Λn−1 ◦ Hn−1 ◦ F 2
n−1 ◦

Hn−1 ◦ Λn−1(w) for every n ∈ N. Then

Ψn+1
vnc (w) = Ψn

vn ◦ Fn ◦H−1n (σnw)

= H−1 ◦ Λ−1 ◦H−11 ◦ Λ−11 ◦ · · · ◦H−1n−1 ◦ Λ−1n−1 ◦ Fn ◦H−1n (σnw)

= H−1 ◦ Λ−1 ◦H−11 ◦ Λ−11 ◦ · · · ◦ F 2
n−1 ◦H−1n−1 ◦ Λn−1 ◦H−1n (σnw)

...

= F 2n ◦H−1 ◦ Λ−1 ◦H−11 ◦ Λ−11 ◦ · · · ◦H−1n−1 ◦ Λn−1 ◦H−1n ◦ Λ−1n (w)

= F 2n ◦Ψn+1
vn+1(w)

Moreover,

F 2n ◦Ψn+1
vn+1(w) = F 2n−1 ◦ F 2 ◦H−1

(
σ0 · ψ2

v ◦ ψ3
v ◦ · · · ◦ ψn+1

v (w)
)

∈ F 2n−1 ◦ F 2 ◦H−1
(
σ0 · ψ2

v ◦ ψ3
v ◦ · · · ◦ ψn+1

v (B)
)

⊂ F 2 ◦H−1
(
σ0 · ψ2

v ◦ ψ3
v ◦ · · · ◦ ψn+1

v (B)
)

⊂ F 2 ◦H−1(B)
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Similarly,

F ◦Ψn+1
cnv (w) = F ◦Ψn

cn ◦H−1n (σnw)

= F ◦ F ◦H−1 ◦ Λ−1F1 ◦H−11 ◦ Λ−11 ◦ · · · ◦ Fn−1 ◦H−1n−1 ◦ Λ−1n−1 ◦H−1n (σnw)

...

= F ◦ F ◦ F 2 ◦ F 22 ◦ · · · ◦ F 2n−1

◦H−1 ◦ Λ−1 ◦H−11 ◦ Λ−11 ◦ · · · ◦H−1n−1 ◦ Λn−1 ◦H−1n ◦ Λ−1n (w)

= F 2n ◦Ψn+1
vn+1(w)

Hence, the proof is complete.
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Chapter 13

Asymptotic of each partial

derivatives of δn and related

formula of ∂yεn

13.1 Critical point and recursive formula of

∂xδn

Let us define the critical point of F ∈ IB(ε̄) as the inverse image of the tip,
τF under F and denote this point to be cF . Recall the definition of the tip.

{τF} =
⋂

n≥1

Ψn
vn(B)

The above intersection is nested and each Ψn
vn(B) is connected. Then the tip

is just the limit of the sequence of Ψn
vn(B) as follows.

{τF} =
⋂

n≥1

Ψn
vn(B) = lim

n→∞
Ψn

vn(B) (13.1.1)

Observe that the following fact

Ψn
vn ◦ Fn ◦H−1n (σnw) ∈ Ψn

vn(B)

Ψn
cn ◦H−1n (σnw) ∈ Ψn

cn(B)

for each n ∈ N. Since diam(Ψn
w
) ≤ Cσn for some C > 0, the limit of Ψn

wn(B)
as n→ ∞ is a single point and furthermore, it is same as the limit of the point
set which is included in Ψn

wn(B) where w = v or c ∈ W . By Corollary 12.2.3,
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the following equation holds

F ◦Ψn
cn ◦H−1n (σnw) = Ψn

vn ◦ Fn ◦H−1n (σnw)

for every n ∈ N. Passing the limit the following equation holds

F ◦ lim
n→∞

Ψn
cn(B) = lim

n→∞
F ◦Ψn

cn(B)

= lim
n→∞

F ◦Ψn
cn ◦H−1n ({σnw}) = lim

n→∞
Ψn

vn ◦ Fn ◦H−1n ({σnw})
= lim

n→∞
Ψn

vn(B) = {τF}
(13.1.2)

where B is the domain of Fn for all n ∈ N. Then the critical point of F , {cF}
is limn→∞Ψn

cn(B).

Definition 13.1.1. Let us express the notation of the composition of ψk
w ◦

· · · ◦ ψn
w where w = v or c ∈ W as follows.1

ψk
v ◦ ψk+1

v ◦ · · · ◦ ψn
v = Ψn

k, vn−k ≡ Ψn
k,v

ψk
c ◦ ψk+1

c ◦ · · · ◦ ψn
c = Ψn

k, cn−k ≡ Ψn
k,c

Moreover, let us take the following notations

Ψn
k,v ◦ ψn+1

c ≡ Ψn+1
k,vc, Ψn

k,c ◦ ψn+1
v ≡ Ψn+1

k, cv

for each n ∈ N. Furthermore, the notation Ψn+2
k,vcv or Ψn+2

k,vc2
and any similar

notations are allowed.

Proposition 13.1.1. Let the Hénon-like map F is in the space N ∩ IB(ε̄).
Let δn(w) be he third coordinate map of Fn for each n ∈ N. Then the following
equation is true

∂xδn(w) = ∂xδ ◦Ψn
cn(w)−

n−1∑

i=0

qi ◦
(
πx ◦Ψn

i, c(w)
)

1By the above definition 13.1.1, Ψn
vn and Ψn

cn can be also expressed as follows

Ψn
vn = Ψn

0, v, Ψn
cn = Ψn

0, c
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for each n ∈ N. Moreover, passing the limit the following equation holds

∂xδ(cF ) = lim
n→∞

n−1∑

i=0

qi ◦
(
πx ◦Ψn

i, c(w)
)
= lim

n→∞

n−1∑

i=0

qi(πx(cFi
))

where cF is the critical point of F .

Proof. By the equation (12.2.14), we see

∂xδn(w) = ∂xδn−1 ◦ (Fn−1 ◦H−1n−1(σn−1w))−
d

dx
δn−1(σn−1x, f

−1
n−1(σn−1x), 0)

Recall the definition of qk(x) in the equation (12.2.3). Then

∂xδn(w) = ∂xδn−1 ◦ ψn
c (w)− qn−1(πx ◦ ψn

c (w))

= ∂xδn−2 ◦ (ψn−1
c ◦ ψn

c (w))

− qn−2 ◦ (πx ◦ ψn−1
c ◦ ψn

c (w))− qn−1 ◦ (πx ◦ ψn
c (w))

...

= ∂xδ ◦Ψn
cn(w)−

n−1∑

i=0

qi ◦
(
πx ◦Ψn

i, c(w)
)

Moreover, we observe that following limit in (13.1.2)

lim
n→∞

Ψn
i, c(B) = {cFi

} (13.1.3)

for each fixed i ∈ N. Since ‖ ∂xδn‖ ≤ Cε̄2
n

for some C > 0, passing the limit
we obtain

∂xδ(cF ) = lim
n→∞

n−1∑

i=0

qi ◦
(
πx ◦Ψn

i, c(w)
)

Furthermore, since the above limit is constant and the critical points of each
level, cFi

are in Ψn
i, c(B) for all n ∈ N. Then

∂xδ(cF ) = lim
n→∞

n−1∑

i=0

qi(πx(cFi
))
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13.2 Universal number b2 and the asymptotic

of ∂zδn and ∂yδn

Proposition 13.2.1. Let the Hénon-like map F is in the space N∩IB(ε̄). De-
note the nth renormalized map of F to be RnF ≡ Fn = (fn(x)−εn(w), x, δn(w)).
Assume that F is a diffeormorphism. Then

∂zδn = b2
n

2 (1 +O(ρn))

where b2 is a positive number for each n ∈ N and 0 < ρ < 1.

Proof. Recall the equation (12.2.14) for ∂zδn. Then

∂zδn(w) = ∂zδn−1 ◦ (Fn−1 ◦H−1n−1(σn−1w)) · ∂zδn−1 ◦H−1n−1(σn−1w)

= ∂zδn−1 ◦ ψn
c (w) · ∂zδn−1 ◦ ψn

v (w)

= ∂zδn−2 ◦ (ψn−1
c ◦ ψn

c (w)) · ∂zδn−2 ◦ (ψn−1
v ◦ ψn

c (w))

· ∂zδn−2 ◦ (ψn−1
c ◦ ψn

v (w)) · ∂zδn−2 ◦ (ψn−1
v ◦ ψn

v (w))

...

=
∏

w∈Wn

∂zδ ◦Ψn
w
(w)

(13.2.1)

The number of word w ∈ W n is 2n. Let us take the logarithmic average of
|∂zδn| on the regions Ψn

w
(B) and let this map be ln(w) for each n ∈ N.

ln(w) =
1

2n

∑

w∈ Wn

log | ∂zδ ◦Ψn
w
(w)| (13.2.2)

If ∂zδ(w) = 0 for some w ∈ B, then ∂yδ(w) = 0 at the same point because
F ∈ N . Thus JacF (w) = 0, that is, F cannot be a dffeomorphism. Moreover,
∂zδ is defined on some compact set which contains the set

⋃
w∈Wn Ψn

w
(B).

Then we may assume that ∂zδ(w) has the positive lower bounds (or negative
upper bounds) on the given compact set.

ln(w) −→
∫

OF

log |∂zδ| dµ

as n → ∞ where µ is the unique ergodic probability measure on the Cantor
set OF .

The limit of ln(w) as n → ∞ is a function defined on the critical Cantor set,
OF . However, the values of the limit function at all points of OF are same as
each other. Then the limit is a constant function. Let this limit be log b2 for
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some b2 > 0. Moreover, since diam(Ψn
w
(B)) ≤ Cσn for all w ∈ W n for some

C > 0, the convergence of the above equation (13.2.2) is exponentially fast.
In other words,

1

2n
log |∂zδn(w)| = log b2 +O(ρn0)

for some 0 < ρ0 < 1. Let us choose the constant ρ = ρ0/2. Then we obtain
the following asymptotic.

log | ∂zδn(w)| = 2n log b2 +O(ρn)

= 2n log b2 + log(1 +O(ρn))

= log b2
n

2 (1 +O(ρn))

(13.2.3)

Hence,
|∂zδn| = b2

n

2 (1 +O(ρn)) (13.2.4)

By the assumption, ∂zδ is not zero at any point. Then we may assume that
∂zδ is positive.

Lemma 13.2.2. Let F ∈ N ∩IB(ε̄) and δn(w) be the third coordinate map of
Fn for each n ∈ N. Then the following equation holds

∂yδn(w) · ∂zδ ◦Ψn
vn(w)

= ∂zδn(w) ·
[
∂yδ ◦Ψn

vn(w) +
n−1∑

i=0

qi ◦
(
πy ◦Ψn

i,v(w)
)
· ∂zδ ◦Ψn

vn(w)
]

for each n ∈ N.

∂yδ ◦Ψn
vn(w) +

n−1∑

i=0

qi ◦
(
πy ◦Ψn

i,v(w)
)
· ∂zδ ◦Ψn

vn(w) ≤ Cσn(1 +O(ρn))

for some C > 0 and 0 < ρ < 1. Moreover, ∂yδn(w) ≤ Cσnb2
n

2 (1 + O(ρn)) for
each n ∈ N.

Proof. By the equation (12.2.14), we see

∂yδn(w) = ∂zδn−1 ◦ (Fn−1 ◦H−1n−1(σn−1w)) ·
[
∂yδn−1 ◦H−1n−1(σn−1w))

+ ∂zδn−1 ◦H−1n−1(σn−1w)) ·
d

dy
δn−1

(
σn−1y, f

−1
n−1(σn−1y), 0

) ]

Recall the definition of qk(y) in the equation (12.2.3). Then
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∂yδn(w)

= ∂zδn−1 ◦ ψn
c (w) · ∂yδn−1 ◦ ψn

v (w) + ∂zδn(w) · qn−1 ◦ (πy ◦ ψn
v (w))

= ∂zδn−1 ◦ ψn
c (w) ·

[
∂zδn−2 ◦ (ψn−1

c ◦ ψn
v (w)) · ∂yδn−2 ◦ (ψn−1

v ◦ ψn
v (w))

+ ∂zδn−1 ◦ ψn
v (w) · qn−2 ◦ (πy ◦ (ψn−1

v ◦ ψn
v (w))

]

+ ∂zδn(w) · qn−1 ◦ (πy ◦ ψn
v (w))

= ∂zδn−1 ◦ ψn
c (w) · ∂zδn−2 ◦ (ψn−1

c ◦ ψn
v (w)) · ∂yδn−2 ◦ (ψn−1

v ◦ ψn
v (w))

+ ∂zδn(w) ·
[
qn−2 ◦ (πy ◦ (ψn−1

v ◦ ψn
v (w)) + qn−1 ◦ (πy ◦ ψn

v (w))
]

...

= ∂zδn−1 ◦ ψn
c (w) · ∂zδn−2 ◦ (ψn−1

c ◦ ψn
v (w))·

· · · · ∂zδ ◦ (ψ1
c ◦ ψ2

v ◦ · · · ◦ ψn
v (w)) · ∂yδ ◦Ψn

vn(w)

+ ∂zδn(w) ·
n−1∑

i=0

qi ◦
(
πy ◦Ψn

i,v(w)
)

(13.2.5)

Thus let us multiply ∂zδ ◦Ψn
vn(w). Then

∂yδn(w) · ∂zδ ◦Ψn
vn(w)

= ∂zδn(w) · ∂yδ ◦Ψn
vn(w) + ∂zδn(w) ·

n−1∑

i=0

qi ◦
(
πy ◦Ψn

i,v(w)
)
· ∂zδ ◦Ψn

vn(w)

= ∂zδn(w) ·
[
∂yδ ◦Ψn

vn(w) +

n−1∑

i=0

qi ◦
(
πy ◦Ψn

i,v(w)
)
· ∂zδ ◦Ψn

vn(w)
]

(13.2.6)
By Lemma 13.2.1, the asymptotic of ∂zδn(w) is as follows

∂zδn(w) = b2
n

2 (1 +O(ρn)) (13.2.7)

for each n ∈ N.

Let us estimate the following expression.

∂yδ ◦Ψn
vn(w) +

n−1∑

i=0

qi ◦
(
πy ◦Ψn

i,v(w)
)
· ∂zδ ◦Ψn

vn(w) (13.2.8)

Recall the definition of the tip in (13.1.1) and the critical point as the limit in
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(13.1.3)
{τFi

} = lim
n→∞

Ψn
i,v(B), {cFi

} = lim
n→∞

Ψn
i, c(B)

for each i ∈ N. Moreover, since Fi(cFi
) = τFi

and the Hénon-like map Fi is of
the following form

Fi(w) = (fi(x)− εi(w), x, δi(w))

and especially the second coordinate of Fi(w) is the first coordinate of the
point w, we see the equation

πx(cFi
) = πy(τFi

)

for every i ∈ N. By Proposition 13.1.1, we have the following equation.

∂xδ(cF ) = lim
n→∞

n−1∑

i=0

qi ◦
(
πx ◦Ψn

i, c(w)
)

Take the limit of (13.2.8).

∂yδ(τF ) + lim
n→∞

n−1∑

i=0

qi ◦
(
πy ◦Ψn

i,v(w)
)
· ∂zδ(τF )

= ∂yδ(τF ) + lim
n→∞

n−1∑

i=0

qi ◦
(
πy(τFi

)
)
· ∂zδ(τF )

= ∂yδ(τF ) + lim
n→∞

n−1∑

i=0

qi ◦
(
πx(cFi

)
)
· ∂zδ(τF )

= ∂yδ(τF ) + ∂xδ(cF ) · ∂zδ(τF )

(13.2.9)

Since the fact that F ∈ N , cFi
∈ Ψn

i, c(B) and τFi
∈ Ψn

i,v(B) for all n ∈ N, the
above expression (13.2.9) is zero. Moreover, Ψn

vn(B) and Ψn
cn(B) converge to

τF and cF respectively as n → ∞ with at least the exponential rat because
the scaling map ψn

v (respectively ψn
c ) is the composition of the linear contrac-

tion with σn(1+O(ρn)) and the horizontal map, H−1n (w) (respectively vertical
map, Fn ◦H−1n (w)).

The
n−1∑

i=0

qi ◦
(
πy ◦Ψn

i,v(w)
)
converges exponentially fast as n → ∞ by Corol-
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lary A.0.5. Then the following asymptotic holds

∂yδ◦Ψn
vn(w)+

n−1∑

i=0

qi◦
(
πy◦Ψn

i,v(w)
)
·∂zδ◦Ψn

vn(w) ≤ Cσn(1+O(ρn)) (13.2.10)

for some C > 0 where 0 < ρ < 1. Hence, applying the equation (13.2.7) and
(13.2.10) to the equation (13.2.6), we obtain that

∂yδn(w) ≤ Cσnb2
n

2 (1 +O(ρn))

for some C > 0 where 0 < ρ < 1.

Remark 13.2.1. By the definition of the class N , if F ∈ N , then

∂yδn ◦ ψn+1
c (w) = ∂zδn ◦ ψn+1

c (w) ·
(
− ∂xδn ◦ ψn+1

v (w)
)
.

Then ‖ ∂yδn ◦ ψn+1
c ‖ ≤ Cε̄2

n

b2
n

2 for some C > 0.

Corollary 13.2.3. Let F ∈ N ∩ IB(ε̄) for each n ∈ N. Then the following
asymptotic holds

∂yδk ◦Ψn
k,v(w) +

n−1∑

i=k

qi ◦
(
πy ◦Ψn

i,v(w)
)
· ∂zδk ◦Ψn

k,v(w) ≤ Cnσ
n b2

k

2

for every k < n and where Cn = C(1 +O(ρn)) > 0 for some 0 < ρ < 1.

Proof. By the direct calculation of the recursive formula in (13.2.5) from level
n to k, the expression (13.2.8) is generalized as follows.

∂yδn(w) · ∂zδk ◦Ψn
k,v(w)

= ∂zδn(w) ·
[
∂yδk ◦Ψn

k,v(w) +
n−1∑

i=k

qi ◦
(
πy ◦Ψn

i,v(w)
)
· ∂zδk ◦Ψn

k,v(w)
]

Lemma 13.2.2 and the asymptotic of ∂zδn in Lemma 13.2.1 implies the follow-
ing expression.

∂yδn(w) · b2
k

2 = b2
n

2

[
∂yδk ◦Ψn

k,v(w) +

n−1∑

i=k

qi ◦
(
πy ◦Ψn

i,v(w)
)
· ∂zδk ◦Ψn

k,v(w)
]

· (1 +O(ρn))
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Hence,

∂yδk ◦Ψn
k,v(w) +

n−1∑

i=k

qi ◦
(
πy ◦Ψn

i,v(w)
)
· ∂zδk ◦Ψn

k,v(w)

≤ ∂yδn(w) ·
b2

k

2

b2
n

2

≤ Cσnb2
n

2

b2
k

2

b2
n

2

(1 +O(ρn)) = Cσn b2
k

2 (1 +O(ρn))

for some C > 0.

13.3 Asymptotic of partial derivative of εn over

y

Let us consider the Jacobian of the Hénon-like map Fn in the class N at ψc(w).
By the universality theorem we obtain the following asymptotic.

JacFn ◦ (Fn ◦H−1n (σnw))

= ∂yεn ◦ (Fn ◦H−1n (σnw)) · ∂zδn ◦ (Fn ◦H−1n (σnw))

− ∂zεn ◦ (Fn ◦H−1n (σnw)) · ∂yδn ◦ (Fn ◦H−1n (σnw))

= ∂yεn ◦ (Fn ◦H−1n (σnw)) · ∂zδn ◦ (Fn ◦H−1n (σnw))

− ∂zεn ◦ (Fn ◦H−1n (σnw))

·
[
− ∂zδn ◦ (Fn ◦H−1n (σnw)) · ∂xδn ◦ (H−1n (σnw))

]

=
[
∂yεn ◦ (Fn ◦H−1n (σnw)) + ∂zεn ◦ (Fn ◦H−1n (σnw)) · ∂xδn ◦ (H−1n (σnw))

]

· ∂zδn ◦ (Fn ◦H−1n (σnw))

= b2
n

a(σnx)(1 +O(ρn))
(13.3.1)

where b is the average Jacobian of F .

Let us define the number b1 satisfying the equation, b = b1b2. Combine the
equation (13.2.3) and (13.3.1). Then

b2
n

a(σnx)(1 +O(ρn))

=
[
∂yεn ◦ (Fn ◦H−1n (σnw)) + ∂zεn ◦ (Fn ◦H−1n (σnw)) · ∂xδn ◦ (H−1n (σnw))

]

· b2n2 (1 +O(ρn))
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Then we get the new asymptotic.

∂yεn ◦ (Fn ◦H−1n (σnw)) + ∂zεn ◦ (Fn ◦H−1n (σnw)) · ∂xδn ◦ (H−1n (σnw))

= b2
n

1 a(σnx)(1 +O(ρn))
(13.3.2)

By the similar calculation, we obtain another asymptotic.

∂yεn ◦ (F 2
n ◦H−1n (σnw)) + ∂zεn ◦ (F 2

n ◦H−1n (σnw)) · ∂xδn ◦ (Fn ◦H−1n (σnw))

= b2
n

1 · a ◦ fn(σnx) (1 +O(ρn))
(13.3.3)

Lemma 13.3.1. Let the Hénon-like map F is in the space N ∩ IB(ε̄) for
sufficiently small ε̄ > 0. Then the following equation holds

∂yεk ◦ (Ψn
k,v ◦ Fn(w)) +

n−1∑

i=k

qi ◦
(
πy ◦Ψn

i,v ◦ Fn(w)
)
· ∂zεk ◦ (Ψn

k,v ◦ Fn(w))

= b2
k

1 · a ◦
(
πx ◦Ψn

k,v ◦ Fn(w)
) (

1 +O(ρk)
)

where a(x) is the universal function of x for some C > 0, 0 < ρ < 1 and for
each big enough k and n such that n ≥ k+A and A is depends only on b1 and
ε̄.

Proof. Recall the equation (13.3.3) on the restricted domain Ψn
k, c(B)

∂yεk ◦ (Fk ◦ ψk+1
c (w′)) + ∂zεk ◦ (Fk ◦ ψk+1

c (w′)) · ∂xδk ◦ (ψk+1
c (w′))

= b2
k

1 · a ◦
(
πx ◦ Fk ◦ ψk+1

c (w′)
)
(1 +O(ρk))

(13.3.4)

for every w′ ∈ Ψn
k+1, c(B). The following equation can be shown by the direct

calculation using definition of renormalization

Ψn
k,v ◦ Fn(w) = Fk ◦Ψn

k,c(w) (13.3.5)

for every k < n. See the proof of Corollary 12.2.3. Moreover, the formula of

the Hénon-like map, Fk implies the following equation.

πx ◦
(
Ψn

k,c(w)
)
= πy ◦

(
Fk ◦Ψn

k, c(w)
)
= πy ◦

(
Ψn

k,v ◦ Fn(w)
)

Then according to Proposition 13.1.1
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∂yεk ◦
(
Ψn

k,v ◦ Fn(w)
)

+

n−1∑

i=k

qi ◦
(
πy ◦

(
Ψn

k,v ◦ Fn(w)
))

· ∂zεk ◦
(
Ψn

k,v ◦ Fn(w)
)

= ∂yεk ◦
(
Ψn

k,v ◦ Fn(w)
)
+

n−1∑

i=k

qi ◦
(
πx ◦Ψn

i, c(w)
)
· ∂zεk ◦

(
Ψn

k,v ◦ Fn(w)
)

= ∂yεk ◦
(
Ψn

k,v ◦ Fn(w)
)

+
[
∂xδk ◦Ψn

k,c(w)− ∂xδn(w)
]
· ∂zεk ◦

(
Ψn

k,v ◦ Fn(w)
)

= ∂yεk ◦
(
Ψn

k,v ◦ Fn(w)
)
+ ∂xδk ◦Ψn

k, c(w) · ∂zεk ◦
(
Ψn

k,v ◦ Fn(w)
)

− ∂xδn(w) · ∂zεk ◦
(
Ψn

k,v ◦ Fn(w)
)

(13.3.6)

Observe that ‖∂xδn · ∂zεk‖ = O( ε̄2
n

ε̄2
k

). Then for exponential convergence of

the equation (13.3.6), we need ε̄2
n

ε̄2
k

. b2
k

1 .

ε̄2
n

ε̄2
k

. b2
k

1 ⇐⇒ (2n + 2k) log ε̄ . 2k log b1

⇐⇒ 2n ≥ 2k
(
log b1
log ε̄

− 1

)
+ C0

for some positive C0 > 0. If b1 < ε, then ε̄2
k

. b2
k

1 is always true. Let us
suppose that b1 > ε̄.

n ≥ k + Cmax

{
0, log2

(
log b1
log ε̄

− 1

)}

for some C > 0. Then the number A in the lemma is O

(
log2

( log b1
log ε̄

− 1
))

.

Hence, apply the equation (13.3.4) to (13.3.6), the asymptotic is true.

∂yεk ◦ (Ψn
k,v ◦ Fn(w)) +

n−1∑

i=k

qi ◦
(
πy ◦Ψn

i,v ◦ Fn(w)
)
· ∂zεk ◦ (Ψn

k,v ◦ Fn(w))

= b2
k

1 · a ◦
(
πx ◦Ψn

k,v ◦ Fn(w)
) (

1 +O(ρk)
)

The proof is complete.

Corollary 13.3.2. Let the Hénon-like map F is in the space N ∩IB(ε̄). Then
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the following equation holds

∂yεk ◦Ψn
k,v(w) +

n−1∑

i=k

qi ◦
(
πy ◦Ψn

i,v(w)
)
· ∂zεk ◦Ψn

k,v(w)

= b2
k

1 · a ◦
(
πx ◦Ψn

k,v(w)
) (

1 +O(ρk)
)

for every k < n which is big enough and for some C > 0 where a(x) is the
universal function of x and 0 < ρ < 1.

Proof. By Lemma 13.3.1, the asymptotic at the tip, τFn
holds as follows.

∂yεk ◦Ψn
k,v(τFn

) +
n−1∑

i=k

qi ◦
(
πy ◦Ψn

i,v(τFn
)
)
· ∂zεk ◦Ψn

k,v(τFn
)

= ∂yεk(τFk
) + lim

n→∞

n−1∑

i=k

qi ◦
(
πy ◦ (τFi

)
)
· ∂zεk(τFk

)

= b2
k

1 · a ◦
(
πx(τFk

)
) (

1 +O(ρk)
)

Moreover, since Ψn
k,v(w) → {τFk

} as n → ∞ exponentially fast, each ∂yεk ◦
Ψn

k,v(w) and ∂zεk ◦ Ψn
k,v(w) converge to ∂yεk(τFk

) and ∂zεk(τFk
) respectively

as n → ∞ exponentially fast. Additionally, the universal function a ◦
(
πx ◦

Ψn
k,v(w)

)
converges to a ◦

(
πx(τFk

)
)
as n→ ∞ exponentially fast.

The exponential convergence of the series,

n−1∑

i=k

qi ◦
(
πy ◦Ψn

i,v(w)
)
comes from

Corollary A.0.5.

Remark 13.3.1. The space N ∩IB(ε̄) allows that the lower bound of ‖∂zε‖ to
be zero. If F ∈ N ∩ IB(ε̄) is a diffeomorphism with the condition ‖∂zε‖ ≡ 0
and additionally if ∂yδ(w) = ∂xδ(w) ≡ 0, then δn(w) = δn(z) for every n ∈ N.
Furthermore, the renormalizability implies that ∂zδn(z) = b2

n

2 (1 + O(ρn)) for
each n ∈ N where 0 < ρ < 1 and 0 < b2 � 1. The set of these map is
contained in the intersection of model maps and the class N . We can call
this space trivial extension of the infinitely renormalizable two dimensional
Hénon-like maps.
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Chapter 14

Unbounded geometry of the

Cantor set

The unbounded geometry of a certain class would be proved by the calculation
of the three dimensional asymptotic.

14.1 Horizontal overlap of two adjacent boxes

The proof of the (un)bounded geometry of the Cantor set requires to compare
the diameter of the box and the minimal distance of two adjacent boxes in
the boxing. In order to compare these quantities, we would use the maps,
Ψn

k(w) and Fk(w) with the two points w1 = (x1, y1, z1) and w2 = (x2, y2, z2) in
the domain of Fn(w), namely, Dom(RnF ). Let us each successive image of wj

under Ψn
k(w) and Fk(w) be ẇj, ẅj and

...
wj for j = 1, 2.

wj
�

Ψn
k // ẇj

�

Fk // ẅj
�

Ψk
0 //

...
wj

For example, ẇj = Ψn
k(wj) and ẇj = (ẋj , ẏj, żj) for j = 1, 2. Let S1 and S2 be

the (path) connected set on R3. If πx(S1)∩πx(S2) contains at least two points,
then this intersection is called the x−axis overlap or horizontal overlap of S1

and S2. Moreover, we say S1 overlaps S2 on the x−axis or horizontally. Recall
σ is the linear scaling of F∗, the fixed point of the renormalization operator
and σk = σ(1 +O(ρk)) for each k ∈ N.

Recall the map Ψn
k from B(RnF ) to Bn−k

v
(RkF ), αn, k = σ2(n−k)(1 + O(ρk))

and σn, k = (−σ)n−k(1 +O(ρk)).
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Ψn
k(w) =



1 tn, k un, k

1
dn, k 1





αn, k

σn, k
σn, k





x+ Sn

k (w)
y

z +Rn
k(y)




where v = vn−k ∈ W n−k. Thus for any w ∈ B(RnF ) we have the following
equation.

πx ◦Ψn
k(w) = αn, k(x+ Sn

k (w)) + σn, k
(
tn, k y + un, k(z +Rn

k(y))
)

Let us find the sufficient condition of the horizontal overlapping. Horizon-
tal overlapping means that there exist two points w1 ∈ B1

v(R
nF ) and w2 ∈

B1
c (R

nF ) satisfying the following.

πx ◦Ψn
k(w1)− πx ◦Ψn

k(w2) = 0

Equivalently,

αn, k

[(
x1 + Sn

k (w1)
)
−
(
x2 + Sn

k (w2)
)]

+ σn, k

[
tn, k(y1 − y2) + un, k

{
z1 − z2 +Rn

k(y1)− Rn
k(y2)

}]
= 0.

(14.1.1)

Recall that x + Sn
k (w) = v∗(x) + O(ε̄2

k

+ ρn) for some 0 < ρ < 1 with C1

convergence. Since the universal map v∗(x) is a diffeomorphism and |x1−x2| =
O(1), we have the following estimation by the mean value theorem.

| x1 + Sn
k (w1)−

(
x2 + Sn

k (w2)
)
| = O(1)

Then the x−axis overlapping of two boxes, namely, the equation (14.1.1) im-
plies that

σn−k � tn, k(y1 − y2) + un, k
{
z1 − z2 +Rn

k(y1)− Rn
k(y2)

}

for every sufficiently big k ∈ N.

Proposition 14.1.1. Let F ∈ N ∩ IB(ε̄). Then

b2
k

1 � tn, k(y1 − y2) + un, k
{
z1 − z2 +Rn

k(y1)− Rn
k(y2)

}

for every big enough k and n such that n > k + A where A is the number
defined on Lemma 13.3.1.
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Proof. Let us choose two points in B(RnF ) as follows.

w1 = (x1, y1, z1) ∈ B1
v(R

nF ) ∩RnF (B)

w2 = (x2, y2, z2) ∈ B1
c (R

nF ) ∩RnF (B)

Recall that |x1 − x2| = O(1), |y1 − y2| = O(1). Let us choose the points w1

and w2 in Fn(B). In particular, we may assume that wj ∈ ORnF for j = 1, 2.
Then |z1 − z2| = O(ε̄2

n

). Two points w1 and w2 has their pre-image under
RnF and let w′1 and w′2 be the pre-image of w1 and w2 respectively. Then

|z1 − z2| = | δn(w′1)− δn(w
′
2)| ≤ C‖Dδn‖ · ‖w1 − w2‖ = O( ε̄2

n

)

for some C > 0. Then

tn, k(y1 − y2) + un, k
{
z1 − z2 +Rn

k(y1)− Rn
k(y2)

}

� tn, k(y1 − y2) + un, k
{
Rn

k(y1)− Rn
k(y2)

}

It suffice to show that

tn, k(y1 − y2) + un, k
{
Rn

k(y1)− Rn
k(y2)

}
� b2

k

1

By Proposition A.0.2, we see that

tn, k − un, k dn, k =

n−1∑

i=k

σi−k
[
ti+1, i − ui+1, i di+1, k

]
(1 +O(ρk))

Recall the fact if A � B and A′ � B′, then A+A′ � B +B′. Recall also that
if a series is convergent exponentially fast, then the sum is comparable with
the first term of the given series. Then we see the following asymptotic

[
tn, k(y1 − y2) + un, k

{
Rn

k(y1)−Rn
k(y2)

} ]
(1 +O(ρk))

=
[(
tn, k − un, k dn, k

)
(y1 − y2) + un, k

{
dn, k(y1 − y2) +Rn

k(y1)− Rn
k(y2)

}]

· (1 +O(ρk))

=
n−1∑

i=k

σi−k
[
ti+1, i − ui+1, i di+1, k

]
(y1 − y2)

+

n−1∑

i=k

σi−k ui+1, i

{
dn, k(y1 − y2) +Rn

k(y1)−Rn
k(y2)

}

141



�
[
tk+1, k − uk+1, k dk+1, k

]
(y1 − y2)

+ uk+1, k

{
dn, k(y1 − y2) +Rn

k(y1)− Rn
k(y2)

}

(∗) � ∂yεk(τFk
)(y1 − y2) + ∂zεk(τFk

) ·
n−1∑

i=k

qi ◦ (σi ξi+1) · (y1 − y2)

=
[
∂yεk(τFk

) + ∂zεk(τFk
) ·

n−1∑

i=k

qi ◦ (σi ξi+1)
]
(y1 − y2)

(∗∗) � b2
k

1 (y1 − y2)

where σi ξi+1 is some points in the line segment between πy ◦ Ψn
i (w1) and

πz ◦Ψn
i (w2) in πy ◦Ψn

i (B) for each k ≤ i ≤ n−1. Lemma 13.3.1 and Corollary
13.3.2 involve the (∗) and (∗∗). The proof is complete.

14.2 Unbounded geometry of the critical Can-

tor set

Lemma 14.2.1. Let F ∈ N ∩ IB(ε̄). Let the box Bn
wv be Ψn

0,v(B
1
v(R

nF )).
Then

diam(Bn
wv) ≥ |C1 σ

kσ2(n−k) − C2 σ
kσn−kb2

k

1 |
where w = vkc vn−k−1 ∈ W n for some positive C1 and C2.

Proof. Let us choose the two points

wj = (xj , yj, zj) ∈ B1
v(R

nF ) ∩ORnF

where j = 1, 2. We may assume that |x1 − x2| = O(1), |y1 − y2| = O(1) and
|z1 − z2| = O(ε̄2

n

). Thus

πx ◦Ψn
k(w) = αn, k(x+ Sn

k (w)) + σn, k
(
tn, k y + un, k(z +Rn

k(y))
)
.

Then

πx ◦Ψn
k(w1)− πx ◦Ψn

k(w2) = αn, k

[(
x1 + Sn

k (w1)
)
−
(
x2 + Sn

k (w2)
)]

+ σn, k

[
tn, k(y1 − y2) + un, k

{
z1 − z2 +Rn

k(y1)−Rn
k (y2)

}]
.

(14.2.1)
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By the equation (14.2.1),

ẋ1 − ẋ2 = αn, k

[(
x1 + Sn

k (w1)
)
−
(
x2 + Sn

k (w2)
)]

+ σn, k

[
tn, k(y1 − y2) + un, k

{
z1 − z2 +Rn

k(y1)−Rn
k(y2)

}]

Recall the estimation of the non linear part of πx ◦Ψn
k(w). Then x+ Sn

k (w) =
v∗(x) +O(ε̄2

k

+ ρn−k). Since v∗(x) is a diffeomorphism,

| v∗(x1)− v∗(x2)| = | v′∗(x̄)(x1 − x2)| ≥ C0

for some C0 > 0. The definition of the Hénon-like map Fk and the coordinate
change map Ψk

0, we see the following equations.

ÿ1 − ÿ2 = ẋ1 − ẋ2

= αn, k

[(
x1 + Sn

k (w1)
)
−
(
x2 + Sn

k (w2)
)]

+ σn, k

[
tn, k(y1 − y2) + un, k

{
z1 − z2 +Rn

k(y1)− Rn
k(y2)

}]

= αn, k

[
v′∗(x̄) +O(ε̄2

k

+ ρn−k)
]
(x1 − x2)

+ σn, k

[
tn, k(y1 − y2) + un, k

{
z1 − z2 +Rn

k(y1)− Rn
k(y2)

}]

...
y 1 −

...
y 2 = σk, 0(ÿ1 − ÿ2) = σk, 0(ẋ1 − ẋ2)

(14.2.2)
Clearly diam(Bn

w
) ≥ |...y 1 − ...

y 2| where w = vkc vn−k−1 ∈ W n. Hence, by
Proposition 14.1.1, we have the estimation

diam(Bn
wv) ≥ C σkσ2(n−k)

where w = vkc vn−k−1 ∈ W n for some C > 0.

Lemma 14.2.2. Let F ∈ N ∩ IB(ε̄). Let us choose two different points as
follows.

w1 = (x, y, z) ∈ B1
v(R

nF ) ∩ORnF , w2 = (x, y, z) ∈ B1
c (R

nF ) ∩ORnF

Suppose that Bn−k
vv (RkF ) overlaps Bn−k

vc (RkF ) with respect to Ψn
k(w1) and

Ψn
k(w2) on the x−axis for the word v = vn−k ∈ W n−k. Then

distmin(B
n
wv, B

n
wc ) ≤ C

[
σ2kσn−kb2

k

1 + σ2kσ2(n−k)b2
k

2

]

where w = vkc vn−k−1 ∈ W n for some C > 0.

143



Proof. Recall the expression of the map Ψn
k from B(RnF ) to Bn−k

v
(RkF ).

Ψn
k(w) =



1 tn, k un, k

1
dn, k 1





αn, k

σn, k
σn, k





x+ Sn

k (w)
y

z +Rn
k(y)




where v = vn−k ∈ W n−k. Then the expression of Ψn
k on the above and

the assumption of the overlapping on the x−axis, we obtain the following
estimation.

ẋ1 − ẋ2 = 0

ẏ1 − ẏ2 = σn, k(y1 − y2)

ż1 − ż2 = σn, k
[
dn, k(y1 − y2) + z1 − z2 +Rn

k(y1)− Rn
k(y2)

]

By the mean value theorem and the map RkF , we obtain the following equa-
tions

ẍ1 − ẍ2 = f(ẋ1)− εk(ẇ1)− [f(ẋ2)− εk(ẇ2)]

= −εk(ẇ1) + εk(ẇ2)

= −∂yεk(η) · (ẏ1 − ẏ2)− ∂zεk(η) · (ż1 − ż2)

= −∂yεk(η) · σn, k(y1 − y2)

− ∂zεk(η) · σn, k
[
dn, k(y1 − y2) + z1 − z2 +Rn

k(y1)−Rn
k(y2)

]

ÿ1 − ÿ2 = 0

z̈1 − z̈2 = δk(ẇ1)− δk(ẇ2)

= ∂yδk(ζ) · (ẏ1 − ẏ2) + ∂zδk(ζ) · (ż1 − ż2)

= ∂yδk(ζ) · σn, k(y1 − y2)

+ ∂zδk(ζ) · σn, k
[
dn, k(y1 − y2) + z1 − z2 +Rn

k(y1)− Rn
k(y2)

]

(14.2.3)
where η and ζ are some points in the line segment between ẇ1 and ẇ2 in
Ψn

k(B). Furthermore, by Proposition A.0.4, the distance ẍ1 − ẍ2 and z̈1 − z̈2
as follows.
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ẍ1 − ẍ2 = −∂yεk(η) · σn, k(y1 − y2)− ∂zεk(η) · σn, k ·
n−1∑

i=k

qi(σi ξi+1) · (y1 − y2)

− ∂zεk(η) · σn, k · (z1 − z2)

= −
[
∂yεk(η) + ∂zεk(η) ·

n−1∑

i=k

qi(σi ξi+1)
]
· σn, k (y1 − y2)

− ∂zεk(η) · σn, k (z1 − z2)

z̈1 − z̈2 = ∂yδk(ζ) · σn, k (y1 − y2) + ∂zδk(ζ) · σn, k ·
n−1∑

i=k

qi(σi ξi+1) · (y1 − y2)

+ ∂zδk(ζ) · σn, k (z1 − z2)

=
[
∂yδk(ζ) + ∂zδk(ζ) ·

n−1∑

i=k

qi(σi ξi+1)
]
· σn, k (y1 − y2)

+ ∂zδk(ζ) · σn, k (z1 − z2)

Since η, ζ ∈ Ψn
k(B) and σi ξi+1 ∈ πy ◦ Ψn

i+1(B) for each k ≤ i ≤ n − 1, the
asymptotic in Corollary 13.2.3 bounds | z̈1 − z̈2| and Corollary 13.3.2 bounds
| ẍ1 − ẍ2|. Then

| ẍ1 − ẍ2| . | σn−k | ·
[
| − b2

k

1 · a ◦ fk(σkx) | · | y1 − y2|+ | ∂zεk(η)| · | z1 − z2|
]

(1 +O(ρk))

| z̈1 − z̈2| . | σn b2
k

2 σ
n−k| · | y1 − y2| + b2

k

2 | σn−k| · | z1 − z2| (1 +O(ρk))
(14.2.4)

Recall

πx ◦Ψn
k(w) = αn, k(x+ Sn

k (w)) + σn, k
(
tn, k y + un, k(z +Rn

k(y))
)
.

Then

...
x 1 − ...

x 2 = πx ◦Ψk
0(ẅ1)− πx ◦Ψk

0(ẅ2)

= αk, 0

[
(ẍ1 + Sk

0 (ẅ1))− (ẍ2 + Sk
0 (ẅ2))

]

+ σk, 0
[
tk, 0 (ÿ1 − ÿ2) + uk, 0

(
z̈1 − z̈2 +Rk

0(ÿ1)− Rk
0(ÿ2)

) ]

= αk, 0

[
v′∗(x̄) +O(ε̄+ ρk)

]
(ẍ1 − ẍ2) + σk, 0 · uk, 0 (z̈1 − z̈2)

(14.2.5)...
y 1 −

...
y 2 = σk, 0 (ÿ1 − ÿ2) = 0
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...
z 1 − ...

z 2 = πz ◦Ψk
0(ẅ1)− πz ◦Ψk

0(ẅ2)

= σk, 0 (z̈1 − z̈2) + σk, 0
[
dk, 0(ÿ1 − ÿ2) +Rn

k(ÿ1)− Rn
k(ÿ2)

]

= σk, 0 (z̈1 − z̈2)
(14.2.6)

Moreover, let us apply the estimations in (14.2.4) to
...
x 1 − ...

x 2 and
...
z 1 − ...

z 2.
Let us assume that both k and n are even numbers.

distmin(B
n
wv, B

n
wc )

≤ | ...x 1 − ...
x 2|+ | ...z 1 − ...

z 2|
≤
[
σ2k · | ẍ1 − ẍ2| · v∗(x̄) + σk · (1 + uk,0) | z̈1 − z̈2|

]
(1 +O(ρn))

≤ C
{[
σ2kσn−k b2

k

1 · a ◦ (πx ◦Ψn
k,v(w)) + σkσnσn−k b2

k

2

]
· | y1 − y2|

+
[
σ2k| ∂zεk(η)|+ σkσn−k · b2k2

]
· | z1 − z2|

}

(14.2.7)

for some C > 0.

Observe that Fn(B
1
v(Fn)) ⊂ B1

c (Fn) and Fn(B
1
c (Fn)) ⊂ B1

v(Fn). Let us mea-
sure the distance of each third coordinates of two given points

w1 = (x, y, z) ∈ B1
v(Fn) ∩ OFn

, w2 = (x, y, z) ∈ B1
c (Fn) ∩ OFn

as follows. Recall |x1 − x2| and |y1− y2| is O(1). By the mean value theorem,
the z−coordinate distance of two points is estimated as follows.

| πz ◦Fn(w1)−πz ◦Fn(w2)| = | δn(w1)− δn(w2)| ≤ ‖Dδn‖ · ‖w1−w2‖ = O( ε̄2
n

)

Since the critical Cantor set OFn
is an invariant compact set under Fn, we

may assume that | z1 − z2| ≤ Cε2
n

. For sufficiently small ε̄ > 0 and big
enough n � k, the number ε̄2

n

is very small, that is, ε̄2
n � σn−k b2

k

min where
bmin = min{b1, b2}. Then the estimation (14.2.7) is refined as follows.

distmin(B
n
wv, B

n
wc ) ≤ | ...x 1 − ...

x 2|+ | ...z 1 − ...
z 2|

≤ C
[
σ2kσn−kb2

k

1 + σ2kσ2(n−k)b2
k

2

] (14.2.8)

For the (un)bounded geometry of the Cantor set, both the level k and n travels
through any big natural numbers toward the infinity with each fixed numbers
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b1 and b2. Then by the comparison of the diameter of the box and minimal
distance between adjacent boxes, OF has the unbounded geometry.

Theorem 14.2.3. Let Fb1 ∈ N ∩ IB(ε̄) be in the set of parametrized family
for b1 ∈ [0, 1]. Suppose that b1b2 = b where b is the average Jacobian and b2 is
a fixed number. Then for some b̄1 > 0, the set of parameter values, a interval
[0, b̄1] on which Fb1 has no bounded geometry of OFb1

contains a dense Gδ set.

Proof. Let us choose the two points as follows.

w1 = (x1, y1, z1) ∈ B1
v(R

nF ) ∩ ORnF , w2 = (x2, y2, z2) ∈ B1
c (R

nF ) ∩ ORnF

By the choice of above two points, distances between each coordinates of w1

and w2 are as follows.

|x1 − x2| � 1, |y1 − y2| � 1, |z1 − z2| = O(ε̄2
n

)

Let ẇj = (ẋj , ẏj, żj) be Ψn
k(wj) for j = 1, 2. By (14.2.1), we see that

ẋ1 − ẋ2 = αn, k

[(
x1 + Sn

k (w1)
)
−
(
x2 + Sn

k (w2)
)]

+ σn, k
[
tn, k(y1 − y2) + un, k

{
z1 − z2 +Rn

k(y1)− Rn
k(y2)

}]
.

(14.2.9)
Recall that αn, k = σ2(n−k)(1 + O(ρk)), σn, k = (−σ)n−k(1 + O(ρk)) and x +

Sn
k (w) = v∗(x) +O(ε̄2

k

+ ρn). Since v∗ is a diffeomorphism and |x1 − x2| � 1,
then |v∗(x1)− v∗(x2)| � 1 by the mean value theorem.

Moreover, Proposition 14.1.1 implies the following.

b2
k

1 � tn, k(y1 − y2) + un, k
{
z1 − z2 +Rn

k(y1)− Rn
k(y2)

}

Then we express the equation (14.2.9) as follows.

ẋ1 − ẋ2 = σ2(n−k)
(
v∗(x1)− v∗(x2)

)
·
[
1 + rn, k b

2k

1 (−σ)−(n−k)
]
(1 +O(ρk))

Then rn, k depends uniformly on b1. Let r ≤ rn, k ≤ 1
r
. Let us take any number

b−1 in the parameter space (0, b̄1) and any natural number k ≥ N for some big
enough N .

Then we can find the biggest number n such that n − k is odd and σn−k >
1

r
(b−1 )

2k , that is,

1 + rn, k · (b−1 )2
k

(−σ)−(n−k) ≥ 1 +
1

r
(b−1 )

2k(−σ)−(n−k) > 0
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Let us increase the parameter from b−1 to b+1 such that (b+1 )
2k =

2

r
σ(n−k). Then

1 + rn, k · (b+1 )2
k

(−σ)−(n−k) ≤ 1 + r · 2
r
(−1) = −1 < 0

Then there exists b1 ∈ (b−1 , b
+
1 ) such that ẋ1−ẋ2 = 0, that is, Ψn

k(B
1
v(R

nF )) and
Ψn

k(B
1
c (R

nF )) overlaps over the x−axis with respect to ẇ1 and ẇ2. Moreover,
b2

k

1 � σn−k. For all big enough k, b1 � b−1 . Thus log(b1/b
−
1 ) = O(2−k). Then b1

converges to b−1 as k → ∞. Then we obtain the dense subset of the parameter,
(0, b̄1) on which Ψn

k(B
1
v(R

nF )) and Ψn
k(B

1
c (R

nF )) overlaps over the x−axis.

Moreover, there exists open subset, Jm of parameter (0, b̄1) for each fixed level
k ≥ m. Then ∩mJm is a Gδ subset of (0, b̄1).

Let us compare the distance of two adjacent boxes and the diameter of the box
for every big k < n. Let us take n such that σn−k � b2

k

1 . We may assume that

Bn−k
vv (RkF ) overlaps Bn−k

vc (RkF ) on the x−axis where v = vn−k−1 ∈ W n−k−1.
By Lemma 14.2.1 and Lemma 14.2.2,

diam(Bn
wv) ≥ C0 σ

kσ2(n−k)

distmin(B
n
wv, B

n
wc) ≤ C1

[
σ2kσn−kb2

k

1 + σ2kσ2(n−k)b2
k

2

]

where w = vkc vn−k−1 ∈ W n for some positive C0 and C1.

Moreover, by Proposition 14.1.1, the condition of the overlapping of two ad-
jacent boxes, Bn−k

vv (RkF ) and Bn−k
vc (RkF ) on the x−axis implies that

σn−k � b2
k

1

Hence,
distmin(B

n
wv, B

n
wc) ≤ C2 σ

k diam(Bn
wv)

for every sufficiently large k ∈ N. Then the critical Cantor set has the un-
bounded geometry.

148



Chapter 15

Non rigidity on the critical

Cantor set

15.1 Distance between two points

Let us estimate the lower bounds of the distance. The diameter of the box Bn
w

and Bn
wv has same bounds up to the constant −σn+1, n = σ(1 +O(ρn)). Then

we obtain the following lemma similar to Lemma 14.2.1

Lemma 15.1.1. Let F ∈ N ∩ IB(ε̄). Then

diam(Bn
w
) ≥ |C1 σ

kσ2(n−k) − C2 σ
kσn−kb2

k

1 |

where w = vkc vn−k−1 ∈ W n for some positive C1 and C2.

Proof. See the proof of Lemma 14.2.1.

Let us estimate the upper bound of the distance. The estimation does not
contain the assumption of horizontal overlapping of some two points. Then
the distance of all general two points has the larger upper bound than distance
with horizontal overlapping.

Lemma 15.1.2. Let F ∈ N ∩ IB(ε̄). Then

diam(Bn
w
) ≤ C

[
σkσ2(n−k) + σkσn−kb2

k

1

]

where w = vkc vn−k−1 ∈ W n for some C > 0.

Proof. Recall the map Ψn
k from B(RnF ) to Bn−k

v
(RkF ).
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Ψn
k(w) =



1 tn, k un, k

1
dn, k 1





αn, k

σn, k
σn, k





x+ Sn

k (w)
y

z +Rn
k(y)




where v = vn−k ∈ W n−k. Let us choose the two points

w1 = (x1, y1, z1) ∈ B1
v(R

nF ) ∩ ORnF , w2 = (x2, y2, z2) ∈ B1
c (R

nF ) ∩ ORnF .

Recall ẇj = Ψn
k(wj), ẅj = Fk(ẇj) and

...
wj = Ψk

0(ẅj) for j = 1, 2. Let us express
distances between each coordinates of ẇ1 and ẇ2, ẅ1 and ẅ2 and between

...
w1

and
...
w2. Observe that |x1−x2| and |y1−y2| is O(1). Moreover, we may assume

that |z1−z2| = O(ε̄2
n

) because ORnF is a completely invariant set under RnF .

By the equation (14.2.2), we have the following expressions.

ẋ1 − ẋ2 = αn, k

[(
x1 + Sn

k (w1)
)
−
(
x2 + Sn

k (w2)
)]

+ σn, k

[
tn, k(y1 − y2) + un, k

{
z1 − z2 +Rn

k(y1)−Rn
k(y2)

}]

= αn, k

[
v′∗(x̄) +O(ε̄2

k

+ ρn−k)
]
(x1 − x2)

+ σn, k

[
tn, k(y1 − y2) + un, k

{
z1 − z2 +Rn

k(y1)−Rn
k(y2)

}]

≤ C
[
σ2(n−k) + σn−kb2

k

1

]

(15.1.1)
for some C > 0.

ẏ1 − ẏ2 = σn, k(y1 − y2)

ż1 − ż2 = σn, k
[
dn, k(y1 − y2) + z1 − z2 +Rn

k(y1)− Rn
k(y2)

]

Moreover, by the equation (14.2.3), we estimate the distance between each
coordinates of Fk(ẇ1) and Fk(ẇ2) as follows.

ẍ1 − ẍ2 = f(ẋ1)− εk(ẇ1)− [f(ẋ2)− εk(ẇ2)]

= f ′(x̄)(ẋ1 − ẋ2)− εk(ẇ1) + εk(ẇ2)

= [ f ′(x̄)− ∂xεk(η) ](ẋ1 − ẋ2)− ∂yεk(η)(ẏ1 − ẏ2)− ∂zεk(η)(ż1 − ż2)

= [ f ′(x̄)− ∂xεk(η) ](ẋ1 − ẋ2)− ∂yεk(η) · σn, k(y1 − y2)

− ∂zεk(η) · σn, k
[
dn, k(y1 − y2) + z1 − z2 +Rn

k(y1)−Rn
k(y2)

]

ÿ1 − ÿ2 = ẋ1 − ẋ2
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z̈1 − z̈2 = δk(ẇ1)− δk(ẇ2)

= ∂xδk(ζ) · (ẋ1 − ẋ2) + ∂yδk(ζ) · (ẏ1 − ẏ2) + ∂zδk(ζ) · (ż1 − ż2)

= ∂xδk(ζ) · (ẋ1 − ẋ2) + ∂yδk(ζ) · σn, k(y1 − y2)

+ ∂zδk(ζ) · σn, k
[
dn, k(y1 − y2) + z1 − z2 +Rn

k(y1)− Rn
k(y2)

]

where η and ζ are some points in the line segment between ẇ1 and ẇ2 in
Ψn

k(B). Recall the coordinate change map Ψk
0. Then the difference of each

coordinates of Ψk
0(ẅ1) and Ψk

0(ẅ2) as follows.

...
x 1 −

...
x 2 = πx ◦Ψk

0(ẅ1)− πx ◦Ψk
0(ẅ2)

= αk, 0

[
(ẍ1 + Sk

0 (ẅ1))− (ẍ2 + Sk
0 (ẅ2))

]

+ σk, 0
[
tk, 0 (ÿ1 − ÿ2) + uk, 0

(
z̈1 − z̈2 +Rk

0(ÿ1)− Rk
0(ÿ2)

) ]

= αk, 0

[
v′∗(x̄) +O(ε̄+ ρk)

]
(ẍ1 − ẍ2) + σk, 0 · uk, 0 (z̈1 − z̈2)

+ σk, 0
[
tk, 0 (ÿ1 − ÿ2) + uk, 0

(
Rk

0(ÿ1)−Rk
0(ÿ2)

) ]

(15.1.2)...
y 1 −

...
y 2 = σk, 0 (ÿ1 − ÿ2) = σk, 0 (ẋ1 − ẋ2)

...
z 1 − ...

z 2 = πz ◦Ψk
0(ẅ1)− πz ◦Ψk

0(ẅ2)

= σk, 0 (z̈1 − z̈2) + σk, 0
[
dk, 0(ÿ1 − ÿ2) +Rn

k(ÿ1)−Rn
k(ÿ2)

]

(15.1.3)

Let us calculate a upper bound of the distance, | ...w1 − ...
w2|.

| ...w1 − ...
w2|

≤ | ...x 1 − ...
x 2|+ | ...y 1 −

...
y 2|+ | ...z 1 − ...

z 2|

≤
∣∣∣αk, 0

[
v′∗(x̄) +O(ε̄+ ρk)

]
(ẍ1 − ẍ2) + σk, 0 · uk, 0 (z̈1 − z̈2)

+ σk, 0
[
tk, 0 (ÿ1 − ÿ2) + uk,0

(
Rk

0(ẋ1)− Rk
0(ÿ2)

) ] ∣∣∣+
∣∣∣ σk, 0 (ÿ1 − ÿ2)

∣∣∣

+
∣∣∣ σk, 0 (z̈1 − z̈2) + σk, 0

[
dk,0(ÿ1 − ÿ2) +Rn

k(ÿ1)−Rn
k(ÿ2)

] ∣∣∣

≤
∣∣αk, 0

[
v′∗(x̄) +O(ε̄+ ρk)

]
(ẍ1 − ẍ2)

∣∣+
∣∣ σk, 0 [ 1 + tk, 0 + dk,0 ] (ÿ1 − ÿ2)

∣∣

+
∣∣ σk, 0 [ 1 + uk, 0 ] (R

n
k(ÿ1)− Rn

k(ÿ2))
∣∣+
∣∣ σk, 0 [ 1 + uk,0 ] (z̈1 − z̈2)

∣∣
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≤ C1 σ
2k
∣∣ [ f ′(x̄)− ∂xεk(η) ](ẋ1 − ẋ2)− ∂yεk(η) · σn, k(y1 − y2)

− ∂zεk(η) · σn, k
[
dn, k(y1 − y2) + z1 − z2 +Rn

k(y1)− Rn
k(y2)

] ∣∣

+ C2

∣∣ σk(ẋ1 − ẋ2)
∣∣+ C3

∣∣ σkε̄2
k

(ẋ1 − ẋ2)
∣∣

+ C4 σ
k
∣∣ ∂xδk(ζ) · (ẋ1 − ẋ2) + ∂yδk(ζ) · σn, k(y1 − y2)

+ ∂zδk(ζ) · σn, k
[
dn, k(y1 − y2) + z1 − z2 +Rn

k(y1)− Rn
k(y2)

] ∣∣

≤ C5 σ
k| ẋ1 − ẋ2|

+ C6 σ
2kσn−k

∣∣∣ ∂yεk(η) + ∂zεk(η)
[
dn, k +

Rn
k(y1)− Rn

k(y2)

y1 − y2

]∣∣∣

+ C7 σ
kσn−k

∣∣∣ ∂yδk(ζ) + ∂zδk(ζ)
[
dn, k +

Rn
k(y1)−Rn

k(y2)

y1 − y2

]∣∣∣

+ C8

[
σ2kσn−k‖∂zεk‖+ σkσn−kb2

k

2

]
| z1 − z2|

(∗) ≤ C9 σ
k
[
σ2(n−k) + σn−kb2

k

1

]
+ C10 σ

2kσn−kb2
k

1 + C11 σ
kσn−kσnb2

k

2

+ C12 σ
kσn−kε̄2

n

≤ C13 σ
k
[
σ2(n−k) + σn−kb2

k

1

]

for some positive Cj, 1 ≤ j ≤ 13 independent of k and n. The second last line,
(∗) holds by the estimation of (15.1.1), Corollary 13.2.3 and Corollary 13.3.2
with Proposition A.0.3 and Proposition A.0.4.

15.2 Non rigidity on the Cantor set with b1

Theorem 15.2.1. Let F and F̃ are in N ∩IB(ε̄). Moreover, let b1 be the ratio
of the average Jacobian and the asymptotic number b2 � ∂zδ of F . The number
b̃1 is defined by the similar way. Suppose that b1 > b̃1. Let φ : OF̃ → OF be

a homeomorphism which conjugate FOF
and F̃O

F̃
and φ(τF̃ ) = τF . Then the

Hölder exponent of φ is not greater than
1

2

(
1 +

log b1

log b̃1

)
.

Proof. For sufficiently large k ∈ N, let us choose n depending on k which
satisfies the following inequality

σn−k+1 ≤ b̃2
k

1 < σn−k

Observe that b2
k

1 � b̃2
k

1 . By Lemma 15.1.1 and Lemma 15.1.2, we have the
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following inequalities

dist(
...
w1,

...
w2) ≤ C0

[
σkσ2(n−k) + σkσn−kb2

k

1

]
≤ C1 σ

kb̃2
k

1 b̃
2k

1

dist(
...
w̃1,

...
w̃2) ≥ |C2 σ

kσ2(n−k) − C3 σ
kσn−k b̃2

k

1 | ≥ C4 σ
k b̃2

k

1 b
2k

1

for some positive Cj where j = 0, 1, 2, 3 and 4.

The Hölder continuous function h with the Hölder exponent α has to satisfy

dist(
...
w̃1,

...
w̃2) ≤ C

(
dist(

...
w1,

...
w2)
)α

for some C > 0. Then we see that

σkb̃2
k

1 b
2k

1 ≤ C
(
σk b̃2

k

1 b̃
2k

1

)α

Take the logarithm both sides and divide them by 2k. Passing the limit and
after that divide both sides by the negative number, 2 log b̃1. Then the desired
upper bound of the Hölder exponent is obtained.

k log σ + 2k log b̃1 + 2k log b1 ≤ logC + α
(
k log σ + 2k log b̃1 + 2k log b̃1

)

k

2k
log σ + log b̃1 + log b1 ≤

1

2k
logC + α

(
k

2k
log σ + log b̃1 + log b̃1

)

log b̃1 + log b1 ≤ α · 2 log b̃1

α ≤ 1

2

(
1 +

log b1

log b̃1

)

The average Jacobian of the map in N ∩ IB(ε̄) less affects the non rigidity
than the number b1. In the two dimensional Hénon-like map theory, when
two average Jacobian of F , say b and F̃ , say b̃ are same, the best possible
regularity of homeomorphic conjugation between two critical Cantor set is
unknown. However, the upper bound of Hölder exponent is worse than the
two dimensional in general.

Let us consider a map in IB(ε̄) as follows.

F (w) = (f(x)− ε(x, y), x, δ(z))

We call the set of the map which is of the above form trivial extension of two
dimensional Hénon-like maps. Let us denote this set to be T . It seems to be
worth notifying that T ∩ IB(ε̄) ⊂ N ∩ IB(ε̄) and T ∩ IB(ε̄) a space which is

153



invariant under renormalization. T is also contained in the set of model maps.
Then if F ∈ T ∩ IB(ε̄), then the nth renormalized map of F , Fn ≡ RnF is of
the following form

Fn(w) = (fn(x)− a(x)b2
n

1 y (1 +O(ρn)), x, b2
n

2 z (1 +O(ρn)))

where b1 is the average Jacobian of two dimensional map, πxy◦F and b2 = b/b1
for some 0 < ρ < 1. Let F̃ be another map in T ∩IB(ε̄) with the corresponding

numbers b̃1, b̃ and b̃2. By Theorem 15.2.1 , if b1 > b̃1, the upper bound of Hölder
exponent is

1

2

(
1 +

log b1

log b̃1

)

Let δ and δ̃ be the third coordinate map of F and F̃ respectively. Since b1
and b2 are completely independent of each other for every map F ∈ T ∩IB(ε̄)
and b2 is the contracting rate on the third coordinate, the different b2 from
b̃2 may require the less regularity of the homeomorphic conjugacy between
critical Cantor sets of F and F̃ . For example, let us assume that

b1b2 = b = b̃ = b̃1b̃2

with the condition b1 > b̃1. It implies that b2 < b̃2. Then Theorem 15.2.1
holds and the conjugacy between third coordinate map is also Hölder map
because δ and δ̃ is asymptotically linear map with different contracting rates.
Then the upper bound of Hölder exponent in Theorem 15.2.1 might not be
even sharp even though the average Jacobian of F and F̃ are same. Then
the average Jacobian of the three dimensional Hénon-like map in N ∩ IB(ε̄)
is not corresponding invariant with the average Jacobian of two dimensional
Hénon-like map in the sense of the critical Cantor set geometry.
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Appendix A

Recursive formula of Ψnk

Proposition A.0.2. Let F ∈ IB(ε̄) and denote kth and nth renormalized map
of F to be Fk and Fn respectively. The derivative of the non-linear conjugation
at the tip, τFk

between F 2n−k

k and Fn from domain of the nth level, B(Fn) to
the kth level, B(Fk) is called Dn

k . The expression of Dn
k is as follows

Dn
k =



αn, k σn, k tn, k σn, k un, k

σn, k

σn, k dn, k σn, k




where σn, k and αn, k are linear scaling factors such that σn, k = (−σ)n−k(1 +
O(ρk)) and αn, k = σ2(n−k)(1 +O(ρk)). Then

dn, k =

n−1∑

i=k

di+1, i , un, k =

n−1∑

i=k

σi−k ui+1, i (1 + O(ρk))

tn, k =

n−1∑

i=k

σi−k
[
ti+1, i + ui+1, i dn, i+1

]
(1 +O(ρk))

tn, k − un, k dn, k =

n−1∑

i=k

σi−k
[
ti+1, i − ui+1, i di+1, k

]
(1 +O(ρk))

where σi−k(1+O(ρk)) =

i−1∏

j=k

αj+1, j

σj+1, j
. Moreover, dn, k, un, k and tn, k are conver-

gent as n→ ∞ super exponentially fast.

Proof. Dn
k = Dm

k · Dn
m for any m between k and n because the image of the

tip under Ψn
k(τFn

) is the tip of kth level. By the direct calculation,
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Dm
k ·Dn

m

=



αn, k L αm, kσn,m un,m + σn, k um,k

σn, k

σn, k dm, k + σn, k dn,m σn, k




where L = αm, k σn,m tn,m + σn, k tm, k + σn, k um,k dn,m. Then

σn, k tn, k = αm, k σn,m tn,m + σn, k tm, k + σn, k um, k dn,m

σn, k un, k = αm, k σn,m un,m + σn, k um,k

σn, k dn, k = σn, k dm,k + σn, k dn,m

for any m between k and n. Recall that σn, k = σn,m · σm, k and αn, k =
αn,m · αm, k. Let m be k + 1. Then

dn, k = dn, k+1 + dk+1, k

= dn, k+2 + dk+2, k+1 + dk+1, k

...

= dn, n−1 + · · ·+ dk+2, k+1 + dk+1, k

=
n−1∑

i=k

di+1, i

(A.0.1)

Moreover, the absolute value each term is super exponentially small. More pre-
cisely, each term is bounded by ε2

i

for each i, that is, | di+1, i| � | qi(πy(τi+1)| ≤
‖Dδi‖ = O(ε̄2

i

). Then dn, k converges to a number, say d∗, k super exponen-
tially fast.

160



Let us see the recursive formula of un, k.

un, k =
αk+1, k

σk+1, k
un, k+1 + uk+1, k

=
αk+1, k

σk+1, k

[
αk+2, k+1

σk+2, k+1
un, k+2 + uk+2, k+1

]
+ uk+1, k

...

=

n−1∑

i=k+1

i−1∏

j=k

αj+1, j

σj+1, j
ui+1, i + uk+1, k

=

n−1∑

i=k

σi−kui+1, i (1 +O(ρk))

(A.0.2)

Moreover, ui+1, i � ∂zεi(τFi+1
). Then un, k converges to a number, say u∗, k

super exponentially fast by the similar reason for dn, k.

Let us see the recursive formula of tn, k.

tn, k =
αk+1, k

σk+1, k
tn, k+1 + tk+1, k + uk+1, k dn, k+1

=
αk+1, k

σk+1, k

[
αk+2, k+1

σk+2, k+1
tn, k+2 + tk+2, k+1 + uk+2, k+1 dn, k+2

]

+ tk+1, k + uk+1, k dn, k+1

...

=

n−1∑

i=k+1

i−1∏

j=k

αj+1, j

σj+1, j
ti+1, i + tk+1, k +

n−1∑

i=k+1

i−1∏

j=k

αj+1, j

σj+1, j
ui+1, i dn, i+1

+ uk+1, k dn, k+1

=

n−1∑

i=k

σi−k
[
ti+1, i + ui+1, i dn, i+1

]
(1 +O(ρk))

(A.0.3)

Moreover, by the equations (A.0.1), (A.0.2) and (A.0.3), we obtain the recur-
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sive formula of tn, k − un, k dn, k as follows.

tn, k − un, k dn, k

=

n−1∑

i=k+1

i−1∏

j=k

αj+1, j

σj+1, j

[
ti+1, i + ui+1, i dn, i+1

]
+ tk+1, k + uk+1, k dn, k+1

−
[

n−1∑

i=k+1

i−1∏

j=k

αj+1, j

σj+1, j
ui+1, i + uk+1, k

]
dn, k

=

n−1∑

i=k+1

i−1∏

j=k

αj+1, j

σj+1, j

[
ti+1, i + ui+1, i dn, i+1 − ui+1, idn, k

]

+ tk+1, k + uk+1, k dn, k+1 − uk+1, kdn, k

=

n−1∑

i=k+1

i−1∏

j=k

αj+1, j

σj+1, j

[
ti+1, i − ui+1, idi+1, k

]
+ tk+1, k − uk+1, kdk+1, k

=

n−1∑

i=k

σi−k
[
ti+1, i − ui+1, i di+1, k

]
(1 +O(ρk))

Recall the expression of the derivative of the coordinate change map at the tip
on each level.

σk ·DHk(τFk
) = (Dk+1

k )−1

=



(αk)

−1

(σk)
−1

(σk)
−1


 ·



1 −tk + uk dk −uk

1
−dk 1




Since Hk(w) = (fk(x)−εk(w), y, z− δk(y, f−1k (y), 0)), we see that ∂yεk(τFk
) �

−tk + uk dk for every k ∈ N. Moreover, the fact that ti+1, i − ui+1, i di+1, i �
∂yεi(τFi+1

) and | ui+1, i dn, i| is super exponentially small for each i < n implies
that tn, k converges to a number, say t∗, k super exponentially fast.

Recall the expression of the map Ψn
k from B(RnF ) to Bn−k

v
(RkF ).

Ψn
k(w) =



1 tn, k un, k

1
dn, k 1





αn, k

σn, k
σn, k





x+ Sn

k (w)
y

z +Rn
k(y)


 .

162



where v = vn−k ∈ W n−k.

Proposition A.0.3. Let F ∈ IB(ε̄) and Ψn
k be the map from B(RnF ) to

B(RkF ) as the conjugation between (RkF )2
n−k

and RnF . Moreover, Rn
k(y) be

the non linear part of πz ◦ Ψn
k depending on the second variable y. Then both

Rn
k(y) and (Rn

k)
′(y) converges to zero exponentially fast as n→ ∞.

Proof. Let w = (x, y, z) be the point in B(RnF ) and let Ψn
n−1(w) be w′ =

(x′, y′, z′). Recall Ψn
k = Ψn

n−1 ◦Ψn−1
k . Thus

z′ = πz ◦Ψn
n−1(w) = σn, n−1

[
dn, n−1y + z +Rn

n−1(y)
]

y′ = πy ◦Ψn
n−1(w) = σn, n−1 y

Then by the similar calculation and the composition of Ψn−1
k and Ψn

n−1, we
obtain the recursive formula of πz ◦Ψn

k as follows.

πz ◦Ψn
k(w) = σn, k

[
dn, k y + z +Rn

k(y)
]

= πz ◦Ψn−1
k (w′) = σn−1, k

[
dn−1, k y

′ + z′ +Rn−1
k (y′)

]

= σn−1, k
[
dn−1, k σn, n−1 y + σn, n−1

[
dn, n−1y + z +Rn

n−1(y)
]

+Rn−1
k (σn, n−1 y)

]

= σn, k (dn−1, k + dn,n−1) + σn, k z + σn, k R
n
n−1(y) + σn−1, k R

n−1
k (σn, n−1 y)

(A.0.4)

By Proposition A.0.2, dn, k = dn−1, k + dn, n−1. Let us compare the left side of
(A.0.4) with the right side of it. Recall the equation σn, k = σn, n−1 · σn−1, k.
Then

Rn
k(y) = Rn

n−1(y) +
1

σn, n−1
Rn−1

k (σn, n−1 y)

Each Ri
j(y) is the sum of second and higher order terms of πz ◦ Ψi

j for i > j.
Thus

Rn
k(y) = an, k y

2 + An, k(y)y
3

Moreover, ‖Rn
n−1‖ = O(ε̄2

n−1

) because Rn
n−1(y) is the second and higher order

terms of the map δn−1(σn, n−1 y, f
−1
n−1(σn, n−1 y), 0). Then

Rn
k(y) =

1

σn, n−1
Rn−1

k (σn, n−1 y) + cn, k y
2 +O(ε̄2

n−1

y3)
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where cn, k = O(ε̄2
n−1

). The recursive formula for an, k and An, k as follows.

Rn
k(y) =

1

σn, n−1

(
an−1, k(σn, n−1 y)

2+An−1, k(σn, n−1 y)·(σn, n−1 y)3
)
+O(ε̄2

n−1

y3)

Then an, k = σn, n−1 an−1, k + cn, k and ‖An, k‖ ≤ ‖ σn, n−1‖2‖An−1, k‖+O(ε̄2
n−1

).
Then for each fixed k < n, an, k → 0 and An, k → 0 exponentially fast as
n→ ∞. Rn

k(y) converges to zero as n→ ∞ exponentially fast.

Let us estimate ‖A′n, k‖ in order to measure how fast (Rn
k)
′(y) is convergent. By

the similar method of the recursive formula of Rn
k(y), we have the expression

and recursive formula of (Rn
k)
′(y) as follows.

(Rn
k)
′(y) = 2 an, k y + 3An, k(y) y

2 + A′n, k(y) y
3

Moreover, (Rn
k)
′(y) = (Rn

n−1)
′(y) +Rn−1

k (σn, n−1 y)

= Rn−1
k (σn, n−1 y) + 2 cn, k y +O(ε̄2

n−1

y2)

Then

(Rn
k)
′(y) = 2 an−1, k σn, n−1 y + 3An−1, k(σn, n−1 y)(σn,n−1 y)

2

+ A′n, k(σn, n−1 y) (σn,n−1 y)
3 + 2 cn, k y +O(ε̄2

n−1

y2)

Let us compare quadratic and higher order terms of (Rn
k)
′(y).

3An, k(y) y
2 + A′n, k(y) y

3 = 3An−1, k(σn, n−1 y)(σn,n−1 y)
2

+ A′n, k(σn, n−1 y) (σn,n−1 y)
3 +O(ε̄2

n−1

y2)

Thus

A′n, k(y) y = A′n, k(σn, n−1 y) σ
3
n, n−1y − 3An, k(y) + 3An−1, k(σn, n−1 y) σ

2
n,n−1

+O(ε̄2
n−1

)

Then

‖A′n, k‖ ≤ ‖A′n−1, k‖‖σn, n−1‖3 + 3‖An, k‖+ 3‖An−1, k‖‖ σn, n−1‖2 +O(ε̄2
n−1

)

≤ ‖A′n−1, k‖‖ σn, n−1‖3 + C‖ σn, n−1‖2

for some C > 0. Then A′n, k → 0 as n→ ∞ exponentially fast. Hence, so does
(Rn

k)
′(y) exponentially fast.
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Proposition A.0.4. Let F ∈ IB(ε̄). Then

ż1 − ż2 = πz ◦Ψn
k(w1)− πz ◦Ψn

k(w2)

= σn, k(z1 − z2) + σn, k

n−1∑

i=k

qi(σi ξi+1) · (y1 − y2)

where σi ξi+1 is some points in the line segment between πy ◦Ψn
i (w1) and πz ◦

Ψn
i (w2) in πy ◦Ψn

i (B) for each k ≤ i ≤ n− 1. Moreover,

n−1∑

i=k

qi(σi ξi+1) · (y1 − y2) = dn, k(y1 − y2) +Rn
k(y1)− Rn

k(y2)

Proof. Firstly, let us express πz ◦ Ψn
k(w). Denote δi(y, f

−1
i (y), 0) to be p i(y)

in order to simplify the expression. Recall the definition of qi(y), namely,
d
dy
p i(y) = qi(y). Let Ψn

i (w) be wi for k ≤ i ≤ n − 1 and let wi = (xi, yi, zi).

For notational compatibility, let Ψi
i(B) = B, that is, Ψi

i = id and let σi, i = 1
for every i ∈ N. Let w = wn. Recall πz ◦ ψi+1

i (wi+1) = σi zi+1 + p i(σi yi+1).
Since Ψn

k = ψk+1
k ◦Ψn

k+1, we estimate zk using recursive formula

zk = πz ◦Ψn
k(w) = πz ◦ ψk+1

k (wk+1)

= σk · zk+1 + p k(σkyk+1)

= σk
(
σk+1 · zk+2 + p k+1(σk+1 · yk+2)

)
+ p k(σk · yk+1)

= σkσk+1 · zk+2 + σk · p k+1(σk+1 · yk+2) + p k(σk · yk+1)

...

= σkσk+1 · · ·σn−1 · z +
[
σkσk+1 · · ·σn−2 · pn−1(σn−1 · y)

+ σkσk+1 · · ·σn−3 · pn−2(σn−2 · yn−1) + · · ·+ p k(σk · yk+1)
]

= σn, k · z + σn−1, k · pn−1(σn−1 · y) + σn−2, k · pn−2(σn−2 · yn−1)+
· · ·+ p k(σk · yk+1)

= σn, k · z +
n−1∑

i=k

σi, k · p i (σi · yi+1)

(A.0.5)

where σk+1, k = σk. Moreover, by definition of wi, yi = πy ◦Ψn
i (w). Moreover,

the second coordinate function of each ψi+1
i (w) is just scaling map with σi by

the definition, Hi ◦Λi(w) = (φ−1i (σiw), σiy, •) for each k ≤ i ≤ n− 1. Recall
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y = yn. Thus
σn, i · y = σi · yi+1 = yi = πy ◦Ψn

i (w)

Then the above equation, (A.0.5) is expressed as follows.

πz ◦Ψn
k(w) = σn, k · z +

n−1∑

i=k

σi, k · p i (πy ◦Ψn
i (w)) (A.0.6)

Secondly, let us estimate ż1−ż2 = πz◦Ψn
k(w1)−πz◦Ψn

k(w2) where wj ∈ B(RnF )

for j = 1, 2. By the equation (A.0.6) and Mean Value Theorem, we obtain
that

ż1 − ż2

= πz ◦Ψn
k(w1)− πz ◦Ψn

k(w2)

= σn, k · (z1 − z2) +
n−1∑

i=k

σi, k ·
[
p i (πy ◦Ψn

i (w1))− p i (πy ◦Ψn
i (w1))

]

= σn, k · (z1 − z2) +
n−1∑

i=k

σi, k · σi · q i (σi · ξi+1) ·
{
σn, i+1 · y1 − σn, i+1 · y2

}

= σn, k · (z1 − z2) +
n−1∑

i=k

σi+1, k · q i (σi · ξi+1) · σn, i+1 · (y1 − y2)

= σn, k · (z1 − z2) + σn, k ·
n−1∑

i=k

q i (σi · ξi+1) · (y1 − y2)

(A.0.7)
where ξi+1 ∈ πy◦Ψn

i (B) for each k ≤ i+1 ≤ n−1. Moreover, by the expression
of Ψn

k ,
πz ◦Ψn

k(w) = σn, k

[
dn, k y + z +Rn

k(y)
]

Then

ż1 − ż2 = πz ◦Ψn
k(w1)− πz ◦Ψn

k(w2)

= σn, k
[
dn, k (y1 − y2) + (z1 − z2) +Rn

k(y1)− Rn
k(y2)

]

= σn, k · (z1 − z2) + σn, k ·
[
dn, k (y1 − y2) +Rn

k(y1)− Rn
k(y2)

]

(A.0.8)
Hence,

n−1∑

i=k

q i (σi · ξi+1) · (y1 − y2) = dn, k (y1 − y2) +Rn
k(y1)− Rn

k(y2)
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Corollary A.0.5. Let F ∈ IB(ε̄). Then

n−1∑

i=k

qi(πy ◦Ψn
i,v(w)) = d∗, k + (Rn

k)
′(πy ◦Ψn

i,v(w)) (1 +O(σ2n))

Proof. Let us compare the equation (A.0.7) and (A.0.8).

n−1∑

i=k

σi, k ·
[
p i (σn, i · y1)− p i (σn, i · y2)

]

= σn, k ·
[
dn, k (y1 − y2) +Rn

k (y1)−Rn
k(y2)

]

n−1∑

i=k

σi, k ·
p i (σn, i · y1)− p i (σn, i · y2)

y1 − y2
= σn, k ·

[
dn, k +

Rn
k(y1)− Rn

k(y2)

y1 − y2

]

By the mean value theorem, we see the equation as follows.

σn, k ·
n−1∑

i=k

q i (σi · ξi+1) = σn, k ·
[
dn, k + (Rn

k)
′(σi · ζi+1)

]

where σi ξi+1 and σi ζi+1 are some points in the line segment between σn, i y1
and σn, i y2 in πy ◦ Ψn

i,v(B) for each k ≤ i ≤ n − 1. The points σi ξi+1 and
σi ζi+1. We choose the point σi ξi+1 arbitrarily in the domain πy ◦Ψn

i,v(B) for
each k ≤ i ≤ n−1 and | (Rn

k)
′| ≤ Cσ2n for some C > 0. Moreover, dn, k → d∗, k

as n→ ∞ super exponentially fast by Proposition A.0.2. Hence,

n−1∑

i=k

qi(πy ◦Ψn
i,v(w)) =

[
dn, k + (Rn

k)
′(πy ◦Ψn

i,v(w))
]
(1 +O(σ2n))

= d∗, k + (Rn
k)
′(πy ◦Ψn

i,v(w)) (1 +O(σ2n))
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Appendix B

Recursive formula of JacRnF

Let F2d ∈ IB(ε̄) for sufficiently small ε̄ > 0. Let RnF2d ≡ 2dFn = (fn(x) −
εn(x, y), x) be the nth renormalized map of F2d. Then by the Universality
theorem, εn(x, y) has the universal expression, εn(x, y) = b2

n

1 a(x) y((1+O(ρ
n))

for some 0 < ρ < 1 where b1 is the average Jacobian of F2d and a(x) is the
universal function of x. Let us define the horizontal diffeomorphism H2d, n and
its inverse map H−12d, n as follows.

H2d, n(w) = (fn(x)− εn(x, y), y)

H−12d, n(w) = (φ−12d, n(w), y)

Proposition B.0.6. Let F2d be the infinitely renormalizable two dimensional
Hénon-like map with sufficiently small ε̄ > 0 where ‖ε‖C3 ≤ Cε̄. Let the nth

renormalized map be Fn(x, y) = (fn(x) − εn(x, y), x) and σn = σ(1 + O(ρn))
be the scaling factor for nth renormalized map. Then εn(x, y) = a(x) b2

n

1 y(1 +
O(ρn)) with the universal function a(x). Moreover,

f ′n ◦ fn(σnx) · a(σnx) · (f−1n )′(σnx) · a ◦ φ−12d, n(σnx)

converges to a(x) as n→ ∞ exponentially fast.

Proof. The first part of Proposition is the Universality theorem of two dimen-
sional Hénon-like maps. Denote the point w = (x, y). Let the inverse of the
horizontal diffeomorphism be H−1(w) = (φ−12d (w), y). Then by the definition
of H−1(w), we see the following equation

φ−12d (w) = f−1(x+ ε ◦H−1(w)).
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Thus

∂yφ
−1
2d (w)

= (f−1)′(x+ ε ◦H−1(w)) · ∂y(ε ◦H−1(w))
= (f−1)′(x+ ε ◦H−1(w)) ·

[
∂xε ◦H−1(w) · ∂yφ−12d (w) + ∂yε ◦H−1(w)

]

Then,

∂yφ
−1
2d (w) =

(f−1)′(x+ ε ◦H−1(w))
1− (f−1)′(x+ ε ◦H−1(w)) · ∂xε ◦H−1(w)

· ∂yε ◦H−1(w)

= (f−1)′(x) · ∂yε ◦ (φ−12d (w), y)(1 +O(ε̄))

By the Universality theorem of the two dimensional Hénon-like maps, we can
let

εn(x, y) = a(x) b2
n

1 y (1 +O(ρn))

where b1 is the average Jacobian of F2d and for some positive ρ < 1.

Then using the definition of the pre-renormalization, let us define the map in
the following.

Pre [fn+1(x)− εn+1(x, y)] = fn(fn(x)− εn ◦ Fn ◦H−1n (w))− εn ◦ F 2
n ◦H−1n (w)

Then up to the exponential convergence, we see that

∂y[ Pre εn+1]

= f ′n(fn(x)− εn(x, φ
−1
n, 2d(w)) · ∂yε(x, φ−1n, 2d(w))

+ ∂yεn(fn(x)− εn(x, φ
−1
n, 2d(w)), x)

= f ′n(fn(x)− εn(x, φ
−1
n, 2d(w)) · ∂yε(x, φ−1n, 2d(w))

− ∂xεn ◦ (F 2
n ◦H−1n (w)) · ∂yεn(x, φ−1n, 2d(w))

=
[
f ′n(fn(x)− εn(x, φ

−1
n, 2d(w)) + ∂xεn ◦ (F 2

n ◦H−1n (w))
]
· ∂yε(x, φ−1n,2d(w))

=
[
f ′n(fn(x)− εn(x, φ

−1
n, 2d(w)) + ∂xεn ◦ (F 2

n ◦H−1n (w))
]

· ∂yε ◦ (x, φ−1n, 2d(w)) · ∂yφ−1n, 2d(w)

= f ′n(fn(x)) · a(x) b2
n

1 · (f−1n )′(x) · a ◦ φ−1n, 2d(w) b
2n

1 (1 +O(ε̄2
n

))
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Hence,

∂yεn+1(x, y) = f ′n ◦ fn(σnx) · a(σnx) · (f−1n )′(σnx) · a ◦ φ−12d, n(σnx) b
2n+1

1

· (1 +O(ρn))

= a(x) b2
n+1

1 (1 +O(ρn))

Therefore, by the Universality theorem of two dimensional Hénon-like map
with exponential convergence, we obtain that

f ′n ◦ fn(σnx) · a(σnx) · (f−1n )′(σnx) · a ◦ φ−12d, n(σnx) −→ a(x)

as n→ ∞ exponentially fast.

The three dimensional map φ−1(w) is also defined as the first coordinate map
of H−1(w). Then we can estimate ∂yφ

−1(w) and ∂zφ
−1(w) in terms of ∂yε and

∂zε.

Let us estimate ∂zφ
−1(w).

∂zφ
−1(w) = (f−1)′(x+ ε ◦H−1(w)) · ∂z(ε ◦H−1(w))

= (f−1)′(x+ ε ◦H−1(w))
·
[
∂xε ◦H−1(w) · ∂zφ−1(w) + ∂zε ◦H−1(w)

]

Then

∂zφ
−1(w) =

(f−1)′(x+ ε ◦H−1(w))
1− (f−1)′(x+ ε ◦H−1(w)) · ∂xε ◦H−1(w)

· ∂zε ◦H−1(w)

= (f−1)′(x) · ∂zε ◦H−1(w)(1 +O(ε̄))
(B.0.1)

Let us estimate ∂yφ
−1(w).

∂yφ
−1(w) = (f−1)′(x+ ε ◦H−1(w)) · ∂y(ε ◦H−1(w))

= (f−1)′(x+ ε ◦H−1(w)) ·
[
∂xε ◦H−1(w) · ∂yφ−1(w)

+ ∂yε ◦H−1(w) + ∂zε ◦H−1(w) ·
d

dy
δ(y, f−1(y), 0)

]
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Then

∂yφ
−1(w) =

(f−1)′(x+ ε ◦H−1(w))
1− (f−1)′(x+ ε ◦H−1(w)) · ∂xε ◦H−1(w)

·
[
∂yε ◦H−1(w) + ∂zε ◦H−1(w)

d

dy
δ(y, f−1(y), 0)

]

= (f−1)′(x) ·
[
∂yε ◦H−1(w) + ∂zε ◦H−1(w) ·

d

dy
δ(y, f−1(y), 0)

]

· (1 +O(ε̄))
(B.0.2)

On the above equations let us define the map (f−1ε )′(x) as follows

(f−1ε )′(x) =
(f−1)′(x+ ε ◦H−1(w))

1− (f−1)′(x+ ε ◦H−1(w)) · ∂xε ◦H−1(w)
(B.0.3)

Jacobian of RnF can be expressed as the formula using Jacobian of Rn−1F . In
order to express of the Jacobian as the recursive formula, each partial deriva-
tives of εn and δn should be expressed by the function of partial derivatives of
εn−1 and δn−1 firstly.

Let us estimate ∂xPre δ1(w).

∂x(δ ◦ F ◦H−1(w)− δ(x, f−1(x), 0))

= ∂xδ(x, φ
−1(x), δ ◦H−1(w))− d

dx
δ(x, f−1(x), 0)

= ∂xδ ◦ (F ◦H−1(w)) + ∂yδ ◦ (F ◦H−1(w)) · ∂xφ−1(w)

+ ∂zδ ◦ (F ◦H−1(w)) · ∂x(δ ◦H−1(w))−
d

dx
δ(x, f−1(x), 0)

= ∂xδ ◦ (F ◦H−1(w)) + ∂yδ ◦ (F ◦H−1(w)) · ∂xφ−1(w)

+ ∂zδ ◦ (F ◦H−1(w)) · ∂xδ ◦H−1(w) · ∂xφ−1(w)−
d

dx
δ(x, f−1(x), 0)

=
[
∂yδ ◦ (F ◦H−1(w)) + ∂zδ ◦ (F ◦H−1(w)) · ∂xδ ◦H−1(w)

]
· ∂xφ−1(w)

+ ∂xδ ◦ (F ◦H−1(w))− d

dx
δ(x, f−1(x), 0)

(B.0.4)
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Let us estimate ∂yPre δ1(w).

∂y(δ ◦ F ◦H−1(w)− δ(x, f−1(x), 0)) = ∂yδ(x, φ
−1(x), δ ◦H−1(w))

= ∂yδ ◦ (F ◦H−1(w)) · ∂yφ−1(w) + ∂zδ ◦ (F ◦H−1(w)) · ∂y(δ ◦H−1(w))

= ∂yδ ◦ (F ◦H−1(w)) · ∂yφ−1(w) + ∂zδ ◦ (F ◦H−1(w))
·
[
∂xδ ◦H−1(w) · ∂yφ−1(w)

+ ∂yδ ◦H−1(w) + ∂zδ ◦H−1(w) ·
d

dy
δ(y, f−1(y), 0)

]

=
[
∂yδ ◦ (F ◦H−1(w)) + ∂zδ ◦ (F ◦H−1(w)) · ∂xδ ◦H−1(w)

]
· ∂yφ−1(w)

+ ∂zδ ◦ (F ◦H−1(w))

·
[
∂yδ ◦H−1(w) + ∂zδ ◦H−1(w) ·

d

dy
δ(y, f−1(y), 0)

]

(B.0.5)
Similarly, we can estimate ∂zPre δ1(w).

∂z(δ ◦ F ◦H−1(w)− δ(x, f−1(x), 0)) = ∂zδ(x, φ
−1(x), δ ◦H−1(w))

= ∂yδ ◦ (F ◦H−1(w)) · ∂zφ−1(w) + ∂zδ ◦ (F ◦H−1(w)) · ∂z(δ ◦H−1(w))
= ∂yδ ◦ (F ◦H−1(w)) · ∂zφ−1(w)

+ ∂zδ ◦ (F ◦H−1(w)) ·
[
∂xδ ◦H−1(w) · ∂zφ−1(w) + ∂zδ ◦H−1(w)

]

=
[
∂yδ ◦ (F ◦H−1(w)) + ∂zδ ◦ (F ◦H−1(w)) · ∂xδ ◦H−1(w)

]
· ∂zφ−1(w)

+ ∂zδ ◦ (F ◦H−1(w)) · ∂zδ ◦H−1(w)
(B.0.6)

In order to estimate ∂yPre ε1(w), we need to estimate ∂y(ε ◦ F ◦H−1(w)) and
∂y(ε ◦ F 2 ◦H−1(w)) first.
Let us estimate ∂y(ε ◦ F ◦H−1(w)).

∂y(ε ◦ F ◦H−1(w)) = ∂yε(x, φ
−1(x), δ ◦H−1(w))

= ∂yε ◦ (F ◦H−1(w)) · ∂yφ−1(w) + ∂zε ◦ (F ◦H−1(w)) · ∂y(δ ◦H−1(w))

= ∂yε ◦ (F ◦H−1(w)) · ∂yφ−1(w) + ∂zε ◦ (F ◦H−1(w))
·
[
∂xδ ◦H−1(w) · ∂yφ−1(w)

+ ∂yδ ◦H−1(w) + ∂zδ ◦H−1(w) ·
d

dy
δ(y, f−1(y), 0)

]
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=
[
∂yε ◦ (F ◦H−1(w)) + ∂zε ◦ (F ◦H−1(w)) · ∂xδ ◦H−1(w)

]
· ∂yφ−1(w)

+ ∂zε ◦ (F ◦H−1(w))

·
[
∂yδ ◦H−1(w) + ∂zδ ◦H−1(w) ·

d

dy
δ(y, f−1(y), 0)

]

Moreover, we can express ∂y(ε ◦ F 2 ◦H−1(w)) in terms of ∂y(ε ◦ F ◦H−1(w))
and ∂y(δ ◦ F ◦H−1(w)).

∂y(ε ◦ F 2 ◦H−1(w)) = ∂yε(f(x)− ε ◦ F ◦H−1(w), x, δ ◦ F ◦H−1(w))
= −∂xε ◦ (F 2 ◦H−1(w)) · ∂y(ε ◦ F ◦H−1(w))

+ ∂zε ◦ (F 2 ◦H−1(w)) · ∂y(δ ◦ F ◦H−1(w))
(B.0.7)

Denote the function f ′(f(x) − ε ◦ F ◦ H−1(w) − ∂xε ◦ (F 2 ◦ H−1(w))) to be
f ′(fε(x)). Then ∂yPre ε1(w) can be estimated in terms of partial derivatives
of ε(w) and δ(w) as follows.

∂yPre ε1(w)

= −∂y
[
f(f(x)− ε ◦ F ◦H−1(w))− ε ◦ F 2 ◦H−1(w)

]

= f ′(f(x)− ε ◦ F ◦H−1(w)) · ∂y(ε ◦ F ◦H−1(w)) + ∂y(ε ◦ F 2 ◦H−1(w))

=
[
f ′(f(x)− ε ◦ F ◦H−1(w))− ∂xε ◦ (F 2 ◦H−1(w))

]
· ∂y(ε ◦ F ◦H−1(w))

+ ∂zε ◦ (F 2 ◦H−1(w)) · ∂y(δ ◦ F ◦H−1(w))
=
[
f ′(fε(x)) · {∂yε ◦ (F ◦H−1(w)) + ∂zε ◦ (F ◦H−1(w)) · ∂xδ ◦H−1(w)}
+ ∂zε ◦ (F 2 ◦H−1(w))
· { ∂yδ ◦ (F ◦H−1(w)) + ∂zδ ◦ (F ◦H−1(w)) · ∂xδ ◦H−1(w) }

]

· ∂yφ−1(w)
+
[
f ′(fε(x)) · ∂zε ◦ (F ◦H−1(w))

+ ∂zε ◦ (F 2 ◦H−1(w)) · ∂zδ ◦ (F ◦H−1(w))
]

·
[
∂yδ ◦H−1(w) + ∂zδ ◦H−1(w) ·

d

dy
δ(y, f−1(y), 0)

]

(B.0.8)

Let us estimate ∂z(ε ◦ F ◦H−1(w)).
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∂z(ε ◦ F ◦H−1(w)) = ∂zε(x, φ
−1(x), δ ◦H−1(w))

= ∂yε ◦ (F ◦H−1(w)) · ∂zφ−1(w) + ∂zε ◦ (F ◦H−1(w)) · ∂z(δ ◦H−1(w))

= ∂yε ◦ (F ◦H−1(w)) · ∂zφ−1(w)
+ ∂zε ◦ (F ◦H−1(w)) ·

[
∂xδ ◦H−1(w) · ∂zφ−1(w) + ∂zδ ◦H−1(w)

]

=
[
∂yε ◦ (F ◦H−1(w)) + ∂zε ◦ (F ◦H−1(w)) · ∂xδ ◦H−1(w)

]
· ∂zφ−1(w)

+ ∂zε ◦ (F ◦H−1(w)) · ∂zδ ◦H−1(w)
(B.0.9)

Moreover, we can express ∂y(ε ◦ F 2 ◦H−1(w)) in terms of ∂y(ε ◦ F ◦H−1(w))
and ∂y(δ ◦ F ◦H−1(w)).

∂z(ε ◦ F 2 ◦H−1(w)) = ∂zε(f(x)− ε ◦ F ◦H−1(w), x, δ ◦ F ◦H−1(w))
= −∂xε ◦ (F 2 ◦H−1(w)) · ∂z(ε ◦ F ◦H−1(w))

+ ∂zε ◦ (F 2 ◦H−1(w)) · ∂z(δ ◦ F ◦H−1(w))
(B.0.10)

Then ∂zPre ε1(w) can be estimated in terms of partial derivatives of ε(w) and
δ(w).

∂zPre ε1(w) = −∂z
[
f(f(x)− ε ◦ F ◦H−1(w))− ε ◦ F 2 ◦H−1(w)

]

= f ′(f(x)− ε ◦ F ◦H−1(w)) · ∂y(ε ◦ F ◦H−1(w)) + ∂y(ε ◦ F 2 ◦H−1(w))

=
[
f ′(f(x)− ε ◦ F ◦H−1(w))− ∂xε ◦ (F 2 ◦H−1(w))

]
· ∂z(ε ◦ F ◦H−1(w))

+ ∂zε ◦ (F 2 ◦H−1(w)) · ∂z(δ ◦ F ◦H−1(w))
=
[
f ′(fε(x)) · {∂yε ◦ (F ◦H−1(w)) + ∂zε ◦ (F ◦H−1(w)) · ∂xδ ◦H−1(w)}
+ ∂zε ◦ (F 2 ◦H−1(w))
· { ∂yδ ◦ (F ◦H−1(w)) + ∂zδ ◦ (F ◦H−1(w)) · ∂xδ ◦H−1(w) }

]

· ∂zφ−1(w)
+
[
f ′(fε(x)) · ∂zε ◦ (F ◦H−1(w))

+ ∂zε ◦ (F 2 ◦H−1(w)) · ∂zδ ◦ (F ◦H−1(w))
]
· ∂zδ ◦H−1(w)

(B.0.11)

Lemma B.0.7. Let F be an infinitely renormalizable three dimensional Hénon-
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like map. Then

JacRnF (w)

= (f−1n−1)
′(σn−1x) · f ′n−1(fn−1(σn−1x))

· JacRn−1F ◦ (H−1n−1(σn−1w)) · JacRn−1F ◦ (Fn−1 ◦H−1n−1(σn−1w))

Proof. Let us calculate JacRF (w) in terms of partial derivatives of ε and δ.
Recall the equations (B.0.5), (B.0.6), (B.0.8) and (B.0.11). Let us express
JacRF in terms of these.

JacRF (w) = ∂yε1(w) · ∂zδ1(w)− ∂zε1(w) · ∂yδ1(w)

=
[ {

f ′(fε(σ0x)) · { ∂yε ◦ (F ◦H−1(σ0w)) + ∂zε ◦ (F ◦H−1(σ0w))
· ∂xδ ◦H−1(σ0w)}

+ ∂zε ◦ (F 2 ◦H−1(σ0w))
· { ∂yδ ◦ (F ◦H−1(σ0w)) + ∂zδ ◦ (F ◦H−1(σ0w)) · ∂xδ ◦H−1(σ0w) }

}

· ∂yφ−1(σ0w)
+
{
f ′(fε(σ0x)) · ∂zε ◦ (F ◦H−1(σ0w)) + ∂zε ◦ (F 2 ◦H−1(σ0w))
· ∂zδ ◦ (F ◦H−1(σ0w))

}

·
{
∂yδ ◦H−1(σ0w) + ∂zδ ◦H−1(σ0w) ·

d

dy
δ(σ0y, f

−1(σ0y), 0)
}]

·
[ {

∂yδ ◦ (F ◦H−1(σ0w)) + ∂zδ ◦ (F ◦H−1(σ0w)) · ∂xδ ◦H−1(σ0w)
}

· ∂zφ−1(σ0w) + ∂zδ ◦ (F ◦H−1(σ0w)) · ∂zδ ◦H−1(σ0w)
]

(B.0.12)
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−
[ {

f ′(fε(σ0x)) · { ∂yε ◦ (F ◦H−1(σ0w))
+ ∂zε ◦ (F ◦H−1(σ0w)) · ∂xδ ◦H−1(σ0w)}

+ ∂zε ◦ (F 2 ◦H−1(σ0w))
· { ∂yδ ◦ (F ◦H−1(σ0w)) + ∂zδ ◦ (F ◦H−1(σ0w)) · ∂xδ ◦H−1(σ0w) }

}

· ∂zφ−1(σ0w)
+
{
f ′(fε(σ0x)) · ∂zε ◦ (F ◦H−1(σ0w))
+ ∂zε ◦ (F 2 ◦H−1(σ0w)) · ∂zδ ◦ (F ◦H−1(σ0w))

}

· ∂zδ ◦H−1(σ0w)
]

·
[ {
∂yδ ◦ (F ◦H−1(σ0w)) + ∂zδ ◦ (F ◦H−1(σ0w)) · ∂xδ ◦H−1(σ0w)

}

· ∂yφ−1(σ0w)
+ ∂zδ ◦ (F ◦H−1(σ0w)) ·

{
∂yδ ◦H−1(σ0w) + ∂zδ ◦H−1(σ0w)

· d
dy

δ(σ0y, f
−1(σ0y), 0)

}]

On the above equation, let us denote some factors to be A, B, C and D as
follows.

A = f ′(fε(σ0x)) · { ∂yε ◦ (F ◦H−1(σ0w))
+ ∂zε ◦ (F ◦H−1(σ0w)) · ∂xδ ◦H−1(σ0w)}

+ ∂zε ◦ (F 2 ◦H−1(σ0w))
· { ∂yδ ◦ (F ◦H−1(σ0w)) + ∂zδ ◦ (F ◦H−1(σ0w)) · ∂xδ ◦H−1(σ0w) }

B = f ′(fε(σx)) · ∂zε ◦ (F ◦H−1(σ0w))
+ ∂zε ◦ (F 2 ◦H−1(σ0w)) · ∂zδ ◦ (F ◦H−1(σ0w))

C = ∂yδ ◦ (F ◦H−1(σ0w)) + ∂zδ ◦ (F ◦H−1(σ0w)) · ∂xδ ◦H−1(σ0w)

D = ∂yδ ◦H−1(σ0w) + ∂zδ ◦H−1(σ0w) ·
d

dy
δ(σ0y, f

−1(σ0y), 0)

(B.0.13)
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Let us calculate A · ∂zδ ◦ (F ◦H−1(σw))−BC for later use.

A · ∂zδ ◦ (F ◦H−1(σ0w))− BC

=
[
f ′(fε(σ0x)) · { ∂yε ◦ (F ◦H−1(σ0w))
+ ∂zε ◦ (F ◦H−1(σ0w)) · ∂xδ ◦H−1(σ0w)}

+ ∂zε ◦ (F 2 ◦H−1(σ0w))
· { ∂yδ ◦ (F ◦H−1(σ0w)) + ∂zδ ◦ (F ◦H−1(σ0w)) · ∂xδ ◦H−1(σ0w) }

]

· ∂zδ ◦ (F ◦H−1(σ0w))
−
[
f ′(fε(σ0x)) · ∂zε ◦ (F ◦H−1(σ0w))

+ ∂zε ◦ (F 2 ◦H−1(σ0w)) · ∂zδ ◦ (F ◦H−1(σ0w))
]

·
[
∂yδ ◦ (F ◦H−1(σ0w)) + ∂zδ ◦ (F ◦H−1(σ0w)) · ∂xδ ◦H−1(σ0w)

]

= f ′(fε(σ0x)) ·
[
∂yε ◦ (F ◦H−1(σ0w)) · ∂zδ ◦ (F ◦H−1(σ0w))
− ∂zε ◦ (F ◦H−1(σ0w)) · ∂yδ ◦ (F ◦H−1(σ0w))

]

(B.0.14)

Then the above equation of JacRF is expressed as follows.

∂yε1(w) · ∂zδ1(w)− ∂zε1(w) · ∂yδ1(w)

=
[
A · ∂yφ−1(σ0w) +BD

]

·
[
C · ∂zφ−1(σ0w) + ∂zδ ◦ (F ◦H−1(σ0w)) · ∂zδ ◦H−1(σ0w)

]

−
[
A · ∂zφ−1(σ0w) +B · ∂zδ ◦H−1(σ0w)

]

·
[
C · ∂yφ−1(σ0w) + ∂zδ ◦ (F ◦H−1(σ0w)) ·D

]

= A · ∂yφ−1(σ0w) · ∂zδ ◦ (F ◦H−1(σ0w)) · ∂zδ ◦H−1(σ0w)
+BCD · ∂zφ−1(σ0w)

−
[
AD · ∂zφ−1(σ0w) · ∂zδ ◦ (F ◦H−1(σ0w))

+BC · ∂zδ ◦H−1(σ0w) · ∂yφ−1(σ0w)
]

(B.0.15)

Recall the equations (B.0.2) and (B.0.1) for ∂yφ
−1(σ0w) and ∂zφ

−1(σ0w) re-
spectively. Let us expand D in the equation (B.0.13). Then above equation is
continued as follows.
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= A · (f−1ε )′(σ0x) ·
{
∂yε ◦H−1(σ0w) + ∂zε ◦H−1(σ0w)

· d
dy

δ(σ0y, f
−1(σ0y), 0)

}

· ∂zδ ◦ (F ◦H−1(σ0w)) · ∂zδ ◦H−1(σ0w)

+BC ·
{
∂yδ ◦H−1(σ0w) + ∂zδ ◦H−1(σ0w) ·

d

dy
δ(σ0y, f

−1(σ0y), 0)
}

· (f−1ε )′(σ0x) · ∂zε ◦H−1(σ0w)

−
[
A ·
{
∂yδ ◦H−1(σ0w) + ∂zδ ◦H−1(σ0w) ·

d

dy
δ(σ0y, f

−1(σ0y), 0)
}

· (f−1ε )′(σ0x) · ∂zε ◦H−1(σ0w) · ∂zδ ◦ (F ◦H−1(σ0w))

+BC · ∂zδ ◦H−1(σ0w) · (f−1ε )′(σ0x)

·
{
∂yε ◦H−1(σ0w) + ∂zε ◦H−1(σ0w) ·

d

dy
δ(σ0y, f

−1(σ0y), 0)
}]

= A · (f−1ε )′(σ0x) · ∂zδ ◦ (F ◦H−1(σ0w))
·
[
∂yε ◦H−1(σ0w) · ∂zδ ◦H−1(σ0w)− ∂zε ◦H−1(σ0w) · ∂yδ ◦H−1(σ0w)

]

− BC · (f−1ε )′(σ0x) ·
[
∂yε ◦H−1(σ0w) · ∂zδ ◦H−1(σ0w)− ∂zε ◦H−1(σ0w)

· ∂yδ ◦H−1(σ0w)
]

=
[
A · ∂zδ ◦ (F ◦H−1(σ0w))−BC

]
· (f−1ε )′(σ0x)

·
[
∂yε ◦H−1(σ0w) · ∂zδ ◦H−1(σ0w)− ∂zε ◦H−1(σ0w) · ∂yδ ◦H−1(σ0w)

]

By the equation (B.0.14), the above equation is continued as follows.

= (f−1ε )′(σ0x)

·
[
∂yε ◦H−1(σ0w) · ∂zδ ◦H−1(σ0w)− ∂zε ◦H−1(σ0w) · ∂yδ ◦H−1(σ0w)

]

· f ′(fε(σ0x)) ·
[
∂yε ◦ (F ◦H−1(σ0w)) · ∂zδ ◦ (F ◦H−1(σ0w))
− ∂zε ◦ (F ◦H−1(σ0w)) · ∂yδ ◦ (F ◦H−1(σ0w))

]

= f ′(fε(σ0x)) · (f−1ε )′(σ0x) · JacF ◦ (H−1(σ0w)) · JacF ◦ (F ◦H−1(σ0w))
(B.0.16)

Similarly, JacRnF (w) is expressed in terms of the partial derivatives of εn−1
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and δn−1 as follows.

JacRnF (w)

= (f−1n−1, ε)
′(σn−1x) · f ′n−1(fn−1, ε(σn−1x))

· JacFn−1 ◦ (H−1n−1(σn−1w)) · JacFn−1 ◦ (Fn−1 ◦H−1n−1(σn−1w))
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Appendix C

Further research topics

The theory of three dimensional renormalizable Hénon-like maps has open
problems. Recall that IB(ε̄) is the set of infinitely renormalizable three di-
mensional Hénon-like maps. Let us consider subsets of IB(ε̄) appearing on the
previous sections. Let us define each set using the curly alphabet and consider
their basic properties.

• T — set of the Hénon-like maps such that

∂zε ≡ 0, ∂xδ ≡ 0, and ∂yδ ≡ 0

Let the maps satisfying above conditions be trivial extension of two di-
mensional Hénon-like map or simply trivially extended map, which is of
the following form.

(x, y, z) 7→ (f(x)− ε(x, y), x, δ(z))

• M — set of model maps. See §9.1.

∂zε ≡ 0

• SM — set of small perturbation of model maps with the condition
b1 � b2. In particular, (b1)

r � b2 is assumed for the given finite number
r ≥ 3. See §9.3 and §10.2.

• N — set of maps the following identical equation of partial derivatives
of the third coordinate map

∂yδ ◦ F (w) + ∂zδ ◦ F (w) · ∂xδ(w) ≡ 0
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where w = (x, y, z) ∈ B1
v ∪ B1

c . See §12.1.
Then clearly we observe the following inclusion property of each sets.

T ( M∩N

Moreover, the set differences, M \ N and N \ M are non empty sets. Fur-
thermore, each of the following sets

T ∩ IB(ε̄), M∩IB(ε̄), and N ∩ IB(ε̄)

are invariant under renormalization. The set SM ∩ IB(ε̄) with the condition
(b1)

r � b2 is invariant under renormalization in the sense that there exist
invariant surfaces under renormalized map for each level.

We can call each of those sets a subspace of IB(ε̄). The renormalized map
of F• ∈ T ∩ IB(ε̄) is the following due to the universality theorem of two
dimensional Hénon-like maps.

RnF•(x, y, z) =
(
fn(x)− b2

n

1 a(x) y(1 +O(ρn)), x, b2
n

2 (z − zn)(1 +O(ρn))
)

where |zn| = O(ε̄2
n

) for some ρ ∈ (0, 1). Then RnF• has invariant plane paral-
lel to xy−plane for each n ∈ N+. However, the Hénon-like maps in the space
SM ∩ IB(ε̄) has C

r invariant surfaces. Then by the diffeomorphism between
surface and xy−plane two dimensional renormalizable Cr Hénon-like maps are
defined. Moreover, it is shown that this renormalization is the same as the
usual definition of Hénon renormalization by the conjugation of the horizontal
diffeomorphism and dilation.

Problem I
There are open problems related to invariant surfaces and two dimensional Cr

Hénon-like maps.

(1) Are there C∞ or Cω invariant surfaces different from plane under RnF ∈
IB(ε̄) for each n ∈ N+?

(2) Suppose that the map, F∗(x, y) = (f∗(x), x) is the fixed point under
renormalization operator of infinitely renormalizable two dimensional Cr

Hénon-like maps for big enough r < ∞, say I r. Is F∗ the hyperbolic
fixed point under renormalization?

(3) Invariant surfaces under RnF ∈ IB(ε̄) in three dimension can define a
subset of infinitely renormalizable two dimensional Cr Hénon-like maps,
say I r

Q. Clearly I r
Q ⊂ I r. Is the set I r

Q dense or open in I r?
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Problem II
There some open problems about the Hénon-like maps in the space N ∩IB(ε̄).

(1) Recall that b2
n

2 = ∂zδn(w)(1 + O(ρn)) and the average Jacobian and b1
satisfies that b = b1b2. Are log b1 and log b2 Lyapunov exponents on the
Cantor attractor? It might be yes.

(2) Does the continuous invariant line field exist on the Cantor attractor of
F ∈ N ∩ IB(ε̄)?

(3) The set of parametrized Hénon-like maps by b1 in N ∩ IB(ε̄) has the
parameters (0, b̄1] for some b̄1 > 0. There exists parametrized subfamily
of Hénon-like maps of which Cantor attractor has unbounded geome-
try. Then the corresponding parameters of the above subfamily contains
Gδ subset of (0, b̄1]. Can this parameters contain the points of the full
Lebesgue measure?

Problem III
The extension of the Hénon renormalization to the larger space is a further
research topic.

(1) Does there exist invariant subspace of IB(ε̄) which contains M ∪ N ?
Can a subspace of IB(ε̄) invariant under renormalization describe the
map of the whole family IB(ε̄) generically?

(2) For the maps in M∪N , ∂zδn = b2
n

2 (1 +O(ρn)) for some positive small
number b2. Is it true for all maps in IB(ε̄)? If not, is there a map whose
Cantor attractor has dynamical properties which cannot be induced from
the two dimensional Hénon-like maps?

(3) Extend three dimensional theory to the arbitrary finite dimensional map.
The Hénon-like map in the general dimension is of the following form.

(x, y, z) 7→ (f(x)− ε(x, y, z), x, δ(x, y, z))

where z = (z1, z2, . . . , zm) for any fixed m ∈ N.
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