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Abstract of the Dissertation

Renormalization of three dimensional Hénon
map

by

Young Woo Nam

Doctor of Philosophy
in
Mathematics
Stony Brook University
2011

The three dimensional Hénon-like map

Flw) = (f(z) - e(w), =, 5(w))

on R? is defined in three dimensional space. The geometric proper-
ties of the Cantor attractor, O is studied for the map, F' € Zp(&)
in the set of infinitely renormalizable maps. The n'* renormal-
ized map, R™F has universal asymptotic behavior. For example,

Jacobian determinant of R™"F' is as follows

Jac R"F = b*"a(x)(1 + O(p"))

1l



with the average Jacobian b = bp.

Let M be set of model maps which satisfies e(z,y, z) = (x,y).
Then M is an invariant class under renormalization. Moreover,
for the maps in M and a perturbation F' with the small enough
|0.¢|| , C" invariant surfaces under R"F exist. By the C" con-
jugation, the renormalization of two dimensional C" Hénon-like
maps is constructed. The geometric properties of Cantor attrac-
tor, for instance, non rigidity, typical unbounded geometry of Op
and discontinuity of invariant line field on O are involved with
two dimensional C" Hénon-like maps. Moreover, another subclass,
N of Zp(€) is considered, which is invariant under renormalization

satisfying the following condition.

0y0 o F(w) + 0,6 0 F(w) - 0,0(w) =0

In contrast with the map in M, the two dimensional Hénon renor-
malization theory is not applied in the class N, but the recursive
formula of scaling maps is analyzed directly to study the geometry
of the Cantor attractor. However, the same geometric properties
of Cantor set, in particular, the non rigidity of Op and typical

unbounded geometry of O are also proved.
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Chapter 1

Introduction

The universality of one dimensional dynamical system was discovered by Feigen-
baum and independently by Coullet and Tresser in the mid 1970’s. Moreover,
the universality of the higher dimensional maps is conjectured by Coullet and
Tresser in [CT]. This topic which is about the transition from regular dynamics
to the chaotic one has been especially the central theme of the one dimensional
dynamics for last 30 years or even longer. The study of the universality and
rigidity is essentially related to the study of the corresponding renormalization
operator. The hyperbolicity at the fixed point of the renormalization operator
is finally proved in the one dimensional holomorphic dynamical systems by
Lyubich in [Lyu] using quadratic-like maps in the holomorphic germs. This
hyperbolicity theorem is extended to the C" renormalizable interval maps for
r > 3+ a where « is close to one in [dFdMP]. The similar universality prop-
erties are expected in higher dimensional maps which are strongly dissipative
and close to the one dimensional maps. In particular, renormalizable maps
with periodic doubling type are interesting in two or higher dimensional maps.
The universality of two dimensional strongly dissipative infinitely renormaliz-
able Hénon-like maps is justified in [CLM] and the topological properties of
the invariant attractors is explored in subsequent paper, [LM]. The Cantor
attractor of two dimensional Hénon maps is the counterpart of that of one
dimensional maps but it has different small scale geometric properties. The
Cantor attractor of the two dimensional maps have non rigidity and typically
unbounded geometry. These geometric properties of the two dimensional map
is generalized in the highly dissipative three dimensional Hénon family.



1.1 Renormalization of unimodal maps

In the one dimensional map in the interval, the renormalizability is defined as
follows in general.

Definition 1.1.1. Let f be the unimodal map on the interval I and ¢ be the
critical point of f. If there exists a proper subinterval J of [ such that ¢ € J
and f"|; C J for some n > 2 and f(J)NJ = & for all positive i < n, then
we call f is renormalizable.

The periodic doubling renormalization operator was introduced to study the
small scale geometry of the attractor of the family of unimodal maps with the
single critical point ¢ which is quadratic, that is, f”(¢) # 0. For example,
the family of quadratic map with parameter A\, z — Ax(1 — z) can be consid-
ered. Let us define the periodic doubling renormalization operator of the one
dimensional map, f on the interval, I.

Definition 1.1.2 (Renormalization of periodic doubling type). f is renormal-
izable if it has two disjoint subintervals which are exchanged by f.

Let the two smallest disjoint intervals which are exchanged by f be C; =
{13, I} where I} contains the critical point ¢ and I} contains the critical value
v. The rescaled map of the first return map

20— I

with affine conjugation defines the renormalization operator R.. Similarly.
the operator R, is defined on I}. If f is infinitely renormalizable, then the n'"
renormalized map of f, R"f has the cycle of the pairwise disjoint intervals

C,={I"|i=0,1,2,...,2" — 1}

where f(I]') = I, and

UcCnaclJcn.

The nested sequence of C,, implies the Cantor set is the attractor of f.

c-NUe.

The topological properties of unimodal maps with Cantor attractor is deeply
affected by the orbit of the critical point, which lead to the kneading sequence.
If the given map f is infinitely renormalizable, then f acts on the dyadic adding
machine on this attractor. For the introduction of dyadic adding machine and



kneading sequence, see [BB|. The universality of renormalizable map says the
small scale geometry of two maps has asymptotically same around the renor-
malization fixed point. The rigidity means that if two infinitely renormalizable
maps, [ and g are conjugated by a homeomorphism, A on the domain of two
maps, that is,

hof=goh

then h is differentiable on the Cantor attractor. Moreover, de Melo and Pinto
proved one dimensional infinitely renormalizable maps have the rigidity in
[dMP].

The topology of the dynamical system implies the geometry of it.

1.2 Hénon maps and bifurcation of the homo-
clinic tangency

The Hénon map is a polynomial diffeomorphism from R? to itself as follows.
Ha,b(x>y) = (1 - al,Q + Y, b!lﬁ')

Hénon introduced this above map on 1974 and there were numerical experi-
ments about it. A famous conjecture is there exists the strange attractor at
the parameter ¢ = 1.4 and b = 0.3. The first significant achievement about
the Hénon map with parameter space (a,b) was done by Benedics and Car-
leson in [BC|. There exists the strange attractor for the positive measure of
the parameter space, (a,b) such that ap < a < 2 and b < by where qq is
close to 2 and by is small. Moreover, this parameter values which are con-
sidered in [BC] is a generalization of the one dimensional Misiuriewicz maps
in [Jak]. Jakobson proved that the maps which have absolutely continuous
invariant measure with respect to Lebegue measure has positive measure on
the parameter space. So is in the Hénon family in [BC]. Young and Wang use
the geometric condition to generalize Hénon family in [WY1]. Furthermore, it
is generalized to arbitrary finite dimension of the rank one attractor, that is,
attractor with the neutral or repulsive direction is one dimensional in [WY2].
The statistical properties, for instance, the existence of SRB measure on the
invariant set, are important in the generic dynamics of the chaotic region.

The hyperbolic systems have been studied from 1960s. Moreover, those sys-
tems were expected to be generic in the whole dynamical systems. This generic
hyperbolicity is the main conjecture of the rational maps on the Riemann
sphere. In the quadratic polynomial case, it is known that MLC (Mandelbrot



set is locally connected) conjecture is equivalent to the generic hyperbolicity.
However, in the dynamical systems of two or higher dimensional maps New-
house proved that the maps in the chaotic region contains an open set. The
proof used a perturbation of homoclinic tangency with certain condition of the
invariant Cantor set. After Newhouse proof, Palis suggested a new conjecture
about the generic dynamical system at p.134 in [PT].

Conjecture 1.2.1 (Palis conjecture). Every C" diffeomorphism in Diff (M)
for r > 1 can be approximated by a hyperbolic diffeomorphism or else by one
exhibiting a homoclinic bifurcation involving a homoclinic tangency or a cycle
of hyperbolic periodic saddles with different indices.

Let us consider a homoclinic tangency of the two dimensional maps. Then
the dimension of both unstable and stable manifolds at the homoclinic point
is one. After bifurcation of the homoclinic tangency, let us consider the case
that stable and unstable manifold is (transversally) intersected around the
homoclinic point. Let us choose the bounded region on which this bifurcation
occurs and consider the first return map, H. Then after appropriate smooth
coordinate change, the image of the horizontal lines in the bounded region is
the vertical line. Then the simplest example of map of this form is the Hénon
map. !
Ha,b(za y) = (12 —a+ by> [L’)

However, in general the first coordinate map of the first return map is not
generally a polynomial but is a perturbation of a unimodal one dimensional
map, say f(z). Then we call the first return map which is of the following
form

Fa,y) = (f(z) —e(2,y), )

the Hénon-like map where f(x) is a unimodal map.

A perturbation of homoclinic tangency could occur in higher dimension, that
is, in arbitrary (finite) dimension, the unstable or stable manifold at the ho-
moclinic point may have its dimension greater than one. However, in order
to make that the first return map has Hénon-like form in the first two coor-
dinates, let us assume that dimension of unstable manifold at the homoclinic
point is one in higher dimension. Then for example, in the three dimensional
space we get

F(:E,y,z) = (f(l’) - 5(x,y,z), Z, .)

I'The Hénon map in dynamical system means that the family of Hénon maps up to the
linear conjugacy. The parameter space {(a,b)} of each expression is also changed by the
same linear conjugacy.



where f(z) is a unimodal map. Then the first return map in higher dimen-
sion has first two coordinates similar to the Hénon-like map. If the unstable
manifold of a fixed point is the attractor which is maximal backward invari-
ant, then it is called rank one attractor. This viewpoint is reflected in the
paper of Wang and Young, [WY2] in higher dimension for the maps on the
chaotic region, maps with positive entropy. Hénon renormalization of two di-
mensional Hénon-like maps is defined on [CLM] for the maps on the regular
region, namely, maps with the entropy zero.

1.3 Statement of results

Hénon renormalization of two dimensional map has common and different
properties of the one dimensional renormalizable maps. Dynamical system of
two dimensional Hénon-like map has universality but non-rigidity.

We expect that the three or higher dimensional system has the above proper-
ties. The extension of Hénon renormalization theory in three or higher dimen-
sion has the two goals in general.

e Finding the same or similar results of two dimensional theory in three
dimension.

e Finding the new phenomena which appear only on the three or higher
dimensional maps.

In this paper, we explore three dimensional Hénon-like maps for the first part
of the general goals. In particular, it is shown that the small scale geometry
of the Cantor attractor for three dimensional Hénon-like maps has the same
properties for two dimensional Hénon-like maps.

The three dimensional Hénon-like map F from the cubic box B to R? is defined
as follows

F (:)s,y,z) = (f(l’) - E(l’,y,Z), €, 5(1’,’3},2))

where f(x) is a unimodal map. Let us assume that || ¢||¢cs, || d0||cz < € are
sufficiently small € > 0. We would call three dimensional Hénon-like maps
just Hénon-like maps unless the name could make confusion between two and
three dimensional maps.

F has two hyperbolic fixed points, §y which has positive eigenvalues and [,
which has both positive and negative eigenvalues. Since || d|| is sufficiently
small, each fixed point has only one expanding direction and we may assume
that product of two different eigenvalues is strictly less than one. The Hénon-
like map is called renormalizable if W*"(5y) intersects W#(3;) at the orbit of a



single point. However, the renormalizable map (with periodic doubling type)
has the invariant domain in B under F?.

We need the non linear scaling map for universal limit of the renormalized
map. For this, let us define the horizontal-like diffeomorphism H is defined as
follows also.

H:(z,y,2) = (f(x) —e(2,y,2), y, 2 — 0(y, f(y),0))

The renormalized map RF of the three dimensional Hénon-like map F' is
defined as
RF=AoHoF?ocH 'oA™!

where H is the horizontal-like diffeomorphism and A is linear scaling map.

Moreover, the n'? renormalization R"F is defined inductively. Assume that F
is an infinitely renormalizable perturbed Hénon-like map. Then R™F' converges
to the degenerate map F, = (f.(x), =, 0) where f, is the fixed point of the
renormalization operator of one dimensional unimodal maps. Furthermore, F,
is the hyperbolic fixed point of the renormalization operator, R : F' — RF.
Then we extend the renormalization theory of two dimensional Hénon-like
maps to the three dimensional maps. On the remainder of this introduction
we assume that F' is three dimensional infinitely renormalizable analytic map.

Assume that F' is renormalizable. Let the scaling map ¢! = H~' o A~! and
denote ¢! = F ol. Moreover, if F' is twice renormalizable, then let ¢? and
1? be the corresponding coordinate change maps for second renormalization.
The composition of scaling maps are expressed as follows.

Vo = v, 00, Yo, =00l Wy, =1, 00,

In general, we define the coordinate change map as the conjugation between
F?" and R"F as follows

1 2
‘I’Q:wwlo wQO"'Owgn

where w = (wyws ... w,) € {v,c}" is a word of length n. Moreover, the set
Bl is defined as VI, (B).
The critical Cantor set is defined



where w € W™ is the word of the Cartesian product of {v,c}. The counter
part of the critical value of one dimensional map is called the tip

(e} =By

n>1

where v = v*. Moreover, F' acts as the dyadic adding machine on Op. The
average Jacobian is defined on the critical Cantor set

bp = exp/ log Jac F'du
OF

where p is the unique ergodic measure on Op.

With the above definitions, the Jacobian determinant of R"F" has the universal
limit a(x) with exponential convergence.

Theorem 1.3.1 (Universality of Jac R"F). Let F' € Ig(&) for sufficiently
small € > 0.
Jac R"F = b*"a(x)(1 + O(p"))

where b = bp is the average Jacobian of F, a(x) is the universal function and
p€(0,1).

The number log by is the sum of the Lyapunov exponents on the Cantor set,
Op. The maximal exponent is zero. However, in contrast with two dimensional
maps, logbr is the sum of two exponents, that is, logbr = logb; + log bs.
Furthermore, the universality of the Jacobian determinant does not seem to
imply the universality of the map R"F' because the Jacobian determinant,

Jac R"F = 0y, - 0,0, — 0,&,, - OOy,

has four different partial derivatives. In general, the asymptotic expression
of all of these cannot be recovered using only the single number by and the
universal function. Then instead of constructing the universal geometric the-
ory of the invariant set of the three dimensional maps in Zg(¢), let us take
subset of Zp(¢) as invariant classes under renormalization and construct the
geometric properties of Cantor attractor.

Let Hénon-like maps with the condition 0. = 0 be the model maps and denote
it to be Fq. Then the universality of the model map is re-constructed using
the universality of two dimensional Hénon-like maps.

Fuod,n = R Froa = (ful@) + 5 a(@) y (14 O0(p")), @, 15" + u(x, 1))



where f, is the unimodal map converging to f, exponentially fast as n — oo,
bib, = bp and || §,|| = O(£2") with sufficiently small £ > 0. In the class of
model maps, by is actually the average Jacobian of the two dimensional Hénon-
like map and by is the attracting rate which comes from the third coordinate
direction.

Let us assume that by < b; on the class of model map. Then there exists
an invariant cone field on any given compact invariant set because of the
universality theorem of two dimensional Hénon-like maps. Then there exists
the continuous plane field on the global attractor

Ap= () F¥B)NB.

k>0

The complementary invariant line field is the set of straight lines which are
perpendicular to xy—plane. Furthermore, Hénon-like map, F' which is close
enough to model maps in the C! sense also has an invariant cone field under
DF. Then The map F' is called a small perturbation of the model map Fyoq
where e(z,y, 2) = e(z,y) + £(x,y, 2) and ||0,¢|| is small enough.

With the existence of the invariant plane and line fields, the pseudo unstable
manifold theorem says the existence of the local invariant C” surfaces with
3 < r < oo at the small neighborhood of Apr. Furthermore, there exists
a single invariant surface ) under F' such that it contains Agen in B]. for
each sufficiently big n € N (Lemma 10.2.1). Additionally if F' is infinitely
renormalizable, then there exists an invariant surface (), under R™F as the
graph of C" map, &, from xy—plane to z—axis (Lemma 10.3.1).

Then two dimensional C" Hénon-like map is defined as follows

Fog e(r,y) = (f(2) —e(x,9,6), x)

where graph(§) is a C" invariant surface of the three dimensional Hénon-like
map F: (z,y,2) — (f(z) —e(z,y, 2), x, 6(z,y,2)). The C" diffeomorphism
from the invariant surface to xy—plane, 75, : (z,y,&,) — (x,y) on each level
n € N define the renormalization of C" Hénon-like maps, R" F4 ¢ on xy—plane
which is same as the renormalization using the horizontal diffeomorphism and

dilation
R'Fag,e(x,y) = (fa(®) — en(2,9, &), 2). (1.3.1)

Similarly, non linear scaling map between &' and n'* renormalized Hénon-like
maps is defined as follows

n — & n &n -1
2d\1’k,5 = Ty, k © \Ijk © (ﬂ-mgj,n) :



The properties of invariant surfaces under R"F', the universality theorem of
infinitely renormalizable C" Hénon-like maps are obtained (Theorem 11.1.3).

Theorem 1.3.2 (Universality of C" Hénon-like maps with C" conjugation
for 3 <r < 00). Let Hénon-like map Fyq ¢ be the C" map for some 3 < r < oo
which is defined in (1.3.1). Suppose that Fhy ¢ is infinitely renormalizable.
Then

R"Fag,¢ = (fal) = b 5aa(z)y (1+0(p"), @)

where f,(x) is the unimodal map which converges to f.(x) exponentially fast
asn — oo for some 0 < p < 1.

Moreover, the asymptotic expression of the scaling map 54U} has the similar
expression of the analytic two dimensional Hénon-like maps (Theorem 11.1.4).

The dynamical properties on Cantor attractor of Hénon-like maps depend
much on the asymptotic expression of the renormalized map and that of scal-
ing maps. R"Fye and 9q¥} for C" Hénon-like maps has the asymptotic ex-
pressions similar to the analytic Hénon-like maps in [CLM]. The geometric
properties of the Cantor attractor of C" Hénon-like map is the same as that
of Cantor attractor for analytic two dimensional Hénon-like maps.

For example, the Cantor attractor of C" Hénon-like map also has the geomet-
ric properties, in particular, discontinuity of the invariant line field (Theorem
11.2.2), non-rigidity (Theorem 11.3.2) and typical unbounded geometry (The-
orem 11.4.3). Moreover, all of these dynamical properties are transferred to
the Cantor attractor of three dimensional Hénon-like map F' through its in-
variant surfaces.

Let us see the Non rigidity theorem below.

Theorem 1.3.3. Let F, Fe Iij) be small perturbation of model maps. Sup-

pose that by < by and 52 < by. Suppose also that each of F and F has
invariant C surfaces which contains the global attracting set. Let Op and O

be the critical Cantor set of F and F respectively. Let ¢ be a homeomorphism
between Op and Op with ¢oq(7) = Tp. Assume that by > by. Then the Holder
exponent o of gog satisfies the following.

o< <1+ log[i)
2 log by

There is another subspace of Zp(£) invariant under renormalization. For the
renormalizable maps, the recursive equation of each partial derivatives of 4 and



01 which are third coordinate maps of F' and RF respectively. For example,
let us consider the recursive formula of 0,0;.

9.61(w) = [ [8,6 o (F o H ' (ggw)) + 9.6 o (F o H ' (5gw)) - 9,6 0 H™ ' (cw)]
0,0 (oow) + 0,6 o (F o H (ogw)) - 9.6 o H (ogw)

where ¢~!(w) is the first coordinate map of H~'(w). The part in the box of
the above equation also appears on the recursive equation for 9,0, and 0,0;.
Thus we can let this common part be the identically zero and consider the set
of Hénon-like maps which satisfies the following equation.

9,0 o F(w) + 9,6 o F(w) - 0,0(w) =0 (1.3.2)

where w € ! (B) U !(B). Let the set of Hénon-like maps satisfying above
equation be .

Theorem 1.3.4. Let the set of Hénon-like maps which satisfies (1.3.2) be N.
Then the set NN Zg(£) is invariant under renormalization.

Moreover, for the map, R"F € N NZg(£), we obtain the universal expression
of 0.6,, by Proposition 13.2.1. By the chain rule, the recursive formula of 9.9,
is as follows by (13.2.1) and induction.

0,0n(w) = 0.6p_10 (Fy_10H ' (00 1w)) - 0.6,_10H ' (0, 1w)

n

= az(Sn—I o w?(w) ’ azén_l © wg(w)

we Wn

The logarithmic average of the right hand side converges a definite number as
n — oo. .
o > log|d.60 Wy (w)| — [ log|d.0| dp

we Wn Or

Define this limit as logby. Then 9.6, = b3" (1 + O(p™)) and it means the con-
tracting rate from the third coordinate map. Moreover, the ratio of b, and the
average Jacobian b is defined by, 2that is, b = b;bs.

Then the coordinate change map W} of the three dimensional Hénon-like maps

2For the Hénon-like map F € Zg(2) NN, it is not clear both logb; and logby are
Lyapunov exponents on the Cantor attractor.

10



is analyzed by asymptotic expression related to 9,0, and Jye. Then when
the distance of image of two points under W} is measured, the distance of
z—coordinate of points is incorporated to the two dimensional distance as the
product b%k and dilations. In the counter part of two dimensional Hénon-like
map, the contracting of the y—distance is stronger than x—distance contrac-
tion with the factor b;. Then if F € N'NZg(€), then the method of measuring
distances is essentially same as two dimensional maps. Furthermore, the af-
fection by is not visible even if by is larger than b;.

Then non-rigidity and the typical unbounded geometry are proved in the space
N NZg(£) but the method used in this space is an analysis of the recursive
equations. Then this method is very different from that in a small pertur-
bation of model maps. In this space the constructed two dimensional Hénon
renormalization with invariant surfaces is applied to the three dimensional
maps.

1.4 An open problem

We have seen that two or higher dimensional Hénon renormalizable maps have
universality but non-rigidity. In the two dimensional Hénon renormalization
theory, the different average Jacobians separate one smooth invariant class
from another. Then the question about rigidity in the set of maps with same
average Jacobian arises. It is suggested in [CLM] as an open problem. In
similar way, the Hénon-like maps in three dimension has the question about
smooth invariant class with the same two contracting rates, b; and bs.

e If the two different three dimensional Hénon-like maps in Zp(£) have
same b; and by, then are these maps conjugated by C! or smoother
map?

If the Hénon-like maps in Zg(€) is of the form

(l’,y,Z) = (f(l’) - 8(1’,y), xZ, ng),

then the above question is the same as rigidity question about two dimensional
Hénon-like maps. This question for the the three dimensional Hénon-like maps
in the whole class Zg(¢€) may be difficult. Then we can restrict our attention
to the space of a small perturbation of model maps or the space N.

11



Chapter 2

Notations and conventions

For given map F', if the set A is related to F', then we denote it to be A(F)
or Ar and the F' can be skipped if there is no confusion without F. The
domain of the function F' is denoted to Dom(F') and the image of the set B
under a function F' is denoted by F'(B). If F(B) C B then we call B is an
(forward) invariant set under F. Similarly, if F~'(B) C B, then we call B is
an backward invariant set under F'.

Let N be the set of the natural numbers, {1,2,3,...} and N, = N U {0}.
Let the distance between two points p and ¢ be on the metric space X be
distx (p, q). However, let us call the set distance disty,,(R,.S) as the minimal
distance between two sets, R and S as follows.

distyin (R, S) = inf { dist(r,s) for all 7 € Rand s € S }

Let f : X — X is a continuous function on the metric space X. The stable
manifold at some point p under f as follows.

We(p) ={q € X | dist(f"(p), ["(q)) = 0 as n — oo}
The local stable manifold at p bounded by &’ > 0 is
Wa(p) = {qg € X | dist(f"(p), f"(q)) < & for all n € NU{0}}

where dist is the distance along stable manifold. The (local) unstable manifold
is defines as the set if the distance under f~" is used instead of f". Without
specified size of the local manifold, we denote the local stable manifold at the
point p to be W (p) where p is on a certain bounded neighborhood which is
connected on X.

If the unstable manifold is one dimensional, then we can express the curve
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connecting two points along the unstable manifold in the give space X is
following.
[P qli € W (w)

The square bracket means the given set [ p, ¢ ¢ is homeomorphic image of the
closed interval [—1, 1] under continuous map from R to X. The points p and
q are the end points of the curve.

Denote the set of periodic points of F' to be Perp. The orbit of the point w
under the map f is denoted to be Orb(w, f). We can express the (complete)
orbit of w to be Orb(w) unless the map is emphasized or is ambiguous on the
context in the related description. The omega limit set of a point x under the
map F, w(z) is the set of accumulation points of the forward orbit under F.
Similarly the alpha limit set, a(x) of x under F' is the set of accumulation
points of the backward orbit under F'. Thus

wia) = (V{F*) k>n},  a@) = ({F*a):k>n}

neN neN

If there exists a neighborhood U of x and N > 0 such that
FrUO)NU=w

for all n > N, then z is called a wandering point. If z is not a wandering
point, then it is called nonwandering point and the set of nonwandering point,
Qp is called non wandering set.

For three dimensional map, let us the projection from R? to its x—axis, y—axis
and z—axis be 7, m, and 7, respectively. Moreover, the projection from R?
to zy—plane be 7, and so on. Furthermore, if there exists a surface which is
embedded on R? as the graph of the function &, for example {(z,y, (2, y))},
then we define the projection from the surface to its domain, say Wgy as
(x,y,&(x,y)) — (z,y). Denote the partial derivatives of the function f over
x,y and z to be 0, f, 0,f and 0. f respectively. The second partial derivatives
are Oy, f, Oryf and so on. However, for a set S, 95 without any subscript
means the topological boundary of the set S.

A = O(B) means that there exists a positive number C' such that A < CB.
Moreover, A < B means that there exists a positive number C' which satisfies

1
—B<A<LCB.
ol sS4s
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Chapter 3

Preliminaries

Let us introduce two dimensional Hénon-like maps as a perturbation of one
dimensional maps and define renormalization of two dimensional Hénon-like
map. Many topological properties of two dimensional renormalizable Hénon-
like map are well adapted to the three dimensional Hénon-like maps.

3.1 Hénon-like map as a perturbation of one
dimensional map

Let f: I — I be a C? or smoother unimodal map with non-degenerate critical
point ¢ € [ and f’s Schwarzian derivative is negative on /. f is called (periodic
doubling) renormalizable map if there exists the closed interval ¢ € J C Int/
such that J N f(J) = @ and f?(J) C J, that is, J is invariant under f2. Then
f?:J — Jis also a unimodal map on .J. We can choose the minimal intervals
J. = [fYc), f*(c)] and J, = [f3(c), f(c)] which is invariant under f?. More-
over, J. and J, are disjoint from each other. By the conjugation of the affine
rescaling from J to I, we can define renormalization R.f at the critical point
as R.f is defined as sf?(s~'z) for some s < —1. The domain of the renormal-
izable map f, I = [f*(c), f(c)] contains the critical point, the critical value
and one repelling fixed point whose eigenvalue is negative, say ;. Without
loss of generality we may assume that f can be extend on a sufficiently bigger
symmetric interval at the origin which has another fixed point 8y with positive
eigenvalue such that the interval, [—|f(c)|,|f(c)|] is compactly contained on
this extended interval. Let us say this extended interval of I to be also I in
order to save the notation. Then f has another repelling fixed point on the
(extended) interval I whose eigenvalue is positive, say .

Let us f be an infinitely renormalizable map. Then there is the unique fixed
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point f, of the (periodic doubling) renormalization operator R, with the uni-
versal scaling factor ¢ = 0.73 . ... The scaling factor of the n'" renormalization
converges to o exponentially fast as n — oo.

The graph of f is a parabolic-like curve. Since f is infinitely renormalizable by
the assumption, the two dimensional degenerate map F, : (z,y) — (f(z),z)
on I x I contains the reflected image of the graph of f on the diagonal line
going through the origin. Let us call two fixed points of F, be £y and [,
like the fixed points of the one dimensional map. Moreover, the parabolic-like
curve {x € I|(f(x),x)} containing the fixed point f, is the unstable manifold
of By, W*(Bp) under the degenerate map F,.

Let B be the square region whose center is the origin, that is B = I x I" where
I" and IY are the (appropriately extended) symmetric intervals at zero of the
one-dimensional renormalizable map f. I" and I¥ mean that they are parallel
to z-axis and y-axis respectively. The map F : B — R? is called Hénon-like
map if the image of the vertical line is a horizontal line and the image of the
horizontal line is the parabolic-like curve. Then as a small perturbation of the
one dimensional map f, the Hénon-like map F' is of the following form.

Fa,y) = (f(z) —e(z,y),7)

If the Jacobian determinant of F' is non-zero at every point, F' is called the
Hénon-like diffeomorphism. On the followings, Hénon-like map always means
Hénon-like diffeomorphism unless any other statements are specified. As a
(small) perturbation of the one dimensional map, we assume that the Hénon-
like map F' has two saddle fixed points (5, with positive eigenvalues — flip
saddle — and [, with negative eigenvalues — reqular saddle — .

Denote the local stable manifold at w, W7 (w) to be the component of the
stable manifold W#*(w) which contains the point w in B and keep the similar
notation for the local unstable manifold. If | f”(x)| is big enough then W (1)
and W*(By) meets transversally at least two points. Let py be the farthest
point from /3y along W} (/1) which is in the intersection of W*"(8y) "W .(/1).
Moreover, let us call the second and third farthest point from (5, along W (/)
in W*(5y) N Wg.(B1) be p; and py respectively. ps is on the opposite side to
p1 from (5 along W _(B1) because (; has negative eigenvalues. Then we can
define p,, similarly for every n € N. Then p,, — 1 as n — 4oc.
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Wi (5o) Wi(B1)

0

(a) A parabolic-like curve of the degen-(b) (Un)stable manifolds of Hénon-like
erate map as W"(5y) map

Figure 3.1.1: Unstable manifolds of a degenarate map and a Hénon-like map

3.2 Topological properties of renormalizable
two dimensional Hénon-like map

The renormalization of Hénon-like map was defined on [CLM] as the following.
Let us call the orientation preserving Hénon-like map is renormalizable if the
unstable manifold of Gy, W*(5,) intersects the stable manifold of 3y, W*(5),
on the single orbit of the points, say Orbz(w) for some w € B. Let py €
Orbgz(w) be the point which is farthest point from f; along the local stable
manifold of £, Wi _(81). Denote pp = F¥(py) for each k € Z. Then the
forward orbit of py, Orb,>0(po) is on W} (51) and the local stable manifold
of p_p, WS _.(p—pn) where n < 0 is pairwise disjoint component of W*(f;) and
W .(p—n) converges to W#(5;) because p_,, converges to By as n — +00.

Denote W§ .(p_,) to be M_,, for every n > 0. Then W} (/1) is denoted as
My. Moreover, we can define M; as the component of W#(5;) whose image
under F is contained on M; and which does not have any point of Orbz(w).
It is on the opposite side of M_; from My. We may assume that M; is a curve
connecting the up and down sides of the square domain B inside. Then we
can easily check the curves [po, p1]j, and [py, po]f5, does not intersect M; and
M respectively when F' is renormalizable.

On the domain B, the dynamical region for renormalizable Hénon-like maps
is the closure of the component of B\ W#(f) containing (3;, say By because
it is an (forward) invariant region under F. Let each region between M_,, and
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M_, 1 be A_,, for every n > 0. Since F(M_,) C M_,; for each n > 0, we
can see F(A_,) C A_,41 for each n > 0. But the image of Ay under F is
contained on A_y, that is, F'(Ay) C A_y. In other words, W (/1) intersects
W"(5y) at py transversally. Since M, is an invariant curve under F' and F'(M;)
is a part of M_4, if we take a curve v connecting p; and a point in M, then
F(v) is a curve connecting a point of M_; and py in A_;.

Wik (Br)M_3M_y M_4 My M

%pl
Bi

D
/ "
1_—
_/B(]"/p73 P2 P
Zy
A_g A72 AU

Figure 3.2.1: Regions between local stable manifolds

Let the region above the curve [p_1, polj, in A—; be Z; and the region below
the same curve in A_; be Z;. Let the interior enclosed by two curves [po, p1]§,
and [po, p1]3, be D.

Then for the renormalizable Hénon-like map, the local stable manifolds of p_,,
and the regions A_,, between two successive local stable manifolds M_,, and
M_,, 11 have the following properties.

(1
(2

) My is invariant under F'.

) F(M_,) C M_,; for each n > 0.
(3) F(My) C M_,.
) F

(4) F(A_,) C A_, 41 for each n > 1. In particular, F(A_;) C Ay.
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(5) Let the region on the right side of M; be A;. Then F(A;) C A_,.
(6) F(Ag) C Zy C A_y.

(7) F(Z1) C D.

(8) W*(Bp) intersects W .(B1) at po, p1 and py transversally.

(9) F(D) is the interior enclosed by two curves [p1, pa|j5, and [p1, po]3, in A_;.

Then the fact that F(Ay) C Z; C A_; and F(Z,) C D implies F?(A,) C D.
Hence D is invariant under £ and furthermore any neighbourhood of D in A,
is also invariant under F?. Since F'(D) is also invariant under F?, D U F(D)
is an invariant domain under F. The maximal invariant region under F is B
— closure of the component of B\ W#*(f,) containing the fixed point (.

Lemma 3.2.1. Let F be the renormalizable Hénon-like map. Then By is

invariant under F'and for every point w € By, there exist k € N such that
F*¥(w) e D.

Proof. W#(By) is invariant under F' and every M_, for some —n < —1 are
components of the stable manifold W#*(8y). Then we see that F™(M_,) C My
where —n < —1. Moreover, F?(M;) C My because F(M;) C M_, N dZ;.
Since M is the local stable manifold of the fixed point of ;, we see that
F(My) C [po,p1]3, € OD. Then we can choose k = n + 1 where —n < 0 and
k = 3 where —n = 1.

Now let us take a point w ¢ (J, ., M,. Then it is sufficient to show that
F*(w) € D for some k > 0. We may assume that w is contained in some region
A_,, for some —n < 1 because each region A_,, is separated by M_,, and B is
the union of M_,, and A_,,. If w € A_,, where —n < —1, F"(w) is on A_;.
Let us say w’ = F" }(w). Then w' is contained in one of the following set —
71, [p-1,polfy, or Za. If w' € Zy, then by the property (4) of the regions between
components of stable manifold of 3;, the image of w’ under F? is in Z;, that
is, F*(w') € Z;. However, F'(Z;) C D and it implies F3(w') € D. Moreover,
the fact that [p_1,pol, C 071 implies that F'(w') € dD for w' € [p_1,pol§, .
For n = 0 case, we see that F>(Ay) C D. Hence, we can choose k = n + 2 for
n > 0. For n = 1, we know that F'(A;) C A_5. Then we can choose k = 5. [

Corollary 3.2.2. Let F' be the renormalizable Hénon-like map. Denote the
region between two local stable manifolds My and M, to be Ag. Then F?(Ay) C
D. In particular, any open neighbourhood of D in Aqy is invariant under F?.
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3.3 Properties of renormalization operator of
two dimensional Hénon-like maps

We have the invariant domain D under F? for periodic doubling renormaliza-
tion from the previous subsection. However, F? is not Hénon-like map because
the image of the vertical line, {x = const.}, under F? is not the horizontal line,
{y = const.}. Then we need the non-linear coordinate change map to define
renormalization of Hénon-like maps. We would call this non linear coordinate
change map the horizontal diffeomorphism.

Define horizontal diffeomorphism H as the following.

H(x,y) = (f(l’) - €(x,y),y)

Then by the direct calculation (Lemma 3.4 in [CLM]), the map Ho F?o H™! is
also a Hénon-like map. It is called pre-renormalization of F' and it is denoted
to be PRF'. There exists an interval V' containing the critical point of f such
that PRF is defined on the region V x I and it is invariant under PRF.! The
square region with the center as the origin which is the restriction of V' x [ is
the domain of PRF. The Dom(PRF') is extendible to the topological region
Ay if necessary. Moreover, the image of the Dom(PRF) under H~! is the
region whose boundaries are curves, f(x) — e(z,y) = const. and y = const.

Thus we define the domain of H as the region enclosed by curves f(x) —
e(x,y) = const. and y = const. and if this region is the minimal invariant
region under F? then it is called B!. Moreover, B! is compactly contained in
Ap. If the map &(z,y) is identically zero, then H(B}) is the square with the
center origin. Furthermore, if the upper bounds of || are sufficiently small,
then H(B}) is the rectangle on which the ratio of sides perpendicular to each
otheris1: 14+0(&). Then the image of the slightly extended region of B} under
H is the square with center the origin. We would also say that this extended
region to be Bl. Then H(B}) is invariant under PRF. Let us choose the
expansion A(z,y) = (sx, sy) with some s < —1 such that the image of H(B})
under A is same as B. By the definition of A, we see that H(B}) = A=}(B).

Define the region B! to be F(B!). Then the map H~! from A~'(B) to B} is
a horizontal map and the map F o H~! from A~*(B) to B! is a vertical map.

IThe closed interval V is the closure of the small neighborhood of J.. If the rectangle
V x I has the full height in B, then V' contains every interval J. of maps  — f(x) —e(z,yo)
for each yo € IV. If ¢ = 0, then we can choose V' to be J. for  — f(z). Furthermore, the
rectangle V' x I is contained in the region A_;.
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For simplicity let us denote the H and H ! as the following.

H(*T?y) = (f(l’) - E(l’,y), y) = (¢($7y)7 y)
H ' (z,y) = (67 (2,y), v)

Then ¢~ (x,y) is a perturbation of the map f~*(z) in the two dimensional
domain as if the map ¢(z,y) is a perturbation of f. Moreover, ¢ 1 o H = .
By the definition, H ! is the horizontal map from A~*(B) to B}. Similarly by
the direct calculation F'o H~! is a vertical map from A~!(B) to B!. Then B}
is disjoint from B!,

™ A"Y(B) — B, (z,y) = (67 (2, 9),y)
FoH™':AYB) — B, (z,y) = (2,07 (z,y))
M_ My M,
Bl
: \P1
&
B,
AN(B)
/ Do
p-1

Figure 3.3.1: Restricted pieces for renormalization

Lemma 3.3.1 (Lemma 3.4 on [CLM]). Assume that F' is renormalizable and
both f and ¢ are C* with the small norm of , ||e|| < &, then

HoF?o H' = (fi(z) — ei(z,y), )

for some unimodal map fi on V such that || f*> — fi|ly < C& for some C > 0
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and |le1]] = O(?).

Let us define the (first) renormalization of F' with the appropriate scaling
map, A(z,y) = (sz, sy) with s < —1 as the following.

RF=ANoHoF?oH 'oA™!

Moreover, if F' is n+ 1 times renormalizable, then the renormalized map
R"F is defined recursively, that is, R"™'F = A,,0 H, o (R"F)*0 H; ' o A
where n > 0 and RF = F. The map R"F is also a Hénon-like map on the
domain B.

Suppose the Hénon-like map F' is an infinitely renormalizable map and let
R'F(x,y) = (fn(x) — en(z,y),z). Then |le,|| = O(£%") by the above Lemma.
Moreover, R"F' converges to the degenerate map F, = (f.(x),x) exponentially
fast as n — oo where f, is the fixed point of the renormalization operator of
the one dimensional map. The hyperbolicity of the analytic unimodal map is
proved in [Lyu]. The renormalization operator has the codimension one stable
manifold and one dimensional unstable manifold at the fixed point f.. The
uniform norm of the analytic operator bounds all of C" norm of the operator.
Then the exponential convergence to the one dimensional fixed point (f.(z),0)
of R™F and super-exponential decay of ¢, of the map R"F implies the vanish-
ing spectrum of DR, the derivative of renormalization operator. Hence, the
unstable manifold at the fixed point of the Hénon renormalization operator is
same as the unstable manifold of the renormalization operator of the unimodal
maps. See the Section 4 on [CLM].
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Chapter 4

Renormalization of the three
dimensional Hénon-like maps

Three dimensional perturbed Hénon-like maps are introduced as a small per-
turbation of two dimensional Hénon-like map.

4.1 Hénon-like maps in three dimension

Let Byy be the square region with the center origin and let this set tbe the
domain of two dimensional Hénon-like map. Let B be the box domain which
is a thickened domain of two dimensional Hénon-like map, that is, B = By X
[—c, c] for some ¢ > 0. The length of the sides parallel to z axis is called the
thickness or height of the domain B of the perturbed Hénon-like map in three
dimension. Let us define the perturbed Hénon-like map on three dimension as
the following with the cube B of which center is the origin. For simplicity, let
us assume that the thickness of B is same as the length of the sides parallel
to x or y axis.

F('Tvyvz> = (f(l’) - 5($7y7Z>7 Z, 5($7yvz>> (411)

where f: [* — I is a unimodal map.

Let us express the domain as B = [* x IV where [* is the line parallel to
z-axis and IV = IY x I* where IY and [* are lines parallel to y-axis and z-axis
respectively.

Remark 4.1.1. On the following section, some objects defined on the two di-
mensional space has the subscript 2d. For example, By, is the square domain of
the two dimensional Hénon-like map and F54 is the two dimensional Hénon-like
map defined on Byy. However, same notation without any index indicates the
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three dimensional object. For instance, F' and B are the perturbed Hénon-like
map in three dimension and its box domain.

The image of the plane, {x = C'} parallel to yz-plane under F' is contained
in {y = C} parallel to xz-plane.

Figure 4.1.1: Image of {x = const.} under the three dimensional Hénon-like
map

Let us assume that ||e]|cs < & and ||§] s < 6 with sufficiently small positive
numbers £ and 6. Assume that f is an infinitely renormalizable unimodal
map. Since the norm of the third coordinate of F' is sufficiently small, that
is, [|0]lcs < & < 1, F has only two fixed points like the two dimensional
Hénon-like map by the contraction mapping theorem. Let these two saddle
fixed points be 5y and [ which is close to the regular and saddle fixed points
of the two dimensional map m,, o F' respectively. Moreover, 3, and ; have
stable manifolds of codimension one and one dimensional unstable manifolds.
The orientation preserving perturbed Hénon-like map is called renormalizable
if W*(By) and W#(31) intersects in a single orbit of a point.

On the local stable manifold of 3, the distance of two points is defined as
the distance along the shortest path connecting two points. This distance is
close to the Euclidean distance on the domain B because of the Corollary
4.1.4 on the following. Let py be the intersection point in W*(5y) N W} .(51)
which is farthest from g, on W2 (51). Moreover, we define p; and py to be
the second and third farthest point from 5y in W*(/5y) N W .(51) on the local
stable manifold W () respectively. The points p,, are similarly defined for
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every n € N. If I is renormalizable, then p, is F™(py) because W .(5;) is
invariant under F' and furthermore we can define p, to be the forward or
backward image of py under F* that is, p, = F*(py) for each k € Z. Then
the intersection of the unstable manifold of 3, and the stable manifold of (3,
is the (full) orbit of pg, that is, W*(8y) N W*(51) = Orbz(po). In other words,
every local stable manifolds of py, W .(px) for all k € Z are components of
the stable manifolds of gy, W*(/3).

The topological properties of the renormalizable two dimensional Hénon-like
maps are well extended to the renormalizable perturbed Hénon-like map in
three dimension. Let By be the component of B\ W?*(/3) containing /31, which
is invariant under F'. Denote W (p_,) to be M_, for n > 0 and define M,
as the component of W*(/3;) in By such that M; does not have any point
of Orbz(py) and its forward image under F' is contained in M_;, namely,
F(M;) C M_;. Let each region in B between M, and M_, .1 be A, forn >0
and let the region in B on the right side of M; be A;. Then since W2 (51) is
(forward) invariant under F and it is the common boundary of the regions A_;
and Ag, we can see that F'(A_1) C Ay and F(Ay) C A_;. In particular, Ay is
invariant under F* and F*(Ag) contains a small neighborhood of [po, py]f, in
Ay and its boundary is disjoint from M; which is the component of W*(f)
on the right hand side of W _(8;). Thus denote D to be the region F'(A;),
which is invariant under F? in Ay. Then the following properties are same as
the two dimensional Hénon-like maps.

(1) My is invariant under F.

(2) F(M_-,) C M_,4, for each n > 0.

(3) F(M;) C M_.

(4) F(A_,) C A_,41 for each n > 0. In particular, F'(A_,) C Ay.

(5) Let the region on the right side of M; be A;. Then F(A;) C A_,.

(6) W*"(By) intersects W .(B1) at po, p1 and ps transversally.

Then the following lemma holds and the proof is similar to that of the two
dimensional Hénon-like map case.

Lemma 4.1.1. Let F' be the renormalizable three dimensional Hénon-like map.
Then By s the invariant under F and for every point w € By, there exist k € N
such that F*(w) € D.
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Proof. W#(y) is invariant under F' and every M_,, for some —n < —1 are com-
ponents of the stable manifold W#*(53;). Then we see that F""'(M_,) C M,
where —n < —2. Moreover, F(M;) C M_;. Furthermore, by the definition of
D, we see F(M_y) C 0D and F(M,) C 0D. Then we can take k = n where
—n < —1, k =1 where n = 0 and k = 2 where n = 1.

Now let us take a point w ¢ (J, ., M,. Then it is sufficient to show that

FF(w) € D for some k > 0. We may assume that w is contained in some
region A_, for some —n < 1 because each region A_,, is separated by M_,
and By is the union of M_, and A_,,. If w € A_,, where —n < —1, F" }(w)
is on A_;. Let us say w’ = F" !(w). Then by the definition of D, F(w') € D.
Moreover, if w € Ay then by the invariance of D under F?, F?*(w) € D. If
w € Aj, then F(w) € A_5. Hence, we can choose k = n where —n < —1,
k =2 where n = 0 and k = 3 where n = 1. O

Corollary 4.1.2. Let F' be the renormalizable three dimensional Hénon-like
map. Denote the region between two local stable manifolds My and My to be
Ag. Then F?(Ag) C D. In particular, any open neighbourhood of D in Ay is
invariant under F?.

Proof. Let us take any neighborhood of D in Ay, say D’. Then we get the
following inclusion order

F*(D)Cc F*(D')Cc F*(A4y)) C F(A,)=DcCD
Hence, F?(D') C D' O

As a result, any (thickened) domain D’ is invariant under F?. Then we
can choose arbitrary region D’ containing D as an invariant domain under F™.
Let us take an extended region as the domain such that m,,(D) compactly
contains Doy N Ag in Ay where the region Dy, is enclosed by curves, [po, pl]%l
and [po, pl]go. Denote this extended region to be also D to save the notation
on the following section.

Proposition 4.1.3. Let F(z,y,z) = (f(z) — e(z,y,2),7,0(z,y,2)) be a per-
turbed Hénon-like map with ||el|cr < € and ||0]|cx < & where both € and 0 are
sufficiently small positive numbers. Suppose that there are intervals U and
U' C I" such that f is injective on V' 2 U’ with

fU)oU

Then if there exists the map
n: 1" —U
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Figure 4.1.2: The local stable manifold of 8, W _.(f:1) and the unstable man-
ifold of 50, Wu(ﬁo)

such that ||[Dn| < Co(& + 0) for some constant Cy > 0, then the image of
n under F~' in B, namely, F~'(graph(n)) N (U" x 1°) is the graph of some
function &: 1Y — U’ with B

IDE|| < C(e+9)
for some constant C' > 0.

Proof. Firstly we show that there exists the unique x € U’ for each (y/,2) € 1"
such that F(z,y,2) = (n(y, 2'),y,2) € graph(n). Then

Pyz(7) = f(2) —e(2,y,2) =0z, (2,9, 2)) (4.1.2)

The injectivity of f on U" with small enough & implies that f(z)—e(x,y, z) has
the inverse function for every point (y, z) € IV. Moreover, 7 is the contraction
with the small norm ||¢||. Then

sron(z d(z,y,2): U = U

is a well-defined contraction. Thus contraction mapping theorem implies
unique existence of x for (4.1.2). Then F~!(graph(n)) N (U’ x 1) is the graph
of some function, say £. Secondly, consider the image of the graph of £ under

F.
(&, 2),y,2) = (x,y,2) = (Y, 2), 9, )
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Then the formula of the perturbed Hénon-like map implies the following.

77(?/7 Z,) = 77(% (S(LL’, Y, Z)) = f(l’) - E(LL’, Y, Z)

By the chain rule,
., Oe
D’f](y ) & ) = Df : Dg(y,Z) - a_ng(yu Z) - D&f‘]’u(y, Z)

2D¢ )
= Dn(&,6) -
(&, 9) < % D¢ + Dély.
an on (06

=280 De(y9)+ 5 (S De(v. )+ Dol

Hence, when we solve the above equation in terms of DE(y, z), we obtain that

o D€|I”(ya Z) + %D6|I”(y> Z)

= 2 o7 on oo
Df(z) — 5: — 25, — 525

D¢ (y, 2)

Therefore, | DE|| < C(2+9). O

By the above proposition, the function from I¥ to U’ C I" with the small
norm of derivative keeps its order under the (graph) transformation F~!. Next
we show that the local stable manifold W2 (f1) can be the graph of some
function from I° to I" by the standard graph transform technique.

Corollary 4.1.4. W; (81) is the graph of a function from 1" to I with the
norm bounded by C'(€ + 9) for some constant C > 0.

Proof. Since the f; is a fixed point of F', 7, () is away from the critical point
of f on I". Then we can take some neighbourhood B, (7, (51)) of the 7.(53;)
for some p > 0 such that |[Df(z)| > C > 1 with a uniform constant C' on
Bs(m,(51)). Denote that U = B, and V = B,,. Thus let us consider the
family of the functions as following.

G ={n: " = I" | n(m, (1), m.(B1)) = m=(Br), D]l < K(£46)}
Moreover, we may assume that
diam(n(1*)) < K (£ 4 6) - diam(1") < po

for some 0 < py < 1. Then for n € Gk, we have n(I") C U. Apply-
ing the Proposition 4.1.3 with small enough &, the connected component of
F~!(graph(n)) containing 3, in B is the graph of the some function 7'. If we
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take K > 0 large enough, then we have 1’ € Gx. Then we can define the graph
transformation 7 : Gx — G with

T:n—n

This transformation is defined globally on the graph of 1. Since the function
f is expanding on U and £+ 6 is small, this graph transformation contracts C°
distance on Gg. Hence the unique fixed point of T, say 7y is WS (1) € Gk
and it is the graph of the function in Gg. O

Let the function from I" to I™ whose graph is the local stable manifold be
(. Then by the Proposition 4.1.3 the norm ||D(|| < C'(£+40) for some C' > 0.

4.2 Hénon renormalization of maps in three
dimension

In this section we construct the renormalization operator of three dimensional
Hénon-like maps and the box domain of the conjugated map with the non
linear coordinate change. The region D which contains F'(A_;) is an invariant
domain under F2. But F? is not Hénon-like map because the image of the
plane, {x = C} in B under F? is not part of the plane, {y = C}. Then for
renormalization operator we need the non-linear coordinate change map. Let
us call this map the horizontal-like diffeomorphism H and it is defined as the
following.

H(z,y,z) = (f(z) —e(x,y,2), y, 2= 0(y. f(y),0)) (4.2.1)

Let the point in B be w = (x,y, z). For simplicity, we express the map H and
H~! on the following.

H(:L’,y, Z) (f(i(]) - 6(11)), Y, 2 — 5(y7 f_l(y>7 O))
H ' (z,y,2) = (67 (w), y, 2+ 8(y, [~ (), 0))

Then ¢~!(w) : B — R is an e— perturbation of the map f~!(z) in the three
dimensional space as if the map ¢(w) is an e— perturbation of f. Recall J,
the minimal invariant interval under f2 containing the critical point of f. Let
V' be a closed interval which contains the small neighborhood of every J. if
the given unimodal maps are f(z) — e(x, yo, 20) for every (yo, z9) € IV. Then
H o F? o H7! is a Hénon-like map on the domain V. Let U be the space of
unimodal maps on the set U and Hy be the set of perturbed Hénon-like map
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on the set U.

Proposition 4.2.1. Let H be the horizontal-like diffeomorphism defined on
(4.2.1) and let F = (f(z) — e(w), z, §(w)) is C* the Hénon-like map. Sup-
pose that ||e]|c2 < & and ||6||c2 < & with sufficiently small positive numbers &
and 6. Then there exists a unimodal map f; € Uy such that || fi — f|lv <
Cz and the map H o F? o H™' is a Hénon-like map (v,y,2) — (fi(z) —
e1(z,y, 2), =, 01(z,y, 2)) of the class Hy x1o with the norm, ||e1| = O(&* + &)
and ||61]] = O(&6 + 62).

Proof. Let us calculate ¢~}(w) — f~Y(x), eo Fo H™' and e o F? o H™! for
estimating ||e;]| and ||4;|| later. The fact that H o H '(w) = (z,y, z) implies
that fo ¢ ' (w) —eo H ' (w) = z. Moreover,

¢~ (w) = [z +eoH  (w))

I
)+ (f Y (x) - e o H ' (w) + higher order terms

Then we get
¢ (w) — fHx) = (f1)(x)-e o H ' (w) + higher order terms  (4.2.2)
Let v(z) = e(z, f~(x),0). Then vo f(x) = (f(z), z,0).
coFoH Y (w)

=e(z, ¢ (w),0 0 H H(w))
= ez, 71(2),0) + Dy, f(2),0) - (¢~ (w) — £ (x)) (4.2.3)

+ O.e(z, fH(2),0) - 6 o H Y (w) + h.o.t.
= v(w) + Oye(z, f7H(2),0) - (f71)(2) -0 H(w)
+0.2(z, f7H(2),0) - do HH(w) + h.o

Similarly, we estimate € o F'? o H~ 1.

coF?o H Yw)
=e(f(x) —eoFoH Y (w), z, 0 Fo H ' (w))
= e(f(@), z, 0) + Oue(f(x), 2, 0) -0 F o H™'(w)

+ 0.e(f(z), 2, 0)- 6o F o H Y (w) + h.o.t.
=vo f(z) + 0ue(f(x), w,0) - e 0 F o H}(w)

+ 0.e(f(z), 2, 0)- 6o F o H Y (w) + h.o.t.

(4.2.4)

By the straightforward calculation, we obtain the coordinate functions of H o
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2o H L.

(z,y,2)

(0~ (w), y, 2+ 6y, f71(y),0))

(z, o~ (w), 60 H(w))

(f(x) —eoFoH Yw), 2, 00 Fo H ' (w))
(

(z) —
F(() — e o Fo H ™ (w)) — e 0 F2o H (),
x, 6o FoH Y w)—d(x, f(x),0))

FlD ﬁ

Thus the first coordinate function of H o F? o H! is
f(f(x) —eoFoH Yw)) —coF?o H Y(w)
By (4.2.2), (4.2.3) and (4.2.4), we get the following estimation.
f(f(x)) —coFoH *(w)) —ecoF*o H '(w)

= f*(x) = f'(f(x)) - eo FoH '(w) — [e(f(x
+ 0pe(f(x), 2, 0) -0 Fo H *(w) + 0,e(f
+ h.o.t.

= f*(x) —vo f(a) = [f(f(2)) — ee(f(x), 2, 0)]v(x)
—[f'(f(x)) = Due(f(2), x, 0)] - [, (,f ), 0) - (f71) (@) e 0 HH(w)
0.e(n, £ (2),0) 00 H Y (w) | — 0.2(f(2), 2, 0) -8 0 F o H(w)

+ h.o.t.

, x, 0)

)
(ZL’), ,0)-5OFOH_1(1U)}

Then the unimodal map, fi(z) of the first component of H o F? o H~! is the
following.

F @) —vo f(z) = [f'(f(2)) — Owe(f(2), z, 0)] - v(x)

Thus || fi(z) — f*(2)]| = O([lell). Moreover, [|ex(w)]| = O([le]|* + [l la]] ).
Let us estimate the third coordinate of H o F? o H=!. Recall §;(w) = do F o
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H~(w) = 6(z, f~(x), 0).

§oFoH Yw)—6(z, fH(x),0
= §(z, ¢ H(w),0 0 H H(w
= ayé(x> f_l(x)> O) ’ (¢_
+h.o.t.

= 0,0(z, fH(x), 0)- (f 7)) (x) - e o H (w) + 8.6(x, f~(x), 0)- 50 H(w)
+ h.o.t.

S
S~—

I =
- B
,I_-&H\—/
= L
TE
L =2
=

B

—

L
&
=
[«%)

(@]

|

L
S

Then |16, is O([le]l 6] +1|3]1%)-
0

Define pre-renormalization of F as H o > o H~! and denote it to be PRF.
With the conjugation of the expanding map A(z,y, z) = (sz, sy, sz) for some
s < —1, we define the renormalization of the perturbed Hénon-like map F' in
three dimension and denote it to be RF'.

The domain of the renormalized map is also B, the domain of F'. To recover
the domain of the renormalized map, Dom(PRF’) must be the cube of which
center is the origin and the box Dom(PRF)) is invariant under PRF. Let us
take a closed interval as the small neighborhood of each intervals J. containing
the critical point of the map x — f(x) — e(x, yo, 20) where (yo, 29) € IV. Then
this interval can be extended to the symmetric interval at the 0. Let this
extended closed interval be V' and take the square in 7,,(B), say 248, such
that each sides are parallel to  and y axes and length of each side is same
as that of V', After that let us take H*(59Bp). Then this region is enclosed
two lines parallel to the x—axis and two curves, f(x) — e(x,y,0) = C; where
1 = 0,1. Furthermore, we can extend this region on the three dimensional
domain with the full height, namely, H~'(24By) x I* in B. Since the domain
of H is necessary to be invariant under 2, we modify the constants Cy and
C such that H~1(34By) x I? is the minimal invariant domain under F?. Then
the actual domain of PRF is the pillar with the rectangle base of which side’s
ratio is 1 : 1 4+ O(&). Let us slightly extend the short sides of the rectangular
base to be the square one with the origin as the center. Moreover, let us
restrict the height of this cube to make the cube with the same sides with the
origin as the center and call this cube Dom(PRF'). Afterwards, we define the
domain of the horizontal diffeomorphism H as H~!(Dom(PRF)) and denote
this region to be B!.

Let B! be F(B!). By the construction of Dom(PRF), A(Dom(PRF)) is the
original box domain B where A(x,y,2) = (sx, sy, sz) is a scaling map with
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s < —1. Thus we express the domain Dom(PRF) to be A~*(B). Then the
map H~! from A~!(B) to B! preserves the planes parallel to zz—plane and
the map FoH~! from A~1(B) to B! preserves the planes parallel to yz—plane.

H ' A Y (B) — B, (2,y,2) = (67 (2,y,2), y, 2+ 0y, f(y),0))
FOH_l . A_l(B) — Bcl, (:L”,y,Z) = (ZL’, gb_l(!lf,y,Z), 5OH_1(w))

Since the H~! is the horizontal map and F'o H~! is the vertical map, m,(B})
and 7, (B}) are disjoint from 7, (B!) and 7,(B!) respectively.

Definition 4.2.1 (Renormalization). Let V' be the (minimal) closed subinter-
val of I such that V x IV is invariant under H o F?o H ' and let s: V — I be
the orientation reversing affine rescaling. With the rescaling map A(z, vy, z) =

(sx, sy, sz), The renormalization of the three dimensional Hénon-like map is
defined as Ao H o F?0 H ' o A~! on the domain B = I* x I".

RF=AoHoF?ocH 'oA™!

If RF is also renormalizable, we can define the second renormalization of F
as the renormalization of RF. Then if F' is n times renormalizable, then the

n'" renormalization is defined successively.

R'F =M\, 10H, 0(R"'F)?oH,' oA,
where R"~'F is the (n — 1)th renormalization of F for n > 1.

Let U; be the set of the unimodal maps on the interval J and Hp is the
set of the perturbed Hénon-like maps on the domain B. Let us assume that
the unimodal map on the interval J C I* can be extended on I*. Then there
exists a natural inclusion from U; to Hp.

7 UJ — HB
flz) = (f(x), 2, 0)

Thus the degenerate maps can be treated as the one dimensional maps in the
space of the perturbed Hénon-like maps. The renormalized map R.f of the
unimodal map f is defined as so f2os™!(z) for some s < —1. Let the perturbed
Hénon-like map such that ¢ = 0 and § = 0 be the degenerate map F,, that
is, Fy : (z,y,2) — (f(x),z,0). The corresponding horizontal diffeomorphism
is the map H, : (z,y,2) — (f(z),y,z). Since the renormalization operator is
defined on the non-diffeomorphic Hénon-like map, the renormalized map RF,

(4.2.5)
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is the following by the direct calculation.

RF,(w) = Ao (f*(x), z, 0) o A}

= (so ffos'(x), z,0) (4.2.6)

Hence, the renormalization operator of the perturbed Hénon-like maps is an
extension of the operator of the unimodal maps. Moreover, Proposition 4.2.1
implies that the unimodal map f; of RF' = (f; —&1, x, d1) is an € perturbation
of R.f, that is,

Ifi = Refl| < Cllel| < Ce

for some C' > 0.

Let the N* renormalized map of F' be RNF = (fy —en, x, 6y) for N > 1.
Using the induction with the Proposition 4.2.1, we have

72N71

|fv — Refn-ill < Cllen-a]] < Ce

for some C' > 0 depending on f and the domain B. The perturbation de-
creases super exponentially fast as N — oo. Then the renormalized Hénon-
like map, RN E converges to the fixed point of the renormalization operator,
F, = (f«(x), x, 0) exponentially fast.

Lemma 4.2.2. Let F is infinitely renormalizable Hénon-like map with suf-
ficiently small ||| < & and ||0|| < §. Then for all big enough n > 1, R"F
converge to the degenerate map F, = (f.«(x),z,0) exponentially fast asn — oo.

Proof. Let the degenerate map be Fy, = (fn, , 0) where RNF = (fy —
en, ¥, O0y) and let Frpy; = (RY f, x, 0) where RY f is the N renormalized
map of f for N > 1. Then for big enough N, we get the following estimation.
|RYF = Bl < |[RYF = Fyll + [ Fpy, — Faysll + | Frry — F|
= lew. 0, 8]l + llfw — BY A+ 1BY F — £
— 9N

< Co(E+3)" + v — RYfIl + Copo
for some Cy, Cy > 0 and 0 < pg < 1. From the theory of the renormalization
of the unimodal maps, RY*f converges to f, exponentilly fast as k — oo for

sufficiently large N. Using the adapted metric in [PS], we can take N = 1.
Then for every n > 1, we obtain

IR"F — F|| < Cy(+08)" + || fn — B2 F|l + Copl

for some Cy, C7; > 0 and 0 < pg < 1.
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Moreover,

an - R?f“ < an - Rcfn—IH + HRCfn—l - Rgfn—2|| + ||szn—2 - Ri)fn—fiH +--
+ ||R£n_1fn—m+1 - R?.fn—m” + ||R2n.fn—m - R?+lfn—m—1|| 4
+[|R A= RS

For sufficiently large m and n — m, by Lemma 8 in [dMP] on the space of the
quadratic-like maps we have Cy distance contraction and by the Main Theorem
on [AMdM] we obtain the C" contractions, r > 3 .!

HR?fn—m - Rzﬂ_lfn—m—ln +oeeet HR?_lfl - R?f” < Cupy, ™ 4+ Cupy,
(4.2.7)

for some 0 < C; = O(Ezi) and 0 < p; < 1 where i = m,m +1,...,n. The
numbers C;s and p; are independent of n. Thus the sum (4.2.7) is bounded
above by C1p!™™ for some C; > 0 and 0 < p; < 1. Moreover, by the direct
calculations of each terms we obtain

an - Rcfn—ln + ||R0fn—l - szn—2|| +eee HR?_lfn—m—i-l - Rznfn—mH

<C& T+ @ 0m, 2T
(4.2.8)

for some 0 < C;, i =n —m,...,n. For sufficiently big n —m, the sum (4.2.8)
is O(E2"") for &g < &. Then || f,, — R f|| < Cip}™™ +O(£2"™). Hence,

|R"F — F,|| < Cy(e + 5)2" + Cipt 4+ 0ET) + Coplt < Cp"

for some C' > 0 and 0 < p < 1. Therefore, R"F' converges to F, exponentially
fast. O

In the following sections, we suppress the bound of small norms of € and 0 to
be &, that is, we denote & = max{&,d}.

4.3 Hyperbolicity of renormalization operator

The hyperbolicity of the renormalization operator at its fixed point was proved
by M. Lyubich in [Lyu] using quadratic-like maps. This theory was for the one

!The theorems of on [dMP] and [AMdM] assumed that the maps are infinitely renormal-
izable with bounded combinotorics. On the [AMdM], the infinitely renormalized unimodal
maps f and g has the same bounded type. We assume that every renormalizable functions
has the type of periodic doubling on this article. This fixed and bounded single combino-
torics is much simpler than the actual hypothesis on [dMP] or [AMdM].
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dimensional complex analytic mappings. This hyperbolicity extended to the
renormalization operator of C” maps on the interval where r = 3 + « if « is
close to one by de Faria, de Melo and Pinto in [dFdMP]. However, the renor-
malization operator of C" maps is not differentiable. Thus the linear operator
at the fixed point for hyperbolicity should be established. The contraction or
repulsion along the stable and unstable manifold should be considered in the
much bigger space than the space of the analytic maps.

We assume that every perturbed Hénon-like maps are analytic. In the [Lyu],
Lyubich proved that the renormalization operator at the fixed point has the
one dimensional unstable manifold and codimension one stable manifold on
the complex sense. By Theorem 2.4 and Theorem 3.9 in [dFdAMP], the renor-
malization of the real analytic map also has the one dimensional unstable
manifold and codimension one stable manifold. The renormalization operator
R of analytic maps has its derivative and the uniform norm bounds the norm
of the derivative of the analytic operator.?

The renormalization operator of the degenerate maps is embedded under the
natural inclusion from the renormalization operator of the one dimensional
maps in the space of renormalizable Hénon-like map. Moreover, since this
embedded operator is a closed subset of the renormalization of the Hénon-like
maps, the quotient space Zp(&)/Z; is defined with the quotient norm where /*
is the interval as the invariant domain of the renormalizable unimodal maps.
Then the super exponential convergence of || €,| and || d,| to the zero as
n — oo by Proposition 4.2.1 implies the hyperbolicity of the renormalization
operator of the perturbed Hénon-like maps.

Lemma 4.3.1. The degenerate map F, is the hyperbolic fixed point of the
renormalization operator R of the perturbed Hénon-like maps. The derivative
of the operator at F,, DR(F,) acting on the quotient space TZg(g)/TZ= has
vanishing spectrum.

Proof. Let A = TZp(¢)/TZr. The analytic operator DR(F.) has the norm,
IDR(F,)|| = O((¢ + 6)*") by Proposition 4.2.1. O

Then the vanishing spectrum says that the stable manifold in Zp(¢) at
the fixed point F,, say W?*(F,) is the extension of the stable manifold at f,,
W?(f.) of the unimodal renormalizable maps with the strong stable directions.
The unstable manifold is not extended and it is a one dimensional analytic
manifold on the space Zg(€). Furthermore, the faster convergence than any
exponential convergence of €,, and d,, keeps the hyperbolicity at the fixed point
F,.

2M. Lyubich pointed out the uniform norm bounds the norm of all derivatives of the
analytic operator.
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Corollary 4.3.2. At the fized point of the renormalization, F,, it has one di-
mensional unstable manifold, W*(F,) which intersects transversally the stable
manifold, W*(F})
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Chapter 5

Critical Cantor set

The minimal attracting set for two dimensional infinitely renormalizable Hénon-
like maps is the Cantor set which is the dyadic adding machine. The topolog-
ical construction of the invariant Cantor set of three dimensional Hénon-like
map is exactly same as that for two-dimensional Hénon-like map (Corollary
5.2.3 below). Thus we use the same definition and notions of the two dimen-
sional case in this section. The definitions and notions of the three dimensional
Hénon-like maps are basically identical with the two-dimensional case. See
[CLM].

5.1 Branches

Let U! = ! := H~1oA~! be the coordinate change map which conjugates F?
to RF on ¥!(B) which is invariant under F?, and let U! = ! := Fo4,. The
subscript v and ¢ are associated to the maps with the critical value and the
critical point respectively. Similarly, let ©? and ? be the coordinate change
maps conjugating RE to R*F. Let

2 1 2 2 1 2 2 1 2
\Ilvv:wvowv’ \Ilcv:wcowv’ \Dvc:wvoqvbc""

Moreover, let us define the coordinate change map of the n'* level for any
n € N as following.

\Dazwilm-@qﬁgn, w = (wy,...,w,) € {v,c}"

where w = (wq,...,w,) is the word of length n such that the element v and
¢ without any relation. Each element of w is either v or ¢ and W™ = {v, ¢}"
is the n-fold Cartesian product of {v, c}.
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Lemma 5.1.1. Let F' € Ig(&) for n > 1. There exist C > 0 and a domain
depending only on B and &, on which the derivative of the map V3 is expo-

nentially shrinking for n € N with o, that is, | DVL| < Co™ for every words
we W

Proof. Recall ¢~ !(x,vy, z) is the first coordinate function of H~*.!
H ' (2,y,2) = (07" (2,9,2), ¥, 2+ 6y, [ (),0))

Moreover, the equation, H ! o H = id implies that ¢! o H(z,y, 2) = z, that
is,

o (f(x) —elw,y,2), y, 2 =0y, [ (y),0)) =z
and then

Dot , e\
ox <f(x)—%) =1

8¢—1 agb—l e a¢—1 d » -
dp~t  0p7! e\
0z * or <_&) =0

Moreover, for sufficiently small & the perturbation of the one-dimensional map
¢, () is a contraction on the neighbourhood on J in I. Then [[0¢~" /x|
is bounded away from 1 on the J x IV and ||0¢~'/0y| and ||0¢~'/0z]| are
comparable with ||0c/0y + 0/0z - dd/dy|| and ||0e/0z|| respectively. Since
the partial derivatives ¢! over both y and z are small, the coordinate change
maps, ¥l = H ' o A7 and ¢! = Fo H™' o A™!, are contracting faster than
or equal to A~! by the factor o(1+ O(dist(F, F,))). Furthermore, the norm of
the maps ¥ is o(1 4+ O(p™)) for some p € (0,1) for each n € N because R"F
converges to F, to exponentially fast. Therefore, the composition W7, of these
maps are contracting by the number O(c"). O

IThe first coordinate map of H~!(w), ¢~ (z,vy, 2) is not the inverse function of the some
function ¢(w). However, ¢~ !(w) is a perturbation of f~*(x). More precisely,

foo (w) —co H ' (w) = a
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5.2 Pieces

Define B! = BL(F) as ¢} (B) and B! = BL(F) as F o} (B) like the definition
on the Section 4.2. Then F(B!) C B!. If the Hénon-like map F is n times
renormalizable, we can define B!(R"F) and B!(R"F) as ¥""(B) and F, o
" 1(B) respectively for each n > 1. Furthermore, the piece Bl(F,) is a part
of the parabolic-like curve of # = f.(y) and Bl(F,) is the rectangular box
which contains rectangular domain of the two dimensional Hénon-like map on
it’s interior.

Let us call the set B? = B2 (F) = ¥"(B) the pieces of the n'" level or n'
generation where w € W". For each n, the number of pieces are 2". Moreover,
W™ can be a additive group under the following correspondence from W to
the numbers with base 2 of mod 2".

n—1
W Z Wy 12" (mod 2™)
k=0

where the symbols v and ¢ are corresponding to 0 and 1 respectively. Let
P: W™ — W™ be the operation of adding 1 in this group. The following
lemma comes from Lemma 5.3 in [CLM].

Lemma 5.2.1. (1) The pieces for the above maps are nested :

B C Bt weW"!l veW.

(2) The pieces By, w € W are pairwise disjoint.

W

(3) Under F, the pieces are permuted as following. F(By) = B, unless
P(w) =" If P(w) =", then F(B) C B

/U’!L .

I
I
N 1 R
d » 1 1 £ 2 o o o
v‘ Q:bv i ] v
AL ! e

____________________

Figure 5.2.1: Coordinate change ;' around the tip at each level
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Then the following diagram is commutative.

R'F
B B
L L
F
v (B) v (B)

Furthermore, Lemma 5.1.1 implies the following corollary.

Corollary 5.2.2. The diameter of each piece shrinks exponentially fast for
each n > 1, that is, diam(BL) < Co™ for all w € W™ where the constant
C > 0 depend only on B and &.

Define the invariant set of the infinitely renormalizable perturbed Hénon-like
map F as follows.

O=0p= ﬁ U B
n=1weWn

Then O is the invariant Cantor set under F'. Since each W of B, is a diffeo-
morphism on its image, passing the limit with the result of Lemma 5.2.1 we
can show that the constructed Cantor set is invariant under F'.

Let us consider the inverse limit of W, W =lim W". The elements of this
(_
set are the infinite sequences (wqws . ..) of symbols. This space is the set for-

mal power series of numbers with base 2 when v and ¢ corresponds to 0 and 1
respectively.

[ee]
W — E 'U,]k_;,.le
k=0

Then W is the dyadic group and it is also a Cantor set with the topology
induced by the following metric.

o0
o bl
1=0 22

where v = (v10905 .. .) and w = (wjwqws . . .). For detailed construction of the
dyadic group as a Cantor set, see [BBJ.
The adding machine P: W — W is the operation of adding 1 in this
group. The non negative integers with base 2 are embedded as the set of finite
numbers in this dyadic group. Moreover, F' acts on the critical Cantor set like
the adding machine of the dyadic group.
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Corollary 5.2.3. The map F|o is topologically conjugate to the adding ma-
chine P: W — W®. The conjugacy is the following homeomorphism
h: W — O.

wee W

h:w=(wjw;y...)— mBZI
n=1

Furthermore, there exists the unique invariant probability measure p whose
support is the Cantor set O.

Proof. Consider the following diagram.

WOO > WOO

h h

F
(@)

O

Take a word w € W. Let w; = (wjwews...w;) be the first consecutive i
concatenations of the word w = (wjwaws...). Then by the Lemma 5.2.1,
F(Bi ) = Bi\ | if w; # v". Otherwise, F(BY, ) C B\ ,. Each domain B,
shrinks to a point of O when ¢ — co. Then passing the limit

P12 -,
i=1 i=1
It means F'(h(w)) = h(w+1). Then the above diagram is commutative. If two
words v and w have the different i letter but not before, then B, and By,
are disjoint from each other. Moreover, every point of O has its word and two
different points of O have the different words by construction of the critical
Cantor set. Hence, h is the bijection. The metric of the dyadic group implies
the (uniform) continuity of . Furthermore, the same topological structure and
continuous bijection implies that h is a homeomorphism between two compact
spaces. U

Remark 5.2.1. The formal power series of the numbers with base 2 comes
from the combinatorics of the renormalization. If the combinatorics of the
renormalization is not period doubling but constant p-tupling, then we can
construct the p-adic additive group of the numbers with base p using the
same notions. Compare [Haz| for the p-tupling renormalization of the two
dimensional Hénon-like map.

We will call the set O constructed above the critical Cantor set of F.
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5.3 Periodic points and the critical Cantor set

There exists a one-to-one correspondence h between the critical Cantor set and
the set of one sided infinite sequences of dyadic numbers by Corollary 5.2.3.
Thus for every w € O, the unique sequence w € W such that h(w) = w.
This corresponding word w to the point w € O is called the address of w. The
subscript w,, of the domain B}, = VI (B) is called the address of the box
domain and the length of the address is called the depth of the box. Similarly,
we can define the address w,, of the coordinate change map Wy, . In this case,
the length of the address is called the level of the coordinate change map.

Let us take a word, w = (wj wyws...w,...) as an address. The word of the
first n concatenations, w,, = (w; wyws...w,) is defined as the subaddress of
the word w.

Proposition 5.3.1. Let F be the infinitely renormalizable Hénon-like map,
namely F' € Zg(€). Then the boxr domain Bka contains the two periodic points
with the period 2F for each k € N. Furthermore, Bka contains 2" periodic
points with the period 2" for every n € N.

Proof. The images of the fixed points on the box domain B(R*F') under \If’ij
for each wy, are the periodic points in the boxes Bka € B which are mutually
disjoint. Then vak with the fixed address wy contains two periodic points
with the period 2. Similarly, each box domain By, contains two periodic
points with the period 2". However, the box of depth k£ and the depth n is
defined as Bi, = Wk (B(R'F)) and By, = Wk (Ve-* (B(RFF))) for every
n > k and k € N. Hence, each Bka contains the mutually disjoint 2"~* boxes
By, ~where the address wy is the common subaddress of every addresses w,,
and k is the maximal length of the all common subaddresses of w,,. O

Let the image of the fixed point 3;(R*F) under \Ifﬁk be [y, the periodic point
under I of which period is 2¥. Then all periodic points with the period 2*
are contained in the orbit, Orb(f, F) for every k € N. Then we can let the
address of 3, be v"*! which is the sequence of 0s of length n + 1. Recall v
is defined to be act as 0 on the sequence of dyadic numbers on the proof of
Corollary 5.2.2. WX, (5;(R*F)) for i = 0,1 are the periodic points with minimal
period in the box domain W¥,. Moreover, the address of the periodic points
of the minimal period, U¥, (8;(R*F)) for i = 0,1 on each box domain defined
as follows.

w,v = (wywews...w,v) wherei=1

w,c= (wywaws... w,c) wherei=>0
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Then there is a bijection between every word with the finite length in |J,.., W*
and the set of periodic points, Perp, that is, the set | J, -, W* has the addresses

of the every periodic points and each periodic points has the distinguishable
address in [ J~, W*.

Lemma 5.3.2. Let F' be the infinitely renormalizable Hénon-like map, that
is, F' € ITp(&) with sufficiently small positive . Then the set of accumulation
points of periodic points of F' is Op. In other words, Perp = Perp U OF.

Proof. F has 2%! periodic points with the period 2% for every & € N_. Thus
if the sequence of the periodic points has the bounded maximal period, then it
is a finite sequence. Since any point of the finite sequence is an isolated point,
it has no accumulation point. Let us take any infinite sequence of periodic
points whose period is unbounded. Every periodic points in the sequence has
the address w,v or w,c for some n € N. Select the single box domain on
the depth one, B} or B! which contains the infinitely many periodic points.
This selected box domain contains two box domains of the depth two. After
repeating this process, we can find a sequence of the addresses {w,, |k € N}
such that each address w,, is the subaddress of w,,, where n, — oo as
k — oco. Then the limit point w has the address of the word w whose length
is infinity and w € Op. Then O contains the set of accumulation points. For
the reverse inclusion, it suffice to show that for each w € Op there exists a
sequence of the periodic points converging to w. By the construction of Op,
there exist the sequence of the box domain which converges to w. Each box
domain Bj, contains the periodic points such that the common subadress with
maximal length of every periodic points is w;. Hence, the set of accumulation
points of Perp contains Op.

In the conclusion, we see
Perr UOFr C Perp

Furthermore, since every periodic points in Pery is isolated, we obtain

PerFUOF = P—erF
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Chapter 6

Average Jacobian

Let us consider the average Jacobian of the infinitely renormalizable map F
and show that the biggest Lyapunov exponent is 0 on Theorem 6.0.5.

Let the Jacobian determinant of F' at w be Jac F'(w).

Jac F(y)

— < fi B
Jac F(2) < C forany y,z¢€

log

by some constant C' which is not depending on y or z. Moreover, Lemma
5.1.1 says the diameter of the domain B]}, converges to zero exponentially fast.
Then this implies the following lemma.

Lemma 6.0.3 (Distortion Lemma). There exist a constant C' and the positive
number p < 1 satisfying the following estimate.

Jac F*(y)

og m < Cp" forany y,z € By,

where k =1,2,22,...,2"

Existence of the unique invariant probability measure, say u, on Op enable us
to define the average Jacobian.

bFEb:exp/ log Jac F' dp
OF

On each level n, the measure ;1 on Op satisfies that u(Bj, N Op) = 1/2" for
every w, where w,, is a word of length n.

Corollary 6.0.4. For any piece of Bj, on the level n and any point w € B,

Jac F?"(w) = b*" (1 + O(p™))
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where b is the average Jacobian of F' for some positive p < 1.

J

there exists a point n € B? such that log Jac F?"(n) = B =2"logb
pABS,

For any w € B2, log Jac F?'(z) < Cp" + log Jac F'*'(n), and O(p") = log(1 +

O(p™)) for a fixed constant p. Then

Proof. Since

log Jac 2" dp = / log Jac F' dp = log b,
o

n
w

log Jac F*" (w) = log(1 + O(p™)) + log Jac F*" ()
= log(1+O(p")) - v*"
Therefore Jac F?" (w) = b*" (1 + O(p))

O

Three Lyapunov exponents g, x1 and ys exist for the three dimensional map.
Let xo be the maximal one. Since F'is ergodic with respect to the invariant
finite measure p on the critical Cantor set, we get the following inequality.

] x(x) < /O log | DF(2)|| dpu(z)

where | | is the total mass of y on Op.
Theorem 6.0.5. The mazimal Lyapunov exponent of F' on Of s 0.

Proof. Let pi,, be 2" pn, an invariant measure under F 2" and let v, be the
(unique) invariant measure on R"F|o,, .. Then

2"xo(F,p) = XO(F2n B;Lnalun) = xo(R"F,v,) < / log || D(R"F)| dv, < C

B

n
w

for every n € N, where C' is a constant independent of n. The last inequality
comes from the uniformly bounded C*! norm of derivative of R"F. Then the
maximal Lyapunov exponent xo < 0. If xo < 0, then the support of ;1 contains
some periodic cycles by Pesin’s theory. But O does not contain any periodic
cycle because F' acts on Op as a dyadic adding machine. Therefore, xo = 0
and the sum of the other exponents, y; + Y2, is logb. O
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Chapter 7

Universality around the tip

The universality of average Jacobian comes from the asymptotic behavior of
the coordinate change U" between renormalized map F,, = R"F and F?" for
each n € N. U2 conjugate F?" to F),. Thus using the chain rule and Corollary
6.0.4, Jac F}, is the product of the average Jacobian of F'?" and the ratio of the
Jac ¥y at w and F,(w).

Jac Vg (w)
Jac Ui (F,(w))

(1+0(")).

Jac F,(w) = Jac F*" (U (w))

0.1
_on Jac ¥ (w) (7.0.1)

Jac ¥ (F,(w))

where Wy is U7,.
Then on Theorem 7.5.1 below, we see that the universality of the Jacobian
of the coordinate change map W{ implies the universality of Jac F,,. The

asymptotic expression of non-linear part of U{ is essential to the universality
of Jac Ug.

7.1 Asymptotic of U} for fixed k" level

For every infinitely renormalizable Hénon-like map F', we have a well defined
tip:

{1} ={m} =) B (7.1.1)

n>0

where the pieces B, are defined in the previous sections. Let us denote the
tip of the renormalizations, 7, = 7(RFF) for each k € N. In order to simplify
the notation, we would let the tip move to the origin as a fixed point of each
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UL(RFF) for every k € N by conjugation of the appropriate translations. Let
us define Wit

Uy, = Uit = UL(RFF) (w + 71) — Tk (7.1.2)

Let the derivative of the map defined Wy on (7.1.2) at 0 be D), = Dyt
Dyt = Dy = DUTH(0) = D(T, (R F))(741)
= D(Ty 0 Wy(R*F) 0 T, )(0)

where T}, : w +— w—7y, for each k. Then we can decompose D), into the matrix

of which diagonal entries are 1s and the diagonal matrix.

1 tk UL (093 (093 tkO'k ULO
d, 1 Ok dpoy oy

Moreover, we can express \Ifﬁ“ with the linear and non-linear parts.
Ut = Wy (w) = Dy o (id +sp,) (w) (7.1.4)
where w = (z,y, 2) and si(w) = (sr(w), 0, 7(y)) = O(|w|?) near the origin.

Comparing the derivative of H 1o A~ at 0 and Dj, and (5.2.2), we obtain the
following estimates

te = Oy (Tip1) = 0uy (Ti) - Dyen(Th) + 0oy (Ths) -y, = O()
up = 0.0 (Te41) = Oudy (Th1) - Dezi(mi) = O(E)

d
and  dj = & 0 (my(Ths1), fi ' (my (751)), 0) = O(E™)

(7.1.5)
where ¢, (w) = m, o H; '(w). Furthermore, o}, = —o (1 + O(p")) and oy, =
o? (1 + O(pk)) for some p € (0,1) because d,¢, ' exponentially converges to o
uniformly as k& — oo.

Lemma 7.1.1. Let s be the function defined on (7.1.4). For each k € N

(1) [Besi| = O(1), [Oysil = O(E), |05 =O0()
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(2) |92kl = O(1), |yl = O(E™), | 03,s] = O(E”)

(3) 105,51l =O(E), |8l = 0(E™), || = O()
(@) Iy =0E"),  |rpl=0E"),  Iriyl=0(E")

Proof. ¥y, has the two expressions, Dy, o (id +s)(w) and T}, 0 H_ ' o Ay o Tk_-i-ll'
That is,

U, = Dy o (id +5;) (w)
=T,oH, "o Npo T = H "o Ap(w+ Tiy1) — T

In order to obtain the asymptotic behavior of the non-linear part of Wy, we
need to compare the third and the first coordinates of these two expressions
of Wy. Let 7, = (7, ¢, 7¢) for each k > 1.
Let us compare the third coordinates of these two expression of W,.
or(dpy + 2z + 1:(y)) = 7, (Hk_1 o Ap(w + Tpy1) — Tk)
= ox(z + Tip) T 0(on(y +70), fHowly +740)), 0)
— 1

Thus we have the following equation.

orre(y) = —oxdiy + 6 (on(y +71.0), [ oy +720)), 0) + 0wty — 7
Then | r(y)| < C(|dwy| + ||6]|co) for some C' > 0. The domain is bounded
and ||6]| is O(€%"). Hence, |r(y)| = O(£%"). Moreover,

d
re(y) = —di + & 0(on(y +7ir), £ ow(y + 74), 0)

Then | r}(y)| = O(2"). The second derivative | 7} (y)| is also controlled by
16]lc=. Then | {(y)| = O(").

Comparison of first coordinates implies the following.

o + agsk(w) + optry + o (upz + ri(y)) = gb,;l(akw + okTer1) — T (Th)-
(7.1.6)

It implies the following equations.
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Sk, = O'kam(b];l — oy
Oysi, = 0,0y " — oyt — ot (y) (7.1.7)
O.sx = 00,0, " — opuy
The norm of &, and ¢ is uniformly bounded above on the domain B(Fy).
Then by the equations (5.1.1), | 8,0, '] = O(1), | 0% 9,0, "] = O(Ezk) and
| ox 0.0, = O(éQk). Moreover, by (7.1.5) t, and wuy is O(§2k). Hence,
|0,si] = O(1), |9,s] =O0(E*) and |d.54] = O(2%).
By the above equation (7.1.7), each second partial derivatives of s, are com-

parable with the second partial derivatives of ¢~! over the same variables be-
cause |r}(y)| = O(§2k). When calculating each partial derivatives, we obtain

the bounds of each second partial derivatives of ¢! is O(ézk). For example,
the second equation of (5.1.1)

d

¢, + 05 (—ey) + oot (—d—y 3(y, f—l(y),o)) -

implies that
d
Oy T Ory - (—E) F 07 (—eyy) + 2y - (—d—y 5y, [ (), o>)

+o (—j—yz 3y, f‘l(y),O)) =0

Then C? norms of € and d, each bounds of first and second partial derivatives
of ¢~ except ¢! itself imply that the bounds of || is O(%"). O

7.2 The estimation of non linear part S} from
level k£ to the fixed level n

We consider the behavior of the coordinate change map from kth level to nth
level. Let
Uy =W,o---o0W, 4, B=ImV}

By Lemma 5.1.1,

diam(B}") = O(c"%) for k<n
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Then combining Lemma 5.1.1 and Lemma 7.1.1, we have the following corol-
lary.

Corollary 7.2.1. For each w € B} where k < n, we have
|0ps1(w)| = O(c™ %) | Oysi(w)| = O(ézka"_k) |0, sp(w)| = O(ézkan_k)
) =0 0™™*)  [riy)l =0 o)

Since the origin is the fixed point of each ¥; and D, is U,;(0) for every k <
j < n, we can let the derivative of W}! at the origin be the composition of
consecutive D;s for k <i<n —1.

DZL:DkODk+lO~-~ODn_1

We can decompose D}’ to two matrices, the matrix whose diagonal entries are
ones and the diagonal matrix.

Lemma 7.2.2. The derivative of U} at the origin, D} is decomposed the sheer
and scaling parts as follows.

1 tn,k Unp, & Qn k
DZ - 1 On,k
dn k 1 On,k

)

Moreover, oy, 1, = (62)" k(1 +0(p*)) and 0,1 = (=) *(1+O(p*)) for some
p € (0,1). Each t, i, un and d,  are comparable with the tyi1 k, Ukt1,k
and dy1,1 respectively and converges to the numbers t, i, w. i and d,  super
exponentially fast as n — oco.

Proof. Using the definition of each derivatives of ¥, on (7.1.3) at the fixed
point zero, we obtain the following.

n—1 Qy tj 0; Uj; 04

n—1
DZ = H Dj = H ag;
j=k

i=k dj 0j 0j
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By the straightforward calculation,

n—1
Haj Tn,k Un,k
J=k
n—1
O'.
Dl = 1 (7.2.1)
Jj=k
n—1 n—1 n—1
oY di ]
j=k ji=k Jj=k
where
Unk = OkOki10kq2 " Op_g Op_1 U
+ Q) Okt1 Ok42 " " Op—2 Op—1 Uk+1
T O Q1 Ok42 " Op—2 Op—1 U42
+ Qg1 Opgy2 - Op—20p-1Up—1
Tn,k
= 04 0k410k42  On—20n-1 | U (g1 + diga + dipys + -+ - + dnm1) + B
O Ot Oz O O | g ( dj2 + dipss + -+ -+ dp_1) + by |
O Qg1 Oy 2 Oy | Upan ( A+ -+ dn1) + tgo |

T O Qg1 Q2" Q2 O [un—l + tn—1:|
Then we have the followings.

n—1

7ui = [[ 01 = [T(-0)(1 + 0W) = (-0 (1 + O(s)
=k ek (7.2.2)

e = [J o5 = [[ 021 + O)) = o™ (1 + O(p1)
=k =k

By the definition of d,, , and (7.2.2), each components of the sheer part and
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the scaling part are separated.

n—1
dn k=Y _d;
j=k

n—1
Uy = Z(—U)j_ku]' (14 0(p")) (7.2.3)
=k
n—1 ' n—2
tok =3 (0P ;Y dipy + wass + 15| (1+O(6Y))
j=k i=j

Since d; = O(§2j), u; = O(§2j) and t; = O(ézj) for each j € N, each terms
of the series in (7.2.3) shrinks super exponentially fast. Then the sum d, j,
Un, ) and t,, j are comparable with first terms of each series. Moreover, d,, i,
Uy, and %, , converges to some numbers d, j, u,  and ¢, ; as n — oo super
exponentially fast respectively. O

After reshuffling of ¥} we can factor out D} from the map Wj. Then we have
w = Dy o (id+Sy) (7.2.4)

where S = (S?(w), 0, R}(y)) = O(Jw|?) near the origin. When we calculate

-1

directly the composition from H, ' o A;' to H, ' o At

1y, the second coordinate of the point.

R} depends only on

Proposition 7.2.3. The third coordinate of S}, R} (y) has the following
asymptotic.

IRy =0(), [(RY|=0(E0"") and |(RY'| =0 (0*)" )
for all k <n.

Proof. The proof comes from the recursive formula between each partial deriva-
tives of S}' and S}, ;. So before proving this lemma we need some intermediate
calculations. For a point w = (x,y, 2) € B, let

T
wig = | vk | = Vi (w) € BL(RMF)

n
Rk41
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By (7.2.4), we have

n
Ty Qn k+1 Onk+1 bnjk+1 On k1 * Un kt1 T+ k+1(w)
y/?+1 = On, k+1 Y
n mn
Zpi1 On k1" Ao k41 On k1 z+ Rk+1(y)

Then each coordinate of wj ; are

SCZH = Qp, k1 (2 + SI?H(U))) + O kt1tn, k+1 ° Y + On, kt1Un, k1(2 + RZ+1(?J))
Yps1 = On k1 - Y

21l = Op o1 Oy g1 - Y + On, k1 (2 + RZ+1(?J))
(7.2.5)

Moreover, for any fixed n > k the recursive formula for £ is

Dy o (id+8y) = Vi = W, 0o U} | = Dy o (id+sp) o Ui,
=D} o (id+8},,) + Drosgo U, (7.2.6)
Thus  Vi(w) = Dy o (id+Sj 1) (w) + Dy o si(wy )

and note that

Qo UuRog sp(wp, )
Dy o sp(wyyq) = O 0
dror o Tk (Y1)
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Moreover, the first partial derivatives of each coordinate are

Oy ISi 4
ot — 14 kL

B On k1 | L+ —F— or (w)
Oy 05k 11

oy~ Oy, (W) + O, ks 1tn, k41 + O k1 Un k1 (R ) ()
ox? oS”

ak;_l = On, k+1 ak;_l (’UJ) + On, k+1Un, k41

; . (7.2.7)
ol _ 0z 1 e

oy 0z o
921y

Dy = O gt 1dn, k1 + O, i1 (R 1) (Y)

ayl?—i—l _ 0y,’§+1 _ azl?ﬂ —0
ox 0z ox

In order to estimate of R”( ), compare the third coordinates of the functions
in (7.2.6) (and recall =" = \). Then
2 = Op kn k- Y+ 0n k(2 + RE(y))
= On,k dn,k Y+ O'n,k(z + RZ+1(y)) + Ok - Tk(yl?—l—l)
Then Ri(y) = Rpy(y) + 0, ok - e(Yies)
where o, - 0y is (=A)"*71(1 + O(p*)). By (7.2.7), the recursive relation

between R} (y), R,,(y) and the bounds of r(y},,), we obtain the following
formulas.

Ri(y) = Ria (y) + O (=" ru(yia)
(BR)'(y) = (Riya)'(v) + O(rk(yk+1))
and  (R)"(y) = (Ri)"(y) + O (0" ™" il (yitr))
Hence, by the equation (7.2.5) and the chain rule
Ry < R + Ko™
()| < V(B )| + Kag™ 0"
[(BR)"| < |(Ri)"| + Ko™ (o)
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for all & < n. Then,

Ry = O(E),
[(R)| = O 0" )
and |(R})"| = O(Z*" (6®)" %) forall k<n

Lemma 7.2.4. For k < n we have
(1) |0.57] = 0O(1), 10,SE] = O(e%), 0.5 = O(e%)
(2) 102,50 = O(% " %), |92.Sp| = O(E% o)

(3) 1057 = O, 82,57 = O(e”)

Proof. Compare the first coordinates of U} in (7.2.6). Thus

zp = apk(z+ SE(w)) + Onktnk Y+ Onk umk(z + RZ(y))

= Oémk(l’ + Sl?—i—l( )) + Onklnk Y+ Onk Un, k(z + Rk—i—l( ))
+ag - Sk(wZJrl) + U - Tk(?/kﬂ)

Then we obtain the recursive formula for S}.
Si(w) = Sy (w) + o - su(wihy) + 0 0n k tn k(R (v) — Bi(y)
+ g TE(Yi)

Let us take the first partial derivatives of each side of above equation and

use (7.2.7). Then we can have the recursive formulas of each first partial
derivatives of S} (w).
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85,? _ (95,?_’_1 (1 i (‘9sk ) i aSk

ox or oxy oxy,
=11 K \" tn " (R}
Ay ( +8$Z+1) Oy + 5 ( k1 T Un, kg1 ( k+1) (y)) 3$Z+1
d, i
o (Ao + (R ) 5 |

+ Ko X"y ((RZ+1)’(?J) — (RZ)’(y)) + KAy (yE

85,? 8Sk 65,?+1 k1 8sk 8sk
= (1 K \"
0z ( * axg+1) 0z K 1 oxy, * 0z 4

where a;lk cQp O g1 = K (A" a;lk ok = Ko(—=A\)""% and a;lk .

G gr = Ks(—A)"

By Corollary 7.2.1 and Proposition 7.2.3, we have the following estimation
8sk

Y11

8sk

n
41

= 00" ), = 0( ")

‘ 8Sk

n
Oy

= 0(0" ), ‘

Moreover, |ty k|, |tn, k| and | d,, ;| are O(E%"). With all these facts, the bounds
of each partial derivatives of S}' are on the following.

oSy

oSy,

3@% <(1+0(p"")) ’ﬁ +ce®
aaik §(1+O(p"‘k))' o +ce®
for some constant C' > 0 and p € (0,1).
Hence, using above recursive formulas we have
osy| oSy o oOSE|  ~ on
' o |~ (o), ' o =0(&") and ‘ 5 =0(&)
for all £ < n.

For later use let us calculate the second partial derivatives of wy,, using (7.2.7).
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The second partial derivatives are

2,1 2 Qn 2.1 2 Qn
s 0”5 07wy 0”5

0r? = Ok 02 (w), oxy = On kil oxy (w)
0%ty Sk

orz O, k1 Ooxz (w)

. e (7.2.8)
O wi O Si

By? = an’kHTgﬂ(w) T+ On, k41Un, k+1(RZ+1)”(y)

821’2 . 6251? 8222 n "
8yz+ — o (w) ay2+1 = on 1 (R )" (y)

and other second order partial derivatives are identically 0.

The second partial derivatives of S}! are the following.

oSy L+ dsp \ 0°Spy
ory oxy,.,) Oxy

oS\ 0%y 0Sr,
(

+ Qi ka1 (1 + -
dx Th)? Oy

oS , 0?s
o (1 ' a—) [(tn,kﬂ (B ) 5

n 2
xk-i-l)
(‘92$k :|

n n
axk-l—lzk—i-l

a2$k

n n
axk—i—lyk-i-l

/. (1 + 05 ) e + Oy, et 1 <1 + aS;;+1) 05k

Oz oz, ) Oz 0w 0z

oS} 0? 0?
+ On, k+1 (1 + k+1) . [un,k+l a( nSk + o :|

2 n n
ox ) 0xp 1204

+ (dn, k+1 T (RZH)/(?J))
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aSI?—i—l aSI?—i—l aSl?ﬂ
ay, — 4o, U,
{ k41 02 Ay Je1Un k41 y

oSy 14 Osp '\ 0*Spyy
dyz oxy. ) Oyz

oS?
# ot (tnon s (REY0)) (T + KA 1)
T N2 T On ket + K (=N 1 | 5
Ay, ,)? " 0z " Oy 1Yk 41
oS? . oS}
+ On kst [ 8];;1 + (dn,k+1 + ( k+1)/(y))—82+1
n , 828k
+ Ky (tm k1 T Un, k1, o1 + 2Un, w1 (R ) (?J)) GO
L41%k+1

2

a s , 828
Kz Kt + (B 0) 577
k+1

+ £y
n
ayk—i—lzk-i-l

0SE 9 d*sy,
+ (Un,k+1un,k+1 - +K4un,k 1] a7m
0z " A(zpq)?

DS (14 0sp, 825,?“
022 oxp. 022
oS,

z

0s 9%s
n kn + K4 n £ 2
0Ty 12541 A(211)

+ (%, k+1 + 2K4un,k+1)

where Ky = o, joop = O(1).
By Lemma 7.1.7, Corollary 7.2.1, and Proposition 7.2.3, the bounds of each
second derivatives of s is the following

02 Sk
ouv

' azsk _ O(ézk(jn_k>

n 2
O(wyeyy)
where u,v = ', y;' 1, 214, but both v and v are not zj,, simultaneously.

With the bounds of first partial derivatives of s, the estimation of |, x|, |, k|
and |d,, x| and the bounds of second derivatives of s, we have the bounds of

= O(c™ "), ‘
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second derivatives of S}’ as follows.
DS}
oxy
S}
Oxz
S}
yz
DS}
022

oSt
oxy
oS,
o0rz
oSt
dyz
S
022

ok
4+ O ok

< (1 + O(p”_k))

< (1+0(p"™) + O ok

+oe?

< (1 + O(p”_k))

< (1+0(p"™) + o

Hence, |02,Sp| = O0(e2"0"k), |02,50 = O(e%" 0" "), 02,5 = O(e%"), and
102,87 = O(e%). O

7.3 Universal properties of the scaling map ¥}

On the following Lemma 7.3.3, we would show that the non-linear part of
the coordinate change map id +S5(x, y, ) is the small perturbation of the one-
dimensional universal function. The content of this section is to rephrase some
parts of the section 7 in [CLM].

Recall the one dimensional map f,: I — [ is the fixed point of the (periodic
doubling) renormalization operator of the unimodal maps, namely, Rf, = f..
Let the critical point of f, be ¢, and I = [—1,1]. Also assume that f.(c.) =1
and f2(c,) = —1. Let us take the intervals J* = [—1, f4(c,)] and J* =
f(JX) = [f2(cy),1]. Then these intervals are the smallest renormalization
invariant intervals under f2? around the critical point and the critical value
respectively. Observe that the critical point ¢, is in J; and f.(J;) = J*.

Let the onto map s: J: — I be the orientation reversing affine rescaling.
Thus so f.: Ji — [—1,1] is an expanding diffeomorphism. We can consider
the inverse contraction

ge: I — J7, g*:f*_los_l

where f! is the branch of the inverse function which maps J* onto J*. The
map g, is called the presentation function and it has the unique fixed point at
1.
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By the definition of g, implies that

ff‘J: = Jx Of* © (g*)_l

Then by the appropriate rescaling of the presentation function, g., we can
define the renormalization at the critical value v, R]!f.. Inductively we can
define ¢ on the smallest interval Jf(n) containing the critical value 1 with
period 2". Let G7: I — I be the diffeomorphism of the rescaled map of g'.

Then the fact that g, is the contraction implies the existence of the limit.

Uy = lim G': [ — 1

n— oo

and the convergence is exponentially fast in C* topology.

Moreover, we see the following lemmas in [CLM].
Lemma 7.3.1 (Lemma 7.1 in [CLM]). For every n > 1

(1) Ji(n) = gz(1)
(2) Ryfe =Glo fio(GY)7

(3) uy o fo = [T ou,

Lemma 7.3.2 (Lemma 7.3 in [CLM]). Assume that there is the sequence of
smooth functions gp: I — I, k = 1,2,...,n such that ||gr — gi|lcs < Cp*
where the g, = limg_,oo gr  for some constant C' > 0 and p € (0,1). Let
gp =gro---0g, and let G} = apogy: I — I, where a} is the affine rescaling
of Img? to I. Then |G — G"7k||cn < C1p"F, where Cy depends only on p
and C.

Let us normalize the functions u, and g, which have the fixed point at the
origin and the derivatives at the origin is 1. Let

Cu(z+1) -1
e =T

*

Abusing notation, we denote the normalized function of g.(z) to be also the
g«(z) in the following lemma.

Lemma 7.3.3. There exists the positive constant p < 1 such that for allk <n
and for every y € IV and z € I*

|1d+S,?(,y,Z)

—u, ()] =0 y+ 24 ph
and |1+a:csl?(ayaz)_vi()| =0

(p" ")
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Proof. The map id+S}( -, y, 2) is the normalized function of W} such that the
derivative at the origin is the identity map, id, and v, ( - ) is also the normalized
map of u,, which is the conjugation of the renormalization fixed point at the
critical point and the critical value in Lemma 7.3.1. Thus the normalized
map, id +S57(-,0,0) and the one dimensional map, G7 converge to the same
function v,(-) as n — oo because the critical value of f and the tip of F
moved to the origin as the fixed point of each function g by the appropriate
affine conjugation.

By Lemma 4.2.2
distes(id +s1(+,0,0), 9:(-)) = O(6")
and by Lemma 7.3.2, we obtain
dister (id +S7(-,0,0), GM5(-)) = O(p" %) (7.3.1)

Since the G — v, exponentially fast, we have the exponential convergence of
the function id +S57(-,0,0) to v.(-). Moreover, by Lemma 7.2.4 we have

10,571 =0, |0.57] =0

Hence, the above asymptotic and the exponential convergence at the origin
prove the first part of the lemma. Furthermore, C* convergence of (7.3.1)
implies that

|14 8,57(+,0,0) —vi(-)] = O(p" ")

where p € (0,1). O

7.4 The estimation of the quadratic part of S}
for n

We estimate the asymptotic of S}’ using the estimation of the partial deriva-
tives and recursive formulas. Then it implies that the estimation of the asymp-
totic of the non-linear part of U} as n — oo. In order to simplify notations,
we would treat the case k = 0 and consider the behaviour of S instead of S}.

Lemma 7.4.1. The following asymptotic is true
[+ S (2,9, 2)] = [0:(2) + ap1 ¥ + ap2yz + ap 3 2°]| = O(p")

where constants |ap1|,|ar 2| |ap 3| are O(€) for some p € (0,1).
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Remark 7.4.1. The notations ¢, 41 n, Unt1,n, and d, 41, are simplified as ¢,,, u,
and d,,, which is O(£%") like the notations used in (7.1.3) . Moreover, factors
of dilation parts, o415, 0n11,, are abbreviated as o, 0, respectively. Thus
a, =c*(14+0(p")) and 0, = —o(1 + O(p™)). Using the similar abbreviation,
D,, denote D" and s, is the s"T!.

Proof. For any fixed k > 0, the recursive formula for n > k comes from the
WPt = U o UL Thus

SPH (w) = s, (w) + D" 0 S} o D,y o (id +s,)(w) (7.4.1)

Let k = 0 for simplicity, and compare each coordinates of the both sides. Then

(S5 (w), 0, Ry (y))

at ot (=t + douy)  —antu, S§(w)
= (sn(w),0,70(y)) + ot
—0, ' dn 0, Ry (y)
Oy Opln  Opln T+ Ssp(w)
o On Yy
ondy  Op 2+ 1a(y)

By the direct calculation,

(S5 ), 0, B ()
= (sulw). 0. ra) + (-S70) — L), 0. i) )

n

(an(x + sp(w)) + ontny + opun(z + 1Y), o0y, ondny + on(z + rn(y))
= (sn(w)> 0, rn(y))

1
+ (a—Sg (ozn(:c + sp(w)) + ontny + opun(z +1,(y)), ony,

n

1 1
i+ 0 10 0)) = R0, 0. o))

n n

Firstly, let us compare the third coordinates of each side of the above equation.
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Using the Taylor’s expansion and Lemma 7.1.1, we obtain

REFY(y) = ray) + — R (0wy)

n

]_ n n
= — Ri(ony) +cy® + O(Ey*) where ¢, = O(F")
o

n

Then we have the following form of Rf(y).

Ry(y) = any” + Au(y)y’
1 n
Thus Ryt (y) = - (an(any)2 + A, (0,y) - (any)?’) + cy® + O(E%"y?)

Thus a,1 = 0na, + ¢, and || App1|| < |lon ||| Anll + O(E27).

Hence, A, — 0 and a, — 0 exponentially fast as n — oco. The image of
the vertical plane (y,2) — (0,y, z) under the map id +Sj is the graph of the
function &,,: I" — R defined as

§n(y, 2) = (S5(0,y, 2),0, Ry(y))

Since R{(y) is vanished exponentially fast, | &,(y, 2)| = | S§(0,y, 2)| + O(p™).
Moreover, the second part of Lemma 7.3.3 implies the following equation.

[z + S5(2,y, 2)] = [vi(2) + S5(0, 9, 2)]| = O( (7.4.2)

Secondly, compare the first coordinates of (7.4.1) at (0,y, z).

S0, y, 2)
= 5,(0,9,2)

1
+ — 57 (an(x + 5,(0,9, 2)) + optny + oty (2 +14(y)), o0y,

n

1
Oty + 02+ 70 (1)) = — a5 (09)

n

The estimation of 07, S¢|, 102,S¢| and [02,S¢|, |02,5¢| in Lemma 7.2.4 implies
that
8;:; (0,y,2) =O(c"y+0"z) and 885

respectively. The order of the t,,u,,r, and Taylor’s expansion of Sj at

(0,9,2) = O(y + 2)
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(0,0,y,0,2) implies that
SitH0,y, 2)

1
- Sn(o>y> Z) + Oé_ [58(07 ony, Unz)

n

oSy
+ =20, 0y, 0n2) - (ansn(O, Y, 2)) + Ontny + opun(z + rn(y))
ox
oSy 1 n
+ 9z (O onlY, Onz ) : (Undny + O'nrn(y>):| - a_nunRO (Uny)
3
+ O <€2n Z y3—jzj>
=0
3
— —S"(O Onl, OnZ +Zen T 4O (52n2y3 23)
s
=0 7=0

where e, ; = O(%") for i=0,1,2.

Then we can express S{(0,y, z) as the quadratic and higher order terms,

Sg(o7y7 ) anly +an2y2+an32 +A y’ (ZC y3 JZ§>

The recursive formula for Si(0,y, z) implies that

Se (0,9, 2)

1
- |:an7 1(0}/3/)2 + an,2(gny Unz) + a’n,3(0nz)2

n

2
+ A, (ony, onz <Z ¢ any j) } + Zem y
=0

3
(@) (E2n Z y3_jzj>
j=0

9 2
o .
Hence, a,41; = a—am + E en; for i = 0,1,2 and moreover, ||A,41] <
n A
Jj=0

3
|9 + O(g%"). Tt implies that a,; — ar; for i = 0,1,2 and

[An[ - |

|An|] — 0 exponentially fast as n — oo. The exponential convergence of
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S3(0,y, z) to the quadratic function of y and z and (7.4.2) proves this global
asymptotic behaviour of Sf(z,y, z). O

Remark 7.4.2. The above Lemma can be generalized for S}’ as follows.
Hﬂf + 53z, y, 2)] = [vu(x) + ap1 y° + ap2yz + ars ZQH =0(p" ")

The constants |ap;| for i = 1,2,3 of S are O(&%").

7.5 Universality of the Jacobian determinant,
Jac R"F

Let the n'® renormalized map of F' be R"F = F,, = (f, — €,,,6,) and let

Uy = U2, from n' level to 0" level. Recall that the tip 77 € By, for each
n. Then W{  is the original coordinate change rather than the normalized

function W{ conjugated by translations 7,.
Recall (7.0.1) again.

Jac Wi (w)
Jac U (F,w)

tip

(1+0(p")).

Jac F,(w) = Jac F2n(\If§‘ip(w))

_ Jac Wi (w)

Jac 0% (F,w)

tip

Theorem 7.5.1 (Universal limit of Jacobian determinant). For the function
F € Ip(&) for sufficiently small £ > 0, we obtain that

Jac F,, = bzna(l’) (14+0(p"))

where b is the average Jacobian of F, p € (0,1), and a(z) is the universal
function which is positive.

Proof. Let us consider the affine maps
T:w—w-—r, T,:w—w—m,
where 7, is the tip of R"F. Then we can consider the map
L™ ww (DY) Hw —7)

as the local chart of B™. On these local charts, we write maps with the boldface
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if the maps are conjugated by its local charts in this proof.

F,=T,0F, 0T, id4+ St =L"o 0"

tip

oTn_l

By the definition of the coordinate change map Wi, and the normalized map

Uy, we can obtain the following commutative diagram.

T, F, T,
T,.(B) B F.(B) (T, 0 F,)(B)
U5 Wiy Wy vg

T P .
T(By) B P2 (B") (T'o F*")(B")

Since any translation does not affect Jacobian determinant, the ratio of Jaco-
bian determinant of the coordinate change map is following.

Jac Wi (w) _ JacUf(w,) 14 0.53(wy) (75.1)
Jac U (Faw) — Jac VR (Fowy,) 1+ 0,50 (Fowy) o

where w,, = T,,(w). By Theorem 4.2.2, the tip 7,, converges to 7., = (1, ¢, 0)
exponentially fast where ¢, is the critical point of f,(x). It implies the following
limits
T, =T wr— wW— T
w, = T, (w) = Ty (w)
F,w, > F,oT (w) =Ty o F.(w) = (fu(z) — 1,2 — ¢, 0)

and each convergence is exponentially fast.
Hence, Lemma 7.4.1 implies that the following convergence

140,50 — v, (7.5.2)

is exponentially fast.

Combining (7.5.1), (7.5.2) and convergence of F,,w,, to the F, o T, we have

Jac U (w) . vl(z—1)
Jac U, (Frw)  ol(f@)— 1)

= a(x) (7.5.3)

where w = (x,y, z).
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Moreover, this convergence is exponentially fast. The positivity of a(x) comes
from two facts. Firstly, the Jacobian determinant of the orientation preserving
diffeomorphism is non-negative at every point and we assumed that each in-
finitely renormalizable map, F' € Z(¢), is orientation preserving on each level.
Secondly, the renormalization theory of the one dimensional map at the crit-
ical value implies the non vanishing property of v/ with the sufficiently small
perturbation. O

Remark 7.5.1. The universality of the Jacobian does not imply the universality
of the renormalized map F), because the Jacobian determinant, d,¢,, - 9.6,, —
0.€y,-0,0,, cannot make the universal expression of each element of the Jacobian
matrix, DF,.
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Chapter 8

The trapping regions and the
global attracting set

The critical Cantor set is defined as the limit of the union of the boxes By, .
However, it can be constructed by the topological invariant sets which is called
the trapping regions.

Recall the M_,, where n > —1 to be the component of the stable manifold at
p1 and especially My = W (51) to be the component of the stable manifold
containing ;. Recall the definition of the regions A_,,, the region between M_,,
and M_, 1. Thus let us denote the region Dy = Dy(F') to be F(A_;) C Ay.
Then Dy is invariant under F? and it is the £ neighborhood of the curve
[po, p1]f, € W*(Bo) in Ag. Moreover, one component of dDyNW;,.(f1) contains
the point py and the other components contains 3; and all of p, where k > 1.

Definition 8.0.1. Let F' be the Hénon-like map with sufficiently small & > 0.
The invariant domain as the & neighborhood of the curve [po, 1], C W* (/o)
is called Dy(F') and it is defined as follows.

Do = Do(F) = F(A_)

If F is infinitely renormalizable, the invariant region under F?" is defined
successively.

D, = D,(F) = U, (Do(R"F))

where Do(R"F) = R"F(A_;(R"F)). The n' trapping region of F for n > 1
is defined as follows.

Trap, = | | F¥(D,) (8.0.1)

k>0
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Remark 8.0.2. The n'* trapping region has 2"*! components in B(F) because
Do(R"F) is invariant under (R"F)? and by the conjugation ¥7,, D,, is invari-
ant under F2""".

Proposition 8.0.2. Let F' € Ig(£) an infinitely renormalizable Hénon-like
map. Then the critical Cantor set Op is the intersection of the trapping re-
gions.

Proof. Let us show that Trap,,,; € Trap,, for every n > 1. Recall the following

commutative diagram.

R'F
B B
wn wn
F27L
v (B) VL (B)

The case that n = 1, by the definition of D, we see the fact D; € Dy from
the following set inclusion.

Dy =V} (Do(RF)) = V) o RF(A_{(RF))

C U, o RF(B(RF))

= F? oV (B(RF)) = F*(B!) € F*(Ay) C F(A_)) = Dj.

(8.0.2)

Similarly, the commutative diagram is valid between the map R"F and R**'F
with some coordinate change map. Then by induction the set relation D, €
D,, is true and furthermore, Trap,,,,; € Trap, for every n > 1 because F is a
diffeomorphism between the domain of F and its image."

The fixed point f; is contained in 9D, and similarly each fixed point 8;(R"F)
is in dDo(R"F). By the definition of the point, f,11 = V%(61), Pne1 1S
contained in D,,. Moreover, the fact that Trap, ., € Trap,, each trapping
region Trap, contains all periodic points with period 2*¥*! where? £ > n but
dose not have any periodic points with period less than 27!, Since, every

'If we define the 0" trapping region as the union of Dy and its image under F, that
is, Trapy = Do U F(Dy), then Trap; € Trap,. Actually the closure of Trap, covers the
maximal compact set in A_; U Ay which is invariant under F2.

2Each D,, contains two periodic points 3, and ¥7, (ﬁo(R"F )) Moreover, the orbit
of these two periodic points under F' covers the all periodic points with the same period
because R™F has two fixed points for every n € N. In other words, every periodic points
with fixed period has at most two different cycles.
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point in the Cantor set Op is the accumulation point of Pery by Lemma 5.3.2,
every trapping region contains the critical Cantor set.

Using the induction with the relation (8.0.2), we see that
D, C B].
The above relation and Lemma 5.2.1 implies that

Trap,, C U B,

wpe Wn

for every n € N. Hence, by the definition of the critical Cantor set and trapping
region, the following set relation holds.

(’)FCﬂTrapnCﬁ U BgvnEOF

n>1 n=1wp,€ Wn

Therefore,

Or = ﬂ Trap,,

n>1
]

Proposition 8.0.3. Let F' be the renormalizable Hénon-like map. Then the
image of Bo(RF) under V! = H= o A~ is the fized point of F', B3;.

Proof. Observe that F' has only two fixed points fy and f; with the suffi-
ciently small norm, [|§]|ci. The z and y—coordinates of 5y and (; are neg-
ative and positive respectively. Let 5, = (8%, 8%, z9). Thus % > 0. Recall
H(w) = (f(z) —e(w), y, z — d(y, f1(y),0)). Since B, is the fixed point un-
der F?, H(B) = (8%, B%, 20 — 6(B%, f~1(B%),0) is a fixed point of the pre-
renormalization, PRF = H o F? o H™'. Then A(H(f;)) is a fixed point of
RF and By(RF) = Ao H(f31) because Az, y, z) = (sz, sy, sz) with s < —1
and [By(RF') is the unique fixed point such that both x and y—coordinates are
negative. Hence, f; = H~' o A} (6o(RF)). O

Corollary 8.0.4. Let F' be the infinitely renormalizable Hénon-like map. Then

every periodic points with period 2" are contained in Orb(B,41) for every n €
N.

Proof. Let By(R"™F) be the regular fixed point under the map R"™'F. Then
by Proposition 8.0.3, U2_, (Bo(R"F)) is $1(R"'F). Then R"F has only one
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periodic point with period 2. Then the image of these two points Sy(R™F') and
B1(R™F) under the conjugation map W?”, are (3, and (3,1 respectively. Since
the set F™(B!.) contains (3, and /3,41 and the number of periodic points with

period 2" is at most 2"*!, the following set

2n—1

U B - U P
n=0

wpe Wn

has all periodic points with period 2". Then Orb(f,) U Orb(8,41) contains
all periodic points with period 2". However, (3, is the periodic point with the
period 2"~!. Hence, the orbit of 3,4 contains all periodic points with the
period 2". O

Recall the region B, is the component of B\ W}, () which contains ;. The
fact that the region W!(B) = B! contains 3; implies that W!(B,) is Bl N Ap.
Since the region B, is invariant under F? and the image of B, \ W} (/) under
F?isin B,, By N Ay contains the & neighborhood N of the curve [po, p1}, in
Bl N Ay and ON N Bl n Ay € Wi (B1). We may also assume that N is
F(A_)) = D when we relax the condition that the box B! is the image of the
minimal cubic box for renormalization and then allow the & neighborhood of
B! to be B}

Topological properties of the unstable manifolds of two dimensional Hénon-like
maps and the three dimensional Hénon-like maps are similar. The following
lemma is the three dimensional version of the topological properties of the
invariant compact sets under Hénon-like maps. See the Theorem 4.1 in [LM].

Theorem 8.0.5. Let F' be the Hénon-like map in Zg(g). Then the nonwan-
dering set Qp is Perp U Op.

Proof. Let x be the point on the domain B, which does not converge to the
any orbit of the periodic points. Then by Lemma 4.1.1, there exists a constant
ko € N depending on x such that F*(x) € D,. Similarly, for x; € B,(RF),
there exists a constant k; € N such that (RF)* (z,) € Do(RF). Observe that

Dy C Bl Ay = Im(¥))

Then
Orb ((RF)* (x1)) C Orb (Do(RF))

So that

FRT2R (3 € Dy C Trap,
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Inductively, for every o € B, there exists k& € N such that F*(x) € Trap,, for
every n € N. Hence, the omega limit set of z, w(z) is Op.

Clearly, Perp U Op C Qp. Let us take a point z € B, \ (Perp U Op) which is
not convergent to any periodic orbit. Since Op is compact and Trap, — Op
as n — 00, there exists a neighborhood U of z disjoint from Trap,,, for some
ng € N. Moreover, by the above argument there exist £ € N such that
F*(U) C Trap,, for each fixed ng > 1. However, the fact that z ¢ Op implies
that x ¢ Trapy for all sufficiently large N. Hence, x is wandering. Let us
consider the non-periodic points which converges to the periodic orbit

Let us take a non-periodic point x € W#(5;) \ W;.(81). Observe that the
set Dy U F(Dy) = Trap, is forward invariant under F' and Trap, N W*(3;) C
Wi (81). By Lemma 4.1.1, for each x, F¥(z) € Trap, for some k € N.
Moreover, Trap, is a topological handle body. So that we can choose the
neighborhood U of & which is contained in Trap,. Thus if x € W*(3;) \ Trap,,
then z is wandering.

Let the component of 0Dy N W} (8;) which contains po and f; be Uy and
Vo respectively. Then the set Vj contains {p;| i € N} U {#1}. Recall F is
renormalizable and then p, = F™(pg) for each n € Z. Furthermore, we can
define U, and V,, as the component of d(F™(Dy)) N W, (1) which contains
pn and [ respectively for every n € N. Then the following is true.

(1) Each F"™(Dy) is the handle body of which boundary in W _(5) is U,
and V,, for every n € N.

(2) U, is disjoint from V,, for every n € N,.

(3) U (Ui U Vi> €V}, for every k € N,.

i> k+1

(4) F*(Dgy) C Ay and F*T1(Dy) C A_, for every k € N,.

(5) F+3(Dg) U Fnt2(Dy) € FrH(Dy) U F(Dy) for every n € N.
Let us take a point x € W7 (51) N Trap,. If € Uy, then z is wandering.

Since {p,} — 051 as n — oo exponentially fast, the diameter of V,, shrinks to
zero as n — oo also. If z € Vp, then o € F*(Trap,) \ F**(Trap,) for some
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k € N,. Then by the above property (5), x is wandering. Since F' is infinitely

renormalizable, the same fact is true for the map R"F on B(R"F) for every

n € N. Moreover, since the disjointness is preserved under the conjugation

map, every non-periodic points in U W#(w) is wandering. Hence, every
we Perp

points in B, \ (Per U OF) are wandering. Therefore,
QF = PerF U OF

0

Let I'; for 7 > 1 and I' be smooth curves. Let us say that the I'; converge to
" as j — oo if the curve T'; converges in the C'-topology and the each T'; and
I' has the smooth parametrization.

The following Lemma 8.0.6 and Theorem 8.0.7 and their proofs are same as
Lemma 4.4 and Theorem 4.1 on [LM] respectively except that the map F' is
three dimensional Hénon-like map.

Lemma 8.0.6. Let F' € T (&) with sufficiently small € > 0. Let I' is a curve
contained in W*(B,) for n > 1. Then there are curves I'; C W*"(By) such that
F%(F]) — I as tj — OQ.

Proof. If the periodic point 3, is in the interior of the curve I' C W*"(},),
then (J,» o F*(I') = W*(8,). Then we may assume that the curve in W*(8,)
contains the fixed point f3,. Let us use induction for the proof. For n =
1, W*(5y) and W (B1) meets transversally at all of p; for i = 0,1,2,....
Moreover, p, — 1 as n — co. Then by the inclination Lemma (for example,
see [Rob] Theorem 11.1 and its references) there exist arcs I'; for j > 1 such
that p; € I'; with the uniformly positive length and the time ¢; — oo such
that
PU(T,) - T WH(8,)

Take an arc I C W*(f3,) and then we may assume that I = U2 (') with I' C
Wu(B(R"F)). Since R"F € Ip(£2") with sufficiently small & W*(B8y(R"F))
and W7 (51 (R"F)) meets transversally at all of p;(R"F) for i = 0,1,2,...
and moreover, p,(R"F) — (1 (R"F) as n — oo. Then the inclination Lemma
implies that

(R"F)"([;) = T € W(By(R"F)) (8.0.3)
for every n € N,.

Suppose that
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F9xT%) ——=T" Cc W*(B)

J — o0
for k = 1,2,3,...,n. Since Uy is a diffeomorphism and f,,+; is defined as
Ui (81 (R™F)), the convergence (8.0.3) is equivalent to the following.

F0(W3 () —— Ug(1) € W*(Boi1) (8.0.4)

J — o0

Hence, the arc I'™ C W"(/3,+1) can be approximated by some arcs in W*"(/3,)
and arcs in W*(/3,) can be approximated by some arcs in W*(f3y), that is,

FU(T) ——T" C W*(B,)

i — 00

for each n € N. Therefore, every curve of W*"(/3,,) can be approximated by
some curves in W*(f3). O

For the map F : B — R3, the set (-, F*(B) is called the global attracting
set. Then it is the maximal backward invariant subset of B. Let us show
the maximality of (s, F*(B). Let the set Z be a backward invariant set
in B. Thus F*(Z) c F¥(B) for each k € N,. Since F¥(Z) c FF1(Z) for
every k, passing the limit Z C (-, F*(B). For the infinitely renormalizable
perturbed Hénon-like map F € Zy(£), take the following set

Ar=0pU |J W"(w)nB (8.0.5)

w€ Perp

Then Ap is backward invariant and Ar N B, is completely invariant under F'.
The image of W*"(fy) under F' is extended outside of B.

Theorem 8.0.7. Let F' € Ig(&) the infinitely renormalizable Hénon-like map
with sufficiently small £ > 0. Then
Ap= () FHB)NB=W"(5)NB
k>0
Proof. The fact that Ap is backward invariant under F' implies that
Apc () FMB)NB

k>0

For the opposite inclusion, take a point € (-, F*(B) N B. If z € Op
then x € Ap. Let us assume that © ¢ Op. Since the global attracting set
is backward invariant, F'~*(z) € B for all k € N;. The alpha limit set of x,
a(z) is the set of accumulation of the backward image of z under F'. Then
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it is completely invariant closed set in B and moreover, a(x) C Qp for every
2 € (Vs F¥(B)NB. Since © ¢ O, x ¢ Trap, for all sufficiently large n € N.
The fact that F(Trap,) C Trap,, implies that F~¢(z) ¢ Trap,, for all i € N.
Then a(z) N Op = @. Hence, a(x) C Perp. It means that

re |J Ww)nB.

wePerp

Then

Ar=()F*B)NB (8.0.6)

The set W¥(5y) N B is backward invariant. Then

We(Bo) N B C (| F¥B)NB = Ap.

k>0

For the opposite inclusion, recall Lemma 5.3.2, the critical Cantor set O is
the set of accumulation points of Perp. Then Op C U,>o Orb(f,,). Moreover,
by Lemma 8.0.6, every unstable manifold of periodic points are contained in
W (5y). Hence, Definition 8.0.5 implies that

We(Bo) N B = Ap.

O

Corollary 8.0.8. Let F' € Zg(&) the infinitely renormalizable Hénon-like map
with sufficiently small € > 0. Then W*((,,) N Bl is the invariant set under
F?" | which is maximal backward invariant set under F?" for each n € N.

Proof. Theorem 8.0.7 implies that if I € Zg(£), then W¥(SBy(R"F)) is the
maximal backward invariant set on B(R"F') under R"F for each n € N. Since
F?(w) = ¥ o R"F o (¥%,)"Y(w) on B"% and B% is ¥" (B(R"F)), the

backward maximality on B(R"F) under R"F is inherited to F?" on the B~
by the conjugation for each n € N. In particular, the stable (respectively
unstable) manifold at a point moves to that of the corresponding point by the
conjugation U7,. Hence, U2, (W*(By(R"F))) = W*(83,) and W*(53,) N Bl is
the invariant set under F'>" which is maximal of the backward invariant under
F?", O

The above Corollary says that there exists the global attracting set under F",
Apen on each domain B, for each n € N. Then this fact suggests the term
locally global attracting set, which seems to be almost self contradictory.
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Chapter 9

Small perturbation of model
maps

The university of Jacobian does not imply asymptotic formula of € or ¢ in
general. However, with particular assumptions the dynamics of the critical
Cantor set is well-controlled using Lyapunov exponents on it. The maximal
exponent of the three dimensional Hénon-like map is 0 and it has two other
exponents log b; and log b, which are strictly less than zero. In particular, if
0, = 0, then one of these exponents comes from the two dimensional Hénon-
like map and the other one represents how much z—directions are attracted.
See Proposition 9.1.1. If the attraction of the third coordinate is sufficiently
stronger than the other attractions uniformly on the compact invariant set,
then there exists the dominated splitting on the given set under sufficiently
high iterates of DF~! by Lemma 9.2.3.

9.1 Renormalizable model maps

Let us take a two dimensional Hénon-like map Fyy(z,y) = (f(x) — e(x,y), )
which is infinitely renormalizable. We can consider the three dimensional
perturbed Hénon-like map F'(z,y, z) = (f(z) — e(x,y), x, 0(z,y, 2)) as a per-
turbation of two dimensional Hénon-like map. See the condition d,e = 0. Let
these maps be the model maps and denote Fj,.q. In contrast with the general
three dimensional Hénon-like map, Fy,,q has the special e(w) such that ¢ de-
pends only on the first two variables x and y. The map ¢,, in F},oq,, of on each
level n depends only on x and y using the direct calculation of H o F'? o H~1
and the induction. See Proposition 4.2.1.

Proposition 9.1.1. Let F.q be the three dimensional Hénon-like model map
in Ip (E) with sufficiently small € > 0. Then e,(w) in R"Fnq depends only
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on x and y as follows.

Frodn(,y,2) = (fu(z) —en(x,y), 2, 0,(2,y, 2))

Furthermore, €, and d,, has following form.

en(r,y) = 0" a(z) y (1+0(p"))
O,y 2) = (B2 + du(,9)) (1 + O(p"))

where a(x) is the non-vanishing diffeomorphism on the I* on B, ||6,(z,y)|| =
O(&%") for some p € (0,1).

Proof. The direct calculation Ao H o F2 0 H*A~!(w) with induction implies
that ,(w) = en(x,y). In other words, The two dimensional map Fyg ,, is
the composition of the projection on ry—plane and the model map, that is,
Foq n = Ty 0 Finoa,n for every n € N where Fioq,, € Ip (E). Then &,(z,y) has
the universal expression for each n € N because of universality theorem of the
two dimensional Hénon-like map. See Theorem 7.9 in [CLM]|. The universal
function, d,e,(z,y) = b3 asa(x) (1 + O(p™)). Moreover, the fact that d,e =0
implies that Jac Fiod,» = 0y&,, 0,0, — 0.€,, 00y, = 0y,0,0,,. Then by Theorem
7.5.1, the following holds.

Jac Food,n = b a(z) (1 4+ O(p")) = b¥" age(x) (1 + O(p")) 9.6,

Then it is sufficient to show that the a(z) is same as agq(x), the universal
function of two dimensional map 7,y © Finod, n-

Recall (7.5.3). as4(z) is the two dimensional version of the following limit.

(1) = 1 Jac Uf (w)
W= 1% Tac v (Fw)

Lemma 7.4.1 implies that the map z + S{/(w) is asymptotically the sum of
the universal function v(z) of the variable z and the quadratic homogeneous
polynomials of the other variables. Then both two and three dimensional
Jacobian determinant of W, namely, Jac Wi = 1+ 8,57 converges to the
universal one-dimensional map v'(x — 1). Moreover, the ratio of W§j (w) and
Wi, (Faw) of both two and three dimensional Hénon-like maps has the same
universal limit a(z) by (7.5.3).

Hence, the fact that b = bby and exponential convergence of Jac F,, implies
that 9.6, = b2 (1 + O(p")). O
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9.2 Invariant splitting of tangent bundle on
invariant compact sets

The infinitely renormalizable model map, Fi,,q has the invariant constant sec-
tions, £ = {(0 0 1)} - R. If the contraction of DF,.q along this subbundle is
strongest, then there exists an invariant cone field by Lemma 9.2.3.

For the given wy = (z, y, 2), let us denote w; = (x4, ys, 2;) = F*(x, y, 2). The
DF,0q is the following matrix.

0
DFyq ‘

DFmod -

0:6 0,0 | 0.0

For simplicity, let us express the above matrix as the block matrix

DFatend) = (2 5) = (2] pywy)

where A; = DFyq(z,y), 0= () , C1 = (8,6(w) 9,6(w)) and Dy = 9.6(w).

Let each component of the derivative of FX | (w) at wg be Ay, 0, Cy and Dy
as follows.

DFY. 4(%o, Y0, 20) = (gﬁ Z;JN) = (éﬁ:ﬁg; DN(()wo)) (9.2.1)

Then for each N > 1,

N-1 N-1
Ay = H DFEyy(xn_1-i,yn—1-i), Dn = H 0.0(wn—1-4)
i=0 i=0
Moreover,
(AN 0 ) _ (A(U)N_l) 0 ) ) (AN—I 0 ) (9 9 2)
Cn Dy C(wN—l) D(wN—l) Cn-1 Dy o
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Let Ag and Dy = 1 for notational compatibility. Then we have the expression
of Cy as follows.

Cn = ZDi(wN—l—z) C(wN 1— z) An_ii
=0

N-1T i1 T
[ 3,35 UJN l—j) : (am5(wzv—1—i) 8y5(wN—1—i))
N

In order to prove the existence of the invariant splitting of the tangent bundle

under the map DFY . it suffice to show that there exists the invariant cone

field under DFY | with uniform expansion or contraction. Denote the cone
field with the vertical direction (0 0 1) with some positive number v at w to
be

C(Mw={utv|(uv) ER* xR and |lul| <[]} (9.2.3)

The cone field on a given compact invariant set I' is the union of the cones at
every points in I'.

= J M (9.2.4)

wel

In order to construct the invariant splitting, we need to show that
N 1
DFmod (C(f}/))wz\r ccC 57
wo

at every point wy of the invariant set under F_Y for N € N. Let ||[DF||

mod
the operator norm of DF. The minimum expansion rate (or the strongest

contraction rate) of DF is defined by the equation, |[DF Y| =

m(DF)’

The Jacobian determinant of Fy; is Oye(z,y). Since Fhq is an orientation
preserving diffeomorphism from Byy = Dom(Fy,) to its image, d,e(x,y) has
the positive infimum. Denote this infimum to be mog, that is,

mog = inf  {0,e(z,y)}.

(z,y)€ B(Faq)
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Similarly, define mog ., = inf Oyen(T, for the n* renormalized
imilarly, 2, (x,y)elB(R”ng){ en(x,y)} for renormaliz

model map, Fhy, = R"Fy. Denote the two dimensional coordinate change
map from level n to k to be 94¥}. Thus the derivative of W{ at the tip as
follows.

00 (14 0055) 0 0yS3 + 0ot
Dyl = <O‘ o §) 200,55 + oo ’0> (9.2.5)

O Un,O

Proposition 9.2.1. Let F0q € Zp(&) with sufficiently small € > 0. Then the
infimum of the derivative of the two dimensional map, m(DFZ2)) < o™b3" in
B}, for every n € N.

Proof. Firstly, let us show that m(DF3,) < o™b3".

s = P12 5z (5 pas) )] 2 2

Then m(DFyy) < Oye(x,y) = Jac Fyy for every point (x,y). Similarly, since
Fy,4 is infinitely renormalizable, m(DFyq ) < Oyen(z,y) = Jac Foy ,, for every
n € N. Then m(DFyy ) < mag, . Let us estimate upper bound of the norm
of DFQ_d2n.

IDE"

> || Dy DE;L, - D) (3|
_ n., -1 L !
= |PY0 Pl g 5 (0)H

= 1PV g o (1 0,59) (1)”

B —1 ) On, 0 8y56‘ +Un,0tn,0
ayéfn * Q0 (1 -+ (%SS) On,0

i
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1 1 (an708y56‘+0n,otn,o) H

> .
- H sup  {0yen}- sup {1+ 0.50)} ano On,0
we B(R"F) we B(F)

(*) > 1 On,0 3:—:3 8y56‘ + tn’(]
- C(]b%n Qp 0 1
1 _
1
sl Co_nb%n

where C' and C; for i = 0, 1,2 are some positive numbers. By the universality
of the two dimensional Hénon-like maps, 1 + 0,5} (w) = v, (x) + O(p™) where
v, () is a diffeomorphism on its domain and d,¢, =< b?". Moreover, |0, o] =
0", ano < 0 |thol = O(€), and 9,55 = apy + O(p") for ap = O(&).
Then the inequality () and (x*) holds. For the detailed proof about the
above asymptotic of the two dimensional Hénon-like maps, see the Section 7
in [CLM]. Hence,

1

2 = hneN
m(DEZ) = Coml? or each n

Secondly, let us show that m(DF%;) = ¢™b?". Let us observe the following fact
which is used later. For the vector (5; ) whose length is 1, that is, v} +v2 =1,

the following inequality holds by the Cauchy-Schwarz inequality.

@
c d) \vs
Moreover, if ad — be # 0, then
‘ (a b) - (Ul) H < ¥\/a2 T2 4242 (9.2.7)
¢ d va ) || = (ad — be)?

F2_d2n =V o F2_d,1n © (‘1’8)_1
Then

|DF-"

< [DYGI| - 1D Fgg |l - 1D(25)
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By the (9.2.6) and (9.2.7), the upper bounds of norms are following.

2

|Dw? =’

O O'n,()

<Oén7() (1 + &CSS) Qn 0 %Sg + On,0 tn,O)

< sup {ap o(1+3:55)% + (00,55 + 0ny0tn,0)* + 07}

we B(R"F)
1 /0 0,e ?
-1 512 _ yen
o= 5 (O s e)
1
<  su ———((0yen)* + 1+ ,;x—amaﬁ}
weB(E”F){(aygn)2 (( ven) Unl) ) )
Hence,
IDE; |2
< sup {aq o(1+8:55)? + (@m0 0y Sy + 0n 0 tn,0)* + 07}
we B(R"F)
1
su Y 8€n2+1+ éx_ﬁwgnz}
wEB(E”F){(aygn)Q(( ven) Unle) ")

1
- sup —~
we B(F) {a?@,o(l + 0.54)% - 0721,0
: [ai,o(l +0:50) + (00n.0 0y Sy + o tn0)® + ai] }

Co

for some Cy > 0. Then

1

C
~ < 5 f eN
m(DFZ) = @on O

O

Lemma 9.2.2. Let the Ay, 0, Cx and Dy be components of DEY | defined
on (9.2.1) and suppose that || D|| < maq on B. Then ||Cy|| < k||An|| for some
k > 0 which is independent of N. Moreover, ||Cy - Ay'| is bounded above by
the some ko > 0 independent of N.

Proof. Let us calculate the upper bounds of ||D;|| and the lower bounds of
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m(AZ-H).

i—1
1Dil| < T 10:0(wn—1-3)I| < (Cibs)* (9.2.8)

7=0
for some C; > 0. Recall
H—l HDF2d LTi—j, Yi— j)
7=0

and m(A) = |DFy;'||7!. Then by Proposition 9.2.1, we obtain that

1 % 1 K i+1 C2)i+1
< DF; Mz, y:)| < . < (=
i < Imden < o < () = (5
(9.2.9)

for some Cy > 0. Let us assume that by < C;C5b,. Then

A
ZHD fep il

| Crsall = HZD wy—) Cluwy—) A A

IN

Di _ Dz
IClAvl 3 jm” Tl < clavi > JolL
; i=0 !

C
< 005||AN||Z Clb2 (b—f)

by :
< Corllan| & <—-C C)
< Cie N||b1; ere
CoCy
by — C1Csby Ax roll x| (9.2.10)
where ko = &. By the recursive relation (9.2.2), we get the following
by — C1Cqbs

estimation.

D(UJN) CN - CN+1 - C(UJN) AN

83



Then by the above estimation (9.2.10), we have

|D(wn) Cnl| < [|Cxpa|| + [|C(wn) ||| An]|
C3by||Cn | < kollAn|| + Cog || An||

for some K > 0. Hence,

Ko + C’oc":T

Cyll < Anvll = &llA
ICN|| < il [An|l = &[|An|l
where Kk = M
o Oghy
Let us calculate Ay_;_; - Ay (wp).
N— i N-1
An(wp) = H (wy—1—y) = [ [ Alwn—1—y) - T Alwn-iy)
i=0 j=0 j=i+1

I
||z

8

2
':1
R .

S

=
L

= Ai-l—l(wN—l—i) : AN—l—z’(wo)
Then
An_1-i(wo) - Ay (wo) = An_1-i(wp) - [A(wN)}
= An-1-i(wo) - [An—1-i(wo)] - [Airr (wyn-1-4)]
= [Ai—i—l(wN—l—i)}_l

-1

-1

(9.2.11)
Then by the similar calculation of (9.2.10),
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I Cv(wo) Ay (wn) |

N-1
= H Z Di(wy i) Clwn i) Ay - Ay (wy H Z 1D:ICIAZL

|| Ds]] ||D||
< ||C < Cpe
<1013 o3 Z
N-1 ) i+1
< e S () (&
=0 by
< Ko
(9.2.12)
where kg is defined above. O

Lemma 9.2.3. Let F0q be the model map in Zg(€) for sufficiently small € >
0. Suppose that by < by. Then the cone field C(v) is invariant under DF
for all sufficiently small ~ > 0. More precisely, C(7)w C DF,04(C(37)) ()

on every point of the any given compact set, I' which is (completely) invariant
under F.

Proof. Let us take any vector (u v) € R? x R in the cone field C(v) such that
|lu|l < yollv|| where vy < . we may assume that v = 1.

o~ (%) _ A 0 A N u
mod | 1 —Dy'OnAY DY)\ ~Dy'ONAY - u+ DR

For the invariance of the cone field, it suffices to show that

1AV - ul e
| = Dy'CnAY - u+ Dy 1|| -2

Yo-

Observe that
— Dy ONAV - u+ Dy = DY (—COnAY -u+1)

Let us take small enough v such that kg [lul| < 1. Then by (9.2.12), we see
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that || — CyAy' -u+1|| > 5. Then
Ay AR 2m(D Kb\ "™
_ | N_IUH < ||1N H_HIUH < 2m( N)HUH §2(_2) -
| =Dy CnvAy -u+ Dy = slIDY — m(Ax) by

for some K > 0 and for all sufficiently small 75 < 7. Hence, the cone field C(7y)
contracts with the uniform rate under DFn:é\é for all N € N if by < b;. O

Remark 9.2.1. Whenever we assume that by < by, there exists a big enough ng
such that b2"° < ¢™b2™. Then we may assume that by < b; instead of taking
R™ F' in order to separate two exponents.

9.3 small perturbation of the model maps with
invariant cone field

The invariance of the cone field of the DF},,q holds under the sufficiently small
continuous perturbation of entries in DF,,,q. Let us express the perturbation
of the given model map Foq(w) = (f(z) — e(x,y), x, d(w)).

F(w) = (f(z) —e(z,y) — &(w), =, 6(w)) (9.3.1)
Recall the definition of the cone field (9.2.3) and (9.2.4).
¢t = o= Jlutv|(uv) R xR and [ull <7s o] }
wel wel

for every v, is positive and v = sup,,cp{7w} where I' is an invariant compact

set under F. If v = sup,cr{7w} is bounded, we call v the width of the cone
field with the direction (0 0 1). Let us consider two cones, C; and Cy at the
same point w. If C; C Cy U {w}, then we say that the cone C; is properly
contained in the cone Cs.

Let us denote the derivative of F' as the matrix.
0,e
Al B DFy ()
DF = = 0 (9.3.2)
C|D
0.0 9,0| 0.0
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here Dy (f'<x> — d,e(w) —%e(w))

1 0

By the universality of the two dimensional Hénon-like maps, d,e(z,y, o) =< by
for each zy € I*. If ||0,¢]| is sufficiently small, especially smaller than b;, then
by the Taylor’s theorem, 0ye(z,y,2) =< b;. Moreover, by Proposition 9.2.1,
Oye(z,y, z) < m(A).

If F is sufficiently close to Fyoq in the C! sense, then DF invariant cone
field which is same as the cone field invariant under DF},,q. On the following
lemma, we quantify the perturbation of || d.¢|| to obtain the invariant cone
field under DF, the derivative of the perturbation of F},.q.

Lemma 9.3.1. Let Fo.q and F be infinitely renormalizable maps, that is,
F € Ip(é). Let F be a perturbation of the model map Fyoaq defined on (9.3.1)
| 0:€]

(A) - m(9.0)
v 1s the width of the invariant cone field of Fioa. Suppose also that ||0.e|| is
m(A)
m(A — BD-1C)
g0 > 0. Then F has the invariant cone field C(vy) such that C(vy),, properly con-
tained in DF~*(C(37))

set I' under F.

Proof. Let us denote DF' to be

with by < by. Suppose that < p7 for some positive p < 1 where
m

sufficiently small such that < 1+ ¢q for any given number

Fw) OT CVETY point of the any given compact invariant

(@ o)

similar to (9.3.2). Then D = 9,4. By the direct calculation, DF~! is

A+ (i Ci2
—D7'C(A™ +¢i1) D'

where (15 = —(A — BD'C)'BD™, (1 = —(2oCA Y and (o =1 — C(po.

1B .¢(w)
(A— BD-1C)-m(D) 0
|0.¢|| implies that ||(12|| < py for some p < (1 4+ €g)p. Moreover, if 7 is small

Since [|(12]| < - and B = < ), the small enough

enough then ||¢;;|| has the same upper bound of [|(;5]| up to the uniform con-

stant multiple because ||[C' A7 is uniformly bounded by Lemma 9.2.2. How-
ever, (o9 is close to 1. Take the vector (u v) € R? x R such that ||u|| < v[Jv].
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Then we can normalize the vector v letting it be 1. Then |ul| < 7.

Dp-! LA A+ Ci2 u
1 —D_lC(A_l + Cll) D_1C22 1

B (A_l +C11) “ U+ (19
C\=DICAT ) - u+ D

(A" 4+ i) - u+ o
| = DIC(A™ + (1) - u+ D=1
invariance of the cone field. Observe that
(AP ¢) - utCo= AU+ Ca(—CA u+1)
DT'C(A™ + ) u+ D Go= DTHCA + () - u+ 1 — CCo

Let us calculate in order to obtain the

Then with the sufficiently small 7, [[(A™! 4+ (i1) - u+ Ci2|| < col] A u|| for some
co>0and || —D'C(A™ '+ (i) u+D ¢ > 3| D7Y|. Hence, by the similar

proof of Lemma 9.2.3

-1 . -1 .
I G0 wr ol ol Al 20 mAll _, Kby
| =D C(A™ + ) -u+ Do = 31D m(D) by
Then the cone field C(v) is properly contained in DF~(C(7)). O

Definition 9.3.1. Let Fi,0q € Zp(&) be the model map defined as follows.

Fuoa(z,y,2) = (f(z) —e(x,y), x, 0(x,y, 2))

Suppose that e(x,y) =< b; where b; is the average Jacobian of the two dimen-
sional map 7,y © Fiuoa. Let the set C(v) = U, e C(7w)w be the invariant cone
field under DF_!, for sufficiently v > 0 such that C(v) is properly contained in

DFE-!.(C(v)) on the given compact invariant set I' under F. Let us define the

mod
small perturbation of the model map Fy,.q if the Hénon-like map F' satisfies

the following conditions.

(1) F is of the form in (9.3.1) and infinitely renormalizable.

(2) || De|| is sufficiently small such that ||, (e(z,y) + e(w))|| =< b;.
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(3) ||0.2]| sufficiently small implies that the cone field C*" = |
such that

wer Cl exists

(a) Every cone Cf is contained properly in DF~Y(C(v)pw)) at every
point w € I'.

(b) Every cone CE for all w € I" contains the constant direction (0 0 1).
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Chapter 10

Invariant surfaces under the
small perturbation of model
maps

The existence of the invariant cone field on the invariant compact set implies
the existence invariant splitting of the tangent bundle, in particular, the in-
variant plane field and the line field. The invariant plane field implies the
existence of the local invariant surfaces by the pseudo-(un)stable manifold
theorem. For instance, there exist surfaces invariant under F2” on the suffi-
ciently small neighborhood of the periodic points with period 2P. The periodic
point Sy with the sufficiently close to the tip has the pseudo unstable mani-
fold which contains all periodic points with period greater than N by Lemma
10.2.1. Since each point of the critical Cantor set is the accumulation point of
periodic points, every pseudo-unstable manifolds at Sy as invariant surfaces
also contains the Cantor set in the small neighborhood of 5y. Moreover, using
the scoping map, W, as the smooth conjugation between F?" and R"F, it is
shown that there exist global invariant surfaces as the graph from I* x IY to
I# under R"F for every sufficiently large n € N by Lemma 10.3.1.

10.1 Pseudo-unstable manifold on the com-
pact invariant set

If there is the splitting of the contraction or expanding ratio is sufficiently large
on the compact invariant set, there exists C" pseudo (un)stable manifolds at
every points on this set by Lemma 10.1.1.

Definition 10.1.1. Let T : E — FE be a continuous linear map of the Banach
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space E. T is p—pseudo hyperbolic if there is a T" invariant splitting of £ =
E' ® E? and there exist constants 0 < A < p < p such that

(1) Let the restriction of 7" on E* be Tj. It is an isomorphism and
| 77 (v)]| > Cy p™||v|| for all n € N and v € T and for some C; > 0.

(2) Let the restriction of T on E' be Tj.
| T3 (v)]] < Cy A™||v|| for all n € N and v € Ty and for some Cy > 0.

If there exists a compact invariant set under a map (for example, diffeo-
morphism) f and there is an invariant splitting with the pseudo-hyperbolicity,
then there exist the strong stable and pseudo-unstable (or pseudo-stable and
strong unstable) manifold which are locally invariant under f. Then we can
use the strong stable manifold theorem and pseudo-unstable manifold theorem.

Definition 10.1.2. Let f : B — B be a differentiable map and p is a positive
number and d(w, ¢) be the distance between two points w and ¢ in B. The
pseudo-stable and pseudo-unstable set at a point w € B is the followings.

WP (w) = {q € B‘ d(f"(wp); "(a) —0 as n— oo}

WP (w) = {q €B ‘ d(f " (w), f7"(q)) —0 as n— oo}

P
The local pseudo-stable and unstable set is defined as following.
d n n
WP (w) = {q e B‘ U (wp);f D) <. foran ne N+}

WP (w) = {q €B ‘ d(f_"(@;z;f_n(q» <e forall ne N+}

If p = 1, then the above definitions are same as the usual (local) stable and
unstable set. More generally, let us introduce the definition of the dominated
splitting.

Definition 10.1.3. Let ' : M — M be a C!' map and I be a compact
completely invariant set under F', that is, F'(I') = I'. The compact invariant
set I' has the dominated splitting if

(1) The tangent bundle over T' has an invariant subbundles — Ty M = E' @
E2
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(2) | DF™ pr@ || DF" g2rr @y |l £ CA™, for all x € T and n > 0.

Moreover, the dominated splitting implies that invariant sections w + E*(w)
and w — E?*(w) are continuous by Theorem 1.2 in [New]. Furthermore, any
dominated splitting has the adapted metric if every tangent spaces in the in-
variant tangent subbundle has the same constant dimension, that is, dim E*(w)
for i = 1,2 is independent of w but dependent of each subbundle E?. For the
proof of the existence of adapted metric, see [Gou].

The following lemma and its complete proof is the Theorem IV.1 and the proof
of it in [Shub].

Lemma 10.1.1 (Pseudo-unstable manifold theorem). Let I" be an (compact)
invariant set for the C" diffeomorphism of M (which is a finite dimensional
manifold). Suppose that the restricted tangent bundle Tr-M has a continuous
Df invariant splitting

TtM = E'® E®

and there are constants 0 < A < p < p and 0 < A < 1 such that

|IDf(x)v|| < A|lv|| forall z€A and v#0 in E?
and ||Df(x)v| > pllv|| forall €A and v#0 in E*

with the adapted metric in Tr M. Then there exist a positive number € and for
every point x € I' there exist two embedded discs W2*(x), local strong stable
manifold and WP (x), local pseudo-unstable manifold which are tangent at x
to E*(z) and E'(z) respectively. The WP"(x) satisfies the following.

(1) If \p™7 <1 for1 < j <, then WP*(x) is C".

(2) The map x — WP"(x) and x — W2*(z) are continuous on I

(3) f(WE'(x)) N Be(w) € W2(f(x)), where

B(x) ={y e M| d(z,y) <e}

(4) The WP“(x) varies continuously as C" embedded discs, that is, if dim E? =
k, then there is a neighborhood U of x and the continuous map © : U —
Emb" (D™, M) such that

O(z)(0) =z and O(z)(D") =W (x)

where Emb" (D™, M) is the set of C" embedding from D™ to M.
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Let us denote E' on Lemma 10.1.1 to be EP* and call it the invariant tangent
subbundle with the pseudo unstable direction. Similarly, let us denote E?
to be E*° and call it the invariant tangent subbundle with the strong stable
direction. If we take the invariant splitting at any point w which satisfies
the assumption of (1) in the Lemma 10.1.1, then W’*(w) is the graph of a
C" map from EP*(w) to E**(w). Moreover, it is tangent to E”"(w) at each
w € I'. The lower bounds of the size of the invariant manifolds is uniformly
away from 0 at all points in I". Thus the splitting 7,,M = EP*(w) @ E**(w) at
w € I' implies that we have the heteroclinic transversal intersection on every
sufficiently small neighborhood of each point.

Remark 10.1.1. The existence of C" invariant surfaces which are tangent to the
invariant planes under DF' comes from the pseudo-unstable manifold theorem.
The proof of this theorem is similar to the proof of the unstable manifold the-
orem on the hyperbolic compact set. However, it requires to use the smooth
cut-off function as an extension of some specific map. Moreover, the smooth-
ness of the pseudo-unstable manifold is based on how much strong the splitting
of the invariant directions under DF' is on the compact invariant set. Then
the pseudo-unstable manifold can be just finitely many differentiable although
it can be any number depending on the splitting.

Proposition 10.1.2. Let I be a compact invariant set under f : B — B
where B is the compact manifold. Suppose that the tangent bundle on I" has an
mwvariant splitting under D f and this splitting is p—pseudo hyperbolic. Then
there exists n > 0 for any &’ > 0 such that if d(z,y) < n for any two points
x,y in L', then the local pseudo-stable and pseudo-unstable manifolds meet
transversally each other at a single point, say q, that is, WH (x) h W (y) =

{a}-

Proof. The invariant splitting of the tangent bundle with the invariant cone
fields implies that the angle of two subspaces of the tangent space at each point
w e ', L(EP*(w), EP*(w)) is positive (and has the uniform positive minimal
angle). Moreover, since two locally invariant manifolds at w are tangent of
EP"(w) and EP*(w) respectively. Furthermore, by the splitting of the tangent
space T, B, we have the equation dim(7,,B) = dim(EP*(w)) + dim(E?*(w)).
Then the dimension of the intersection of two manifolds is zero, because
dim(7T,,B) — dim(EP*(w)) — dim(E?*(w)) = 0 and the dimension of subman-
ifold is same as the dimension of the tangent subspace. Thus for sufficiently
small &', the intersection is connected and then it should be a single point.
The compactness of the invariant set implies the existence of 77 independent of
wel. 0

Remark 10.1.2. The assumption of Proposition 10.1.2 does not exclude the
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possibility that the compact manifold or I' has boundaries. However, in or-
der to keep the constant dimension of the intersection set we assume that the
boundary of B and I' is disjoint if these boundaries exist. However, the max-
imal global invariant set Ag has its image under F' outside B. Then in order
to apply Proposition 10.1.2, we need to take the smaller invariant set than
Apr. We can choose the set as an invariant compact set, for example, one of

the sets W4(5y) N Be or W¥(/3;) and so on.

Let Oy, = OpN By, and let Pery,, = Per N B, where w,, = (wjws ... wy) is
the word of length n. Thus Per,x contains the periodic points 3, for all n > k
and its iterated images under F2° by Corollary 8.0.8.

10.2 Pseudo unstable manifolds as the C" in-

variant surfaces under F

Recall the periodic point 3, on the domain of F' as follows.

By = Yin (51(RNF))

for n > 1. Then [, is a periodic point with period of 2". Furthermore, the
sequence {f,} converges to the tip of I, 7p as n — oo.

Let us take a convex neighborhood A of Sy in B for sufficiently big N € N
such that

(1) 7 €N

(2) O(WE(By)NN) CON and 9(WE'(By) N BNTY) c 90BN,
(3) BN, C V.

(4) WE(Bn) NN is connected and simply connected.

(5) WE*(Bn) M Wi (q) for every periodic points ¢ in N and the intersection

point is unique for each point q.

(6) WE*(By) is the graph of a C" function n from E?P*(fy) to E**(fy) with
|Dnl| < C for some positive C' independent of N.
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Let Qpy = WE*(Bn) NN. Then Qg is connected and it is the embedded C”
disc in Bi\fv_,ll.

By the pseudo unstable manifold theorem, the local embedded disc W5*(w) at
each point w is the graph of C" function from EP*(w) to E**(w). If F' € Zg(&)
is the small perturbation of the model maps, then W5"(w) is the graph of
C"™ map, £ from I* x IY to I* after C* coordinate change. Furthermore, C*
norm of ¢ is bounded because invariant cone field with z—direction contains
(0 0 1) and the angles between the invariant plane field and the line field has
uniformly positive infinmum.

Lemma 10.2.1. Let F' € Zg(&) be a small perturbation of the model map
for sufficiently small € > 0. Suppose that by < (by)" for some r € N.
Then for sufficiently large N € N, WE*(By) contains Per,y UO,~. Moreover,

WE(By) N sz)\]fv_,ll is the graph of C" map from I* x 1Y to I*.

Proof. For sufficiently large N, Sy can be arbitrarily close the tip 7. Then
there exists a pseudo unstable manifold of 8y in N which satisfies the above
conditions. Let Qg, = W5 (By) NN. Since by < by < 1, WH(By) NN C
W5 (Bn) NN by the definition of the pseudo unstable manifold. However,
the neighborhood the periodic point Sy contains the invariant domain un-
der F?" around the tip, that is, BN\ € N by the condition of N'. Then
W*(By) C WP(By) in BN\ Moreover, since W*(8,) C W*(By) for every
n > N by Theorem 8.0.7, (3, contains the unstable manifolds of every peri-
odic points with period 2" for n > N.

Suppose that ¢ € Qg, N W?*(3,) is different from 3,. Then F?"(q) — f,
as n — oo, that is, 3, is the accumulation point of the sequence {F?"(q)}.
However, the fact that Qg,, is invariant under F2" and Qz, th W*(8,) implies
that Q)g, accumulate itself at 3,. It contradicts that (), is the embedded disc
in M. Then ¢ = §,. Hence, the single surface Q)5, in Bifv_,ll which contains

every periodic points (3, for n > N is the only piece of WP“(5y) N Bi\]fv_}l. The
surface (g, is the graph from EP"(fy) to E%(fx) by the transversal inter-
section between EP(Sy) and E**(fy).The strong stable manifolds W?**(/3,)

for all n € N are transversal to I* x IY. Then by the C' coordinate change,
WP (By) N Bf)\]fv_,ll is the graph of C" map from I* x IY to I*. O

10.3 Invariant surfaces on each levels

There exists an invariant surface ) under F' on m,,(Bj.) as the graph of the
C" function ¢ with ||D¢|| < C& only if by < by and [|0.e]] < by. Then
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the image of () under the smooth conjugation (\Ifﬁn)_l is also an invariant
surface under R™F with the same property. It means that there exists the
C" semi-conjugation between R"F and a certain two dimensional Hénon-like
maps R"Fyq ¢ at every deep level n.

Lemma 10.3.1. Let Q be an invariant surface under F' € Tg(€) as the graph
of a C" function & on my,(Bl.) such that ||DE|| < Cog for some Cy > 0 and

Tay(Q) = Tyy(B). Then Q, = (\Ifﬁn)_l(Q) is an invariant surface under
R"F as the graph of a C" function &, on my, (B(R"F)) such that || DE,|| < Ce
for some C > 0. In particular, ||0.&,| < C1éa™ for some Cy > 0.

Proof. Let us denote the graph(§) and the image of graph(§) under (\Ilﬁn)_l

as follows.

graph(§) = (z, y, {(2,y)) = (2, ¥, 2)
w1 _ _
(\I]v") (graph(f)) — {($/7 y/a Z/)} — Qn

By Lemma 7.2.2, we observe the following.

= ool + SH(W)) +tno0n oy +unoono(Z + Ry(Y)) (10.3.1)

Y= 0no-y (10.3.2)

z2=dnoono Y +0ono(Z+RyY)) (10.3.3)
where w' = (2/, ¢/, 2’). Firstly, let us show that @, = {(z/, v/, 2/)} is the

graph of a function &, that is, 2/ = £,(2’, ¢'). By the equations (10.3.2) and
(10.3.3), we see that

/ Y
= 10.3.4
V= ( )
—d,0-
J= 20V pn < Y ) (10.3.5)
On,0 On,0
Thus
/
Z/ — g(I, Un,O y) _ dn,o . y/ - RBL (y/)
On,0

Then if x is well defined by 2/ and 4/, then 2 is also a well defined function in
terms of 2’ and y’. The invariant surface @) intersects only faces of B}, which
satisfies {(x,y, 2) | m o ¥ (z,y,2) = const. } and {y = const. }. The map
Uy is a diffeomorphism between B(R"F') and B, and furthermore, the image
of each face of B(R"F') is also corresponding faces of B/’.. Since B(R"F) is
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the box domain and it’s four faces are {x = const.} and {y = const.}, the
projected image of the surface and the box to the zy—plane are same as each
other, that is, 7, (@) = Ty (B(R"F)). Then for each 2’ € 7,(Q,,) there exists
2" and ¢ such that (', vy, 2") € @Q,,. Moreover,

T oWg(2, Y, ) = .

Furthermore, there exist 2’ and y’ which determines x because W{ is a diffeo-
morphism for each x € m,,(B]..). Let us show that if x is defined, then it is
uniquely determined in terms of 2’ and y’. On the equations between (x,y, 2)
and (2',y',2'), the variable z is only contained in (10.3.1). Let us define the
map G(z, y, 2') as follows.

Glx, 2, y) = —z+ ano(@ +SHW)) +tno0no Y + unoono(z + Ry(Y))

= — a4 ano (@ +S5(2, Y, 7)) + twoono- Y
+ Un, 0 (5(% y) - dn,O On,0 - y,)

Then

0.G(x, 2, y) = — 14 ano- 0,50 - 002" + U005

= — 14+ 209 8m . 9.6 + uy 0,6

On,0

Recall that a,, o < 0®" and 0, ¢ < (—0)". Lemma 7.2.4 implies that 9,5} =

O(#) and Lemma 7.2.2 implies that | u, o] < C& for some C' > 0. Then the
partial derivative of G over x is away from zero.

|0,G(z, 2, )| >1—-Co&c" —C1E*>c>0 (10.3.6)

where the positive numbers Cy and C are uniform constants for all n € N
with sufficiently small £&. The implicit function theorem implies that the x
is a well defined function in terms of 2’ and vy’ on some neighborhood of the
point (z’,y"). Furthermore, it is globally well defined as the C" function of 2’
and ' by the continuation using the neighborhoods of every points because
of (10.3.6). Hence, 2’ is well defined as the function of variables 2’ and y" on
the 7, (Dom(R"F)) and denote 2’ to be &,(z/, y'). Observe that Sf(w') =
S5 o Eule!, 1)),

Let us calculate the norm || D&, (2', ¥')||. By the chain rule, the following holds.
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06, 0§, Ox
o " or o
O _ 06 0r 05 Oy
oy’ or oy  dy 0y

By the (10.3.5) and Lemma 7.4.1, we see that

oy O la"’o(l + 0S5 () + U0 7m0 093’]
ag’n 1 n / 85” n\/
o = p_— - 0,€ {amo Oy Sg (W) + tn, 0 Tn,0 =+ Un,o Un,O( By’ + (Rp) (y’))}
+ 0, — duo — (REY ( g )
On,0

(10.3.7)
Since 0,0 < (—0)", a0 < o for each n € N and |0, S§(w')|| < C3¢ for
some C3 > 0 by Proposition 7.2.3, the estimation of each partial derivatives
of &, is the following.

|22 < jugl oo™ < C0”
or
3
H 33/ < NOLE CLza™ + || 0u - to + 0y€ — dn ol + Cog 0™ < C&
for some C' > 0. Therefore, ||DE,|| < Ce. .

Remark 10.3.1. In general, the renormalized map of a small perturbation of the
model is not a small perturbation of model map on the deeper level. Moreover,
the model map itself does not give any information about 9,6, on each level
n. Then in order to obtain invariant surfaces on the successive levels, we used
the scope map (¥",)~! instead of constructing universal expression of small
perturbation of model maps on each level.
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Chapter 11

Applications of two dimensional
theory to the invariant surface

As F' is a sufficiently small perturbation of the model maps with by < by,
we have obtained a C" invariant surface ),, of R" I for every sufficiently deep
level. Moreover, the invariant surface is the graph of a C" map, &, from I* x Y
to I*. Then using the graph map (z,y,&,) — (z,y), C" Hénon-like maps is
defined on the 7,,(B) on each level. Moreover, we can define the coordinate
change map in the similar way. The C" Hénon-like maps on each level is
actually the renormalized map defined by the conjugation with the horizontal
diffeomorphism by Lemma 11.1.1. The dynamical and geometric properties
of C" Hénon-like maps are valid in the invariant surfaces (),,, for instance,
non existence of the continuous invariant line field, non-rigidity on the Cantor
set and unbounded geometry of Cantor set. These negative results on the
invariant surface is also valid on the three dimensional analytic Hénon-like
map in no time.

11.1 Universality of C" two dimensional Hénon-
like map from invariant surfaces

Let F' € Zp (&) be a small perturbation of the given model map Foq € Zp(é)
with the sufficiently small £ > 0. Let @), and )} be invariant surfaces under
R"F and RFF respectively and assume that & < n. Then by Lemma 10.3.1,
we may assume that U} is the coordinate change map from level n to k such
that U (Q,) C Qk. Let us define the C" two dimensional Hénon-like map
2d¢F ¢ on level n as follows.
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20 Fn, ¢ EWﬁZORnﬂQnO(WS")_l (11.1.1)

Ty

where the map (753)™" : (x,y) — (2,y,&(x,y)) is a C" diffecomorphism on
the domain of two dimensional map, 7,,(B). In particular, the map Fyy ¢ is
defined as follows

Foa e(x,y) = (f(2) — ez, y,6), @) (11.1.2)

where graph(§) is a C” invariant surface of the three dimensional map F':
(l’, Y, Z) — (f(I) - 8(1’, Y, 2)7 x, 5(![’, Y, Z))

Let us assume that 3 < r < co. By Lemma 10.3.1, the invariant surfaces, @),
and @y are the graph of C” maps £, (x,y) and & (x,y) respectively.

The coordinate change map ,,Vy . is defined as the map which satisfies the
following commutative diagram.

v
(Qm Tn) (Qka Tk)
ﬂ-gz, n ﬂ-fcz, k
2d\112,§

(2dBn7 Tad, n) (2dBka Tad, k)

where ), and @}, are invariant C" surfaces with 3 <r < oo of R"F and RFF
respectively and Wﬁa ,, and 71'3; . are the inverse of the graph maps, (z,y) —
(z,y,&,) and (z,y) — (z,y, &) respectively.

Using translations Ty : w — w — 7, and T}, : w — w — 7,, we can let the
tip move to the origin as the fixed point of the new coordinate change map,
U =T oWl oT ! which is defined on Section 7.1. Thus due to the above
commutative diagram, the corresponding tips in 94 B; for j = k,n is changed
to the origin. Let 7., o T; be Ty ; for j = k,n. This origin is also the fixed
point of the map oWy ¢ 1= Tog k © 94V} ¢ © T2_d71n where Thg j = 74y, ; 0 T; with
J=k,n.

By the direct calculation, we obtain the expression of the map ,, Wy . as follows.
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2a Vi £ 7T ko Vi(z,y,6n)

¢ Qo k tn,k On,k Un,kOn,k T+ S]?,g
— k
= Tk © On, k )

dn, kEOn, k On, k gn + RZ (y>

- (an,k(x + S}Zg) + tn,k On,k Y + Unp, & O-n,k(gn + RZ(y))a On,k y)
(11.1.3)

where S} . = S (7, y, (7, y)). Then

Jaczdllf;;f:det< -+ ¥ ke " On8n) + Un,k On, 1 0§ )

0 On,k

= On,k (an,k(l + amS]?,g + 8,25]?75 : amgn) + Un, k On, k amgn)
(11.1.4)
If F' € Zp(¢) has the invariant surfaces as the graph from I* x [¥ to I* on every

level, then gd\Ika? is the conjugation between (24Fy ¢)? and 94Fj41 ¢ for each
k € N. Then the two dimensional map Fyg ¢ is called the formally infinitely
renormalizable map with C” conjugatlon Moreover, the map defined on the
equation (11.1.3) with n = k + 1, gd\If ! preserves the horizontal line and is
the inverse of the horizontal map

(,y) = (@) —enlz, 9, &), y) © (or, 03Yy)
by Lemma 11.1.1 as follows.

Lemma 11.1.1. Let the coordinate change map between (sqFg ¢)* and 2qF+1 ¢
be Qd\Ifﬁfg which is defined on (11.1.3) as the conjugation. Then

k+1 _ pp—1 -1
2d‘1’k,5 = Hk,g o Ay

for every k € N where Hy, ¢(x,y) = (fu(x) — ex(x,y,&), y) and A,;l(:c,y) =
(O'k;l', Uky)

Proof. Recall the definitions of the horizontal-like diffeomorphism Hj and it’s
inverse, H, L as follows.

Hy(w) = (fi(z) —ex(w), y, 2 — 6(y, fi '(v),0))
H (w) = (¢ (w), y, 2+ 6(y, [, (1),0))
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Observe that Hy o H, ' =id and f; o ¢ '(w) — ), o H, ' (w) = x for all points
w € B. Then if we choose the set oy - graph(,.1) C B, then the similar
identical equation holds.
By the definition of the map ,,¥} ., the following equations hold.

2aVile (z,y) = mob o Wit o (nih) " (x, y)

- ﬂéz o \Ili+1($a Y, §k+l)

— &k —1 —1
= 7T:B o H OA x7y7£k

5y k_l e +1) (11.1.5)
= sz o Hk (O-kxg oLy, O-kgk'i'l)

(x) = Wﬁ@ (05, " (or, ony, ok&ktr), oY, Eu(dy ", ory))

= (¢, (onz, orY, Ok€ri1); orY)

In the above equation, () comes from the fact that H, "o A, '( graph(&41)) C
graph(&).

Let us calculate Hj, ¢ 0 5,V

’,z’*gl(x,y). The second coordinate function of it is

just ory. The first coordinate function is following.

fro ¢ (onx, o1y, oklrrr)
— 814(@5/;1(%% oYy Okkt1)s OkY, 5k(¢;§170ky))
(*) = fyo ¢y (on, ony, okérr1) — ek © Hy, (04, okY, oxErin)

= OX

Hence, Hj ¢ © Qd\Ifﬁf’;(x,y) = (opx, opy). However, Hy ¢ o (Hk_é(:c,y) o

A,;l(x,y)) = (opx, ory). Therefore, by the uniqueness of the inverse map
of Hk,f(zay)a i . .
20Vie = Hy e o Ay

0

Recall the topological definition of the renormalizability, that is, W*"(5y) N
W#(31) is the single orbit of intersection point under F. It does not involve
the analyticity of Hénon-like maps. Then this definition can be applied to
the C" Hénon-like maps. Moreover, Lemma 11.1.1 enable us to define the
renormalization of the two dimensional C" Hénon-like maps as the extension
of renormalization of the analytic Hénon-like maps. Let f : I — [ is the
unimodal map and J C int(/) which contains the critical point such that
JN f(J)=@ and f*(J) C J.
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Definition 11.1.1. Let F': (z,y) — (f(z) — e(z,y),x) be a C" Hénon-like
map with r > 3. If F' is renormalizable, then RF', the renormalization of F' is
defined as follows.

RF=(AoH)oF?o (H 'oA™)

where H(z,y) = (f(z) — e(z,y),y). Define the linear scaling map A(x,y) =
(sx,sy) if s : J — I is the orientation reversing affine scaling and .J is minimal
such that J x I is invariant under H o F? o H ! .

If F' is renormalizable n times, then the above definition can be applied to
REF for 1 < k < n successively. The two dimensional map 2q¢F, ¢ with the
C" function &, is same as R"Fyq ¢ by Lemma 11.1.1 and the above definition.
Thus if the maps 94F, ¢ are defined on every n € N, then the map 94, ¢ is
denoted to be R"Fyy ¢ and it is called the n'™ renormalization of Fyy .

Recall that every invariant surfaces as the pseudo unstable manifold in Lemma
10.2.1 contains the global attracting set, in particular, the critical Cantor set
Op. Then the ergodic measure on the critical Cantor set restricted to the
surface @, say p| g, is same as the measure p without restriction. Moreover, the
critical Cantor set, Op,, . is the image of O under Wgy and it is independent of
invariant surfaces because all invariant surfaces contains the global attracting
set. Then we suppress £ in the notation of the Cantor set, that is, Op,, , =
Op,,.

The ergodic measure on Op,, is defined as the push forward measure p on Op
by the map 7§, That is to say, Op,, = 75,(Op) and the ergodic measure on
Op,, is defined as (7§,).(1t) = f124,¢ where 1 is the ergodic probability measure
on Op. In particular, it is defined as follows.

1
MQd,E(Wgy(OF N B:Lv)) = lu’2d7§(7T§y(OF) N ﬂ-gy(B:Lv)) = %

The fact that Wgy(O r) is independent of ¢ implies that fia4 ¢ is independent of
¢. Then we denote this measure to be piog.

Let us define the average Jacobian of Fyg ¢.

by 2q = exp/ log Jac Foq ¢ djioq
0]

Faq

This average Jacobian is independent of the surface map ¢ because every
invariant surfaces has the same invariant tangent bundle under DF on the
global attracting set Ap which contains Op,,.

103



Lemma 11.1.2. Let F' € ZIp(g) for sufficiently small & > 0 with by > bs.
Suppose that there exist invariant C" surface with 3 < r < co under R"F' for
every n € Ny and each surface contains the global attracting set of each R™F

such that graph (§,) is the invariant surface where &, is C™ map from I* x 1Y
to I7. Let R"Fyq ¢ be 15y 0 Fy|q, o (n&n)~" for each n > 1. Then

Jac R Fyq e = B'ay a(2)(1+ O(p"))

where by o4 15 the average Jacobian of Fay ¢, p € (0,1) and a(x) is the universal
function of x.

Proof. By the distortion Lemma 6.0.3 and Corollary 6.0.4, we obtain
Jac Fyy ¢ = b7 501+ O(p"))
Moreover, the chain rule implies that

. Jacoq W (w)
Jac R"Fyy ¢ = b} y
8T L2 Gag g Vg (R Faa g(w)

(1+0("))

where w = (z,y). After letting the tip on every level move to the origin by the
appropriate linear map, the equation (11.1.4) implies the Jacobian of ¥ .(w).

Jac Qd\Ijaf = 0On,0 (Oén’(] . 8x (SC + Sg(.ﬁ(f,y, gn)) -+ Up,0 On,0 * 8x£n) (1116)

Then in order to have the universal limit of the Jacobian, we need the asymp-
totic expression of the following.

(1) Oz (2 + S§(2,y, &)

(2) 70 9,6,

Q0

By Lemma 7.4.2,

v+ S5 (z,y, &) = vu(7) +ap Y+ ap2y - &+ ap3 (fn)2 +O(p")

with C! convergence. Then

896(:)5 + Sg(l’,y, gn)) = ’U;(ZL’) + aF,2y . axgn + 2&F,3 : gn : a:cgn + O(pn)

By the equation (10.3.7) on Lemma 10.3.1, we see [|0,&,|| < Cgo™. Then
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Oz + Sy (z,y, &) = vi(z) + O(p") (11.1.7)

By the equation (10.3.7) on Lemma 10.3.1,

In0 Kn _ g ez " In0 O
an,o % - 8965(:)3,3/) 1 + a:L‘SO (x,y, gn) + an,O un,O 0:)3
Un,O agn axg(f>g)

O6n _ 1+ 0,5 (z,y, &)

Uno Or 1 —u, 00,£(Z,7)

where (Z,y) € B(Fhq,¢). Thus (Z,y) converges to the origin (0,0) as n — oo
exponentially fast by Corollary 5.2.2.

diam(q¥g ) < diam(¥g) < Co™

for some C' > 0. In addition to the exponential convergence of 9,£(z,7) to
0:£(0,0), uy,, o converges to u, o super exponentially fast. Then,

Un,O % o 8x5(070)

= ! & 11.1.
Let (2/,y") = w' = 94F), ¢(w). Then
On,0
n 1—}—05(;5” w)) + — Uy axnx>
Jach\Ifovf(w) _ ( 0,5( ) o 0 0:80(2,Y) 1119)
Jacy 5 e(w) 14 0,(Sz (w)) + Z"’O U0 Onn(a’, y/)
n,0

where S§(x,y, &) = S§ ¢(v,y). The translation does not affect Jacobian de-
terminant and each translation from tip to the origin converges to the map
w — T exponentially fast. Then by the similar calculation in Theorem 7.5.1,
the equation (11.1.9) converges to the following universal function exponen-
tially fast.
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U, 0 amg(ﬂ-wy(TF)) / .

1—%ﬁ§w%§»“@ Y
U, 0 amg Tay\TF , T —

1 _ u*,Oﬁxg(ﬂ-my(TF» U*(f*( 1))
Us, 0 0u&(T0y (TF)) )

1-— Us, 0 a:cg(ﬂxy(TF))

/ Uy, 0 O (T2 (TF))
vi(folz —1)) (1 T axg(wxy(w))>

vi(z—1)+

vi(fele = 1)) +

(11.1.10)
0

Theorem 11.1.3 (Universality of C” Hénon-like maps with C” conjugation
for 3 < r < o00). Let Hénon-like map Fyq ¢ be the C™ map with 3 < r < oo
which is defined on (11.1.2). Suppose that Foy ¢ is infinitely renormalizable.
Then

R Fage = (ful@) = Bngale) y (14 O(p"), @) (11.1.11)

where f,(x) is the unimodal map which converges to f.(x) exponentially fast
as n — oo for some 0 < p < 1.

Proof. By the smooth conjugation of two dimensional map and F;,
that

Qn, We see

RnF2d,§ - (fn(z) - En(x>y>€n)a ZL’)

Denote €,(x,y,&,) to be e, ¢, (z,y). By Lemma 11.1.2, we have the universal

expression of Jacobian determinant of two dimensional map, dye, ¢, (z,y) =
b2, a(x)(1 + O(p")). Then

Eng, (2, Y) = b aga(@) y (1+ O(p")) + Un(2).

The map U, (z) which depends only on the = variable can be incorporated to

Ial). O
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Theorem 11.1.4. Let Rkng,g be the C" Hénon-like map defined as wgz o
RFF|q, o (7&)~" for all sufficiently big k € N where R*F € Tp(%") with
invariant surfaces Qp = graph(&y) under RFF. Let the conjugation between

n—k
R"Foq.¢ and (R"“ng,g)2 be 5qVi ¢ Then the map o,V  is expressed as

follows.
(1 2dtn,k) <Oén,k ) <I+ 2d51?(w))
1 Ok y (11.1.12)

= (Oén,k(fb’-i- 255 (W) + On ks 2dbn,k - Y, Un,ky)

D, U7 (0) = (1 2dt1"v’f) (O‘"v’f - k) (5) (11.1.13)

On = (—0)"F(1 4+ O(p")) and a,, ), = > (1 + O(p*)). Moreover, x +
2451 (W) has the asymptotic

where

T+ 24Sp(w) = v () + ap py* + O(p" ")
where | ap | = O(e¥).

Proof. By Lemma 11.1.1, the coordinate change map, ,,¥y  is the composi-
tion of the inverse of horizontal diffeomorphisms with linear scaling as follows.
HI;EOA;on_ngoAlz_il_lo---oHrzlgoAgl
Then after reshuffling non-linear and linear parts separately by the direct cal-
culations and letting the tip move to the origin by the appropriate translations
on each levels, the coordinate change map is of the form (11.1.12). In order
to estimate 9457 (w), the recursive formulas of the first and the second par-
tial derivatives of 945} (w) are required. However, analyticity does not affect
the calculation of any recursive formulas of derivatives. C" map with » > 3
is sufficient. Then the exactly same calculation in Section 7.2 in [CLM] can
be used. Since the recursive formulas with same estimations are applied to

205 (w), we just observe the following estimation

T+ 94Sp(w) = v.(x) + ap L y® + O(p" ")
where |ap | = O(e?). O
Let us denote 4t541,%x to be 941, for simplicity. Compare the derivative of

H % o A" and the form (11.1.13) with n = k + 1. Then b¥,, < 5t for
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each k € N. Hence, the C" infinitely renormalizable Hénon-like maps (which
are defined by the C" conjugation from an invariant surface of the three di-
mensional map R"F') has the Universality theorem and the asymptotic of the
coordinate change maps which is similar to the analytic maps.

11.2 Non existence of the continuous invariant

line field on @,

The C” conjugation (z,y) — (z,y,&.(z,y)) between R"Fyy ¢ and F|g, is as
smooth as the invariant surface (), on each level n. Since every invariant
surfaces contain the global attracting set which has periodic points and the
critical Cantor set, any differentiable invariant properties on Op is same as
the properties on Op,, by the C" conjugation.

Lemma 11.2.1. Let Fyy ¢ be a C" Hénon-like map for 3 < r < oo. Suppose
that there exists the C" conjugation between three dimensional map F € Tp(£)
restricted to its invariant surface, F|q and Faye. If Foqe is the infinitely
renormalizable map defined on Definition 11.1.1, then Fyq ¢ has no continuous
invariant line field on the critical Cantor set. Especially, every invariant line
fields is discontinuous at the tip.

Proof. C" infinitely renormalizable Hénon-like map for 3 < r < oo has the
Universality theorem (Theorem 11.1.3) and estimation of scaling map ¥} by
Lemma 11.1.4 similar to the analytic maps. Then actual proof of this theorem
is essentially same as the proof of the analytic case. See Theorem 9.7 in [CLM]|
or Theorem 4.2.2 on [Haz|. O

Theorem 11.2.2. Let F' € Zg(€) be a small perturbation of the model maps
with by < by. Let Q) be an invariant surface under F which contains the global
attracting set. Then F|g has no continuous invariant line fields on the critical
Cantor set, Op. FEspecially if there exists invariant line field on O, then it is
discontinuous at the tip.

Proof. We may assume that the map F' € Zp(&) which is a small perturbation
of model map with by < b; has an invariant surface ) which is the graph of
C" map &, namely, ) = graph(§) from P to I?. Let P the domain of the two
dimensional Hénon-like map, F5g ¢ in particular, the square domain with the
center origin on the zy—plane. For the notational simplicity, we suppress £ in
the notation of two dimensional map in this proof. For example, Fby ¢ = Fag.
Let T, OF2dP be the tangent bundle on the critical Cantor set of DF5;. For each
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point w € Op,,, let us assume that To, P is decomposed to the invariant
subspaces F,; & E2, under DFy;. In order to simplify the notation let the
graph map (z,y) — (x,y,£) be just &.

Then Tp, @ has the splitting with invariant subspaces, E' & E? under DF| .
Since () is a C" invariant surface under I’ and it contains the critical Cantor
set Op, the following diagram is commutative.

D¢,

Tor, P (D¢, €) "
™ 7'('/
3
OF2d Or

where the tangent map is defined as (D&, &) (v, w) = (D&(w) - v, &(w)) for each
(v,w) € TOF§P and both 7 and 7" are the projections from the bundle to the
base space, that is, for each (v, w) € bundle, (v, w) = w and 7'(v,w) = w
respectively.

Furthermore, the image of any invariant tangent subbundle of Toy,, P is an
invariant subbundle of T, ). Then without loss of generality, we may assume
that (D, €)(E),) = E'. Let v and /' be the invariant sections under Fy; and
F| ¢ respectively.

Ode Or

Since ¢ is C" function, the tangent map (D&, €) is continuous at (v, w) € El,.
Hence, the section ~ is continuous if and only if 7’ is continuous because £ is a
diffeomorphism. However, any invariant line field under DF5; on the Cantor
set Op,, is not continuous at the tip, 7p,, by Lemma 11.2.1. Hence, there is
no continuous invariant line field under DF| g on any C” invariant surface @
under F'. 0J
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11.3 Non rigidity of Hénon-like maps on the
invariant surfaces

If two dimensional analytic Hénon-like maps Fy; and Ff:;d in Zp(£) have different
average Jacobians, b; and El, then any conjugation ¢,q between Op,, and
(5;2/ , 1s at most Holder continuous at corresponding tips by Theorem 10.1 in
[CLM]. This theorem relies on Universality theorem and the estimation of the
tilt, ¢, depending only on the average Jacobian b rather than analyticity of
the Hénon-like map. However, C" infinitely renormalizable Hénon-like maps
defined by the invariant surfaces has Universality theorem, Theorem 11.1.3 and
the universal estimation of the scaling maps, Theorem 11.1.4. These theorems
are similar to the corresponding theorems of the analytic maps. Then if we
follow the proof of the non rigidity theorem in [CLM] with C" setting, then
the same conclusion would appear.

Theorem 11.3.1. Let Fyy, F;i € Ip(&) be the two dimensional C™ Hénon-like
maps. Let Op,, and OEZ be the critical Cantor set of Foq and Fygq respectively.

Let by and 51 are average Jacobians of Foq and 132; respectively. Let ¢oq be a
homeomorphism between Of,, and Op— with ¢2(T5) = Tr,,. Assume that

by > by. Then the Hélder exponent o of ¢ogq satisfies the following.
a < E <1 + loglll>
2 log bl

Theorem 11.3.2. Let F, Fe Ip( ) be the small perturbation of model maps
with C" invariant surfaces @ and Q respectively. Suppose that the average

Jacobian of F'| g and F| ¢ is by and bl respectively and also suppose that by > b1
Let the homeomorphism ¢ between two critical Cantor sets, Op and Og with
&(75) = TF be the map defined on Theorem 11.5.1. Then the Holder exponent
of ¢ is same as ¢aq if the distance on the critical Cantor sets is induced by the
Riemannian metric on each invariant surfaces ) and Q.

Proof. Let F' and Fe Zp(€) be small perturbations of model maps. We may
assume that there exist invariant surfaces under R"F and R"F respectively
for every n € N. Then the map ¢ between two critical Cantor sets of the three
dimensional maps F' and F is defined as follows.

¢ _7T O¢2do7rscy (1131)
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Every C" map Fyq ¢ on the critical Cantor set is independent of the invariant
surface graph(§) because all invariant surfaces contains Op. Then we suppress
the notation £ in the two dimensional map Fhg. The following diagram is
commutative. Then ¢ is the conjugation between F and F' on each critical
Cantor set. Moreover, 7,,, T, and ¢o4 maps the tip of each domain to the tip
of its image. Then we may assume that ¢(75) = 7p.

Ty ®2d o Txy ~
Or OF 2d Faq OF
r Faq Foq F
Toy $2d o Ty B

The above commutative diagram implies the following equation.
¢oF:7T;ylo¢2do(7?;yoF) :W;ylo((bzdong)o@

= (m,, © F2q) 0 ¢34 0 Ty = F o (m,, © hog 0 Tay)

=Foo¢

Since both m,, and 7w, is differentiable, it is locally Lipschitz map near the
tips of each Cantor set. If ¢9, is Holder continuous with the Holder exponent
a, then ¢ := w;yl O (poq © Ty is also Holder continuous map with the same
exponent of ¢o4. Then the non rigidity with Holder conjugation between the
two critical Cantor sets with different Lyapunov exponent is same as that of

two dimensional Hénon-like maps.

The Riemannian distance dr between two points is the minimal distance along
the path which connects two points on the surface. Since the invariant surfaces
is the graph of C” function ¢ or ¢ and we may assume that C? norm of each
surfaces is uniformly bounded, dg(&(w1),&(we)) < Cdist(wy, wsy) for every
wy, we on the small neighborhood of the tip where C' depends only on [[£]|c2.
Then m,,, 7, and inverses of these maps are locally Lipschitz function between
the invariance surface and xy—plane. The composition of Hélder map and
Lipschitz maps does not change the exponent of Holder map. Then ¢ and ¢4
has the same Holder exponent. O
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11.4 Unbounded geometry on the Cantor set

Recall the pieces By, = Bi(F) = U2 (B) on the n' level or n'" generation
which is defined on the Chapter ?? where the word, w,, = (w; ... w,) € W" :=
{v,c}™ has length n. Recall that W™ is the additive group of numbers with
base 2 (mod 2") and

n—1
w, = (wy...w,) — ZwkHQk
k=0

is the one to one correspondence between words of length n and the additive
group. Denote the subset of the critical Cantor set on each pieces to Oy, =
B N O. Then by the definition of Oy, Lemma 5.2.1 and Corollary 5.1.1, we

have the following facts.

(1)
or= |J Ow

weWwn

(2) F(Bg) € B

w4 for every w = (wy ... w,) € W™
(3) diam(B) < Co™ for some C' > 0 depending only on B and &.

Then we can define boxing of the Cantor set of n'* generation.

Definition 11.4.1. Let ' € Z(£). A collection of the simply connected sets
with non-empty interior B" = { B}, € Dom(F)|w € W"} is called bozing of
Op if

(1) Oy € Bl for each w € W™.

(2) By and B7, has disjoint closure if w # w'.

(3) F(By,) C By, for every w € W™,

(4) Each element of B™ is nested for each n, that is,

BMftc Bl weW" ve{vc}

W

On the above definition, the elements of boxing are just topological boxes.
However, the geometry of the boxing can depend on not only F' but also the
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boxing itself. Then we define canonical boxing, B, which is the set of pieces
By, = Vi (B). Let us say that Dom(Fy;) := Bsg in order to distinguish the
domain of three dimensional Hénon-like map from that of two dimensional
map.

Let the minimal distance between two boxes Bi, B be the infimum of the
distance between all points of each boxes and call this distance dist i, (B1, Ba).

Definition 11.4.2. The boxing B" defined on the Definition 11.4.1 has bounded
geometry if

distpin (B2EY, BMHY) < diam (B2 for v € {v, ¢}

wov )

diam(B?) < diam(B2}")  for v € {v,c}
for all w € W™ and for all n > 0.

Moreover, if the boxing has bounded geometry, then we just call O has
bounded geometry. If the given boxing does not have bounded geometry,
then we call O has unbounded geometry.

The proof of the (un)bounded geometry of the Cantor set requires to compare
the diameter of boxes and the minimal distance of two adjacent boxes in the
boxing. In order to compare these quantities, we would use the maps, ¥} (w),
Fy.(w) and WE(w) with the two points wy = (21,91, 21) and wy = (22, ya, 22) in
the domain of F),(w), namely, Dom(R"F'). Let us each successive image of w;
under U7 (w), Fj.(w) and WE(w) be w;, w; and w; for j = 1,2.

Denote w; = (4,9, #;) and the points W, and @; have the similar coordinate
expressions. Let S; and Sy be the (path) connected set on R3. If 7,.(S;) N
7,(S32) contains at least two points, then this intersection is called the x—azis
overlap or horizontal overlap of S and S;. Moreover, we say S7 overlaps S
on the x—axis or horizontally.

Let Fy; be an infinitely renormalizable two dimensional Hénon-like map and b,
be the average Jacobian of Fy;. Then the unbounded geometry of the Cantor
set depends on Universality theorem and the asymptotic of the tilt, —t; =< b%k
but it does not depend on the analyticity of the map. The section 5.3 in [Haz]
contains the proof of unbounded geometry Cantor set under the assumption
21 — 2y = 0. The infinitely renormalizable C" Hénon-like maps defined by
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the invariant surfaces has Universality theorem and the asymptotic of the tilt
k
—ogqtr < b% .

Lemma 11.4.1. Let F' be an infinitely renormalizable C™ Hénon-like maps
defined by the invariant surfaces. Let us choose two points wy = (x1,y1) and
wy = (T2,y2) N 9qBLR"F) N Opap and 2qBYR"F) N Opgnp respectively.
Suppose that oqBY F(RFF) overlaps 2qBR.*(R¥F) on the x—azis for some

w € W™k Then for all sufficiently large k and n with k < n, we have the
following estimate.

distuin (208, 20B) < Cobt oo™ *
for some Cy > 0. Moreover,
diam(gdB:‘w) Z Claz("_k)ak
for some C7 > 0.

Proof. The proof is the analytic case because it depends on the universality
theorem and asymptotic of the tilt —o4ty =< b%k. Every C" infinitely renormal-
izable maps defined by the invariant surfaces, R"Fb; ¢ has the universal limit
F.(w) = (fu(z),2,0) as n — oo. This limit is same as the limit of analytic
two dimensional Hénon-like maps, R"Fy; in Zg(€). Then we can adapt the
proof of the analytic case with the analytic fixed point of renormalization, F,
and universal convergence of the renormalized maps. See Proposition 5.3.4
and Proposition 5.3.6 in [Haz] with the periodic doubling combinatorics of
renormalization operator. U

The unbounded geometry on the critical Cantor set holds if we choose n > k
such that b2" = "% for every sufficiently large k € N. The fact that 0> =
0" % for n > k is the necessary and sufficient condition two adjacent boxes
2aB" " (RFF) and gdBZ;]ZC(RkF) has the x—axis (or horizontal) overlap.

vn—ky
Remark 11.4.1. The x—axis overlapping with the parameter b; € [0, 1] is the
G5 dense subset with full Lebesgue measure in [0, 1] by Theorem 5.5.1 in [Haz]
also.

Proposition 11.4.2. Let F' € Z(€) be three dimensional Hénon-like map with
by < by. Suppose that there exists an invariant surface under RFF, Q) =
graph (&) from I* x 1Y to I*. Then Euclidean distance of any two points
q1,q2 in Qn C Dom(RFE) is comparable with the two dimensional distance,

dist (744(q1), Tay(q2))-
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Proof. The invariance of the surface under means that R*F(Qy) C Q, that
is,

RkF(LL’, Y, 5) = (fk(x> - 5k(x7 Y, 5)7 €, 5k(x7 Y, 5)) € graph(&k)
Thus

§e (fre(w) —er(,y, &), ) = 0, y, &)

Then || D&l < || éllor < I8kl < C2*" on m,y (Qr N RFF(B)).
The mean value theorem implies that

dist(m. (1), 7=(g2)) < [[DE| dist(may(g1), Tay(g2))

for any points ¢; and ¢, on Si. Then

dist (7 (q1), T2y (q2)) < dist(q1, g2)
dist (T (q1), Tay (q2)) + dist(m2(q1), 72(q2))
< dist (74 (1), Ty (g2)) + O dist(my (1), Tay (42))

= (1+ C22") dist (7 (q1), Tay (q2))

IA A

O

Theorem 11.4.3. Let the three dimensional Hénon-like map, F € Z(g) be
a small perturbation of the model map with by < by. Suppose that F has
an invariant surface Q) as the graph of C" map & from I* x IY to I* for
some 3 <1 < oo. Suppose also that B";*(RFF) overlaps B *(RFF) on the
x—azis for v.=v""% € Wk Then the critical Cantor set Op has unbounded
geometry.

Proof. The box on the invariant surface, () is defined as the image of the
box, 94 B2 of two dimensional Hénon-like map under the graph map (z,y) —
(z,y,€) for every n € N. For the minimal distance between two boxes, it is
sufficient to know that each box on the invariant surface () is contained in
the three dimensional box with the same word. By Proposition 11.4.2; the
minimal distance between two boxes on the surface and xy—plane with same
words is comparable. Then the upper bound of the minimal distance of two
dimensional box is also a upper bound of the three dimensional box up to the
uniform constant independent of n. By Lemma 11.4.1, we have

distomm(B2,, B < Cob> oo "

wuv’

for the word w = v *~leoh € W™,
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By Proposition 11.4.2; diameters of the two dimensional box, 94B, on the
xy—plane and box on the surface (), namely, ) N By, is comparable for all
sufficiently large n € N. The box of the three dimensional map F', B}, contains
the box, @ N By, with same word w. Then the diameter of B, is greater than
that of QN By,. However, if the word w is fixed the lower bound of diamy,; B,
is also a lower bound of diam B, up to the uniform constant independent of
n. By Lemma 11.4.1, we have

diam(B2,) > Co* "= H gk

for the word w = v"*~!cv* on the above inequality for the minimal distance.

The condition of x—axis overlapping of the adjacent two boxes in three dimen-
sion is same as the condition of the two dimension because of the existence
of the invariant surface as the graph from the plane to z—axis. Then we may

assume that
ok _ n—k
by <o

n . B) < Co*diam(B?,) for
some C' > 0. Therefore, the critical Cantor set has unbounded geometry. [

for all sufficiently large k. Hence, disty;, (B
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Chapter 12

Another invariant space under
renormalization

12.1 Definition of the invariant subspace from
recursive formulas about ¢

Let F' be a renormalizable three dimensional Hénon-like map. Recall pre-
renormalization of F'; PRF is defined as follows.

PRF=HoF?oH!

where H(w) = (f(x) — e(w), y, 2 — d(y, f*(y),0)). Recall the renormalized
map RF is defined as A o PRF o A~! where A(w) = (sx, sy, sz) for the ap-
propriate number s < —1 from the renormalized one dimensional map, f(x).
Denote o9 = 1/s

Let the first coordinate map of H~1(w) be ¢~*(w). Then
H ' (w) = (¢~ (w), y, 2+ 8(y, f7 (), 0))
By the direct calculation PRF is as follows.
PRE(w) = (f(f(x) — 20 Fo H () — £ 0 F? 0 H™ (w),
z, 0o FoH '(w)—§(z, f(x),0))

Let the perturbed part of the first coordinate map of PRF' be Pre e1(w). Let
the third coordinate map of PRF be Pre §;(w). Moreover, Pre e;(w) and
Pre §;(w) is defined as the corresponding parts of PR*F for each k € N.
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Denote partial derivatives of the composition as follows.
9{PoQ(w)} =0, P(Q(w)) 0P at Q(w) is 0P o Q(w)

The similar notation is defined for partial derivatives over any other variables
also.

Then the relation between Pre e (w) and e;(w) (and between Pre 0y (w) and
dx(w) respectively).

Pre ep(w) = o1 - € 0 ( ) and Pre 0p(w) = o1 - dp 0 ( ! )

Of—1 W Ofg—1 W

Thus each partial derivatives of &5 (and d) at a point w are the partial deriva-
tives of Pre ex(w) (and Pre i (w) respectively) over the same variables at the
point with the linear scaling, o4_1 w for every k£ € N. For example,

Oyer(w) = 0, (Pre &) o (0p—1 w)

Let us calculate the recursive formula of each partial derivatives of Pre 6;(w).
By the definition of the pre-renormalization and the recursive formula (B.0.4),
0. Pre 07 is the following.

Oy (Pre 6;) (w)
= 05(60 Fo H(w) — d(x, f(2),0))
~[[0,00 (Fo H'(w)) + 0.0 (F o H*(w)) - 0,80 H*(w)] | 6™ ()

+0,80 (Fo ™ (w) = - 8z, £ (2),0)

Similarly, by the recursive formula (B.0.5) d,Pre ¢; is the following.
9y (Pre 61) (w)
=|[0,60 (FoH "(w))+8.00(FoH (w)) 0,00 H '(w)] | 9y¢~ " (w)

080 (FoH (w)- [,60 B w) + 050 H™(w) - 5800 /(). 0)]

The equation (B.0.6) implies that 0,Pre 0; is expressed in terms of sum or
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products of the partial derivatives of the maps on the previous level.

0, (Pre 51) (w)

({000 (F o H () + 00 (Fo H(w)) -850 H(w)] |- 0.6~ ()
+0.60(FoH Yw))-0.60 H Hw)

Definition 12.1.1. In the space of the infinitely renormalizable maps, let us
denote the set of three dimensional Hénon-like maps to be N if the following
equations are satisfied

dy0 o (Fo H Y (ogw)) + 0.0 0 (F o H *oow)) - 0,6 0 H *(opw) = 0
9,0 0 (F? o H ' (oow)) + 8,6 o (F? o H™ ! (ogw)) - 0,6 o (F o H ' (cpw)) =0
(12.1.1)
for all w € B.

12.2 Invariance of the space AN under renor-
malization

Recall the following definitions.

A_l(w) =0, w, Y= H_l(anw), ¢g+1 =F,o Hgl(anw)

v n

Proposition 12.2.1. Let F' be an infinitely renormalizable Hénon-like map.
Denote RFE to be Fy, and let Hy, is the horizontal-like diffeomorphism of Fj.
Let B be the cubic box which is the domain of Fy for all k € N. Then the

following s true

w'i © wf“(w) = sz—1 © Hk_—ll(ak—lwl) S Fk2—1 © Hk—l(gk—lB)
Vo it (w) = Fi_y 0 Hi Y (01w') € Fiy_y 0 Hy—1(0-1B)
Yo (w) = Fi_y o Hili(opw') € Fyoy 0 Hy—1(04-1B)

where w' = Hy '(opw) for every k € N.

!The domain of each renormalized map, R"F is denoted to be B(R"F). However, all
of B(R"F) are the same sized cubic with the center origin and each sides are parallel to the
each axes in the rectangular coordinate. Then we condensed the notation B(R"F') to B.
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Proof. Let us prove that the image of ;_;w’ under each function F}_, o H, '
is contained in the set F} | o Hy_1(0y_1B) for i =1,2,3 and j =i (mod 2).

w' = H ' (opw) = Hy ' o AL (w)

Since Hk_1 o A;l(B) C B, op_1w' is contained in o4_1B only if w € B. More-
over, Iy, o H,_1(o_w) = ¥¥(w) by the definition of 1/*. However, the set
Yk (B) is invariant under F? ;. Then we observe that following.

Fkg_l o Hk__ll(ak_lw') € Fkg_l o Hk—l(ak—lB) C F,_;0 Hk—l(ak—lB) (1221)

Next let us prove the equality part of the Proposition. Recall the definition of

ot _ 2 —1 —1
the renormalization, Fj, = Ay 0 Hy_10 F; ;o H, " oA, ",.

U o Pt (w)
= Hk_—ll(ak—l ¢§+1(w))
= Hy Y (051 Fy o HyH(ow))
= H,;_ll(A,;_ll oFjo Hk_l(akw))
= (Hil o Al)) o (Apro Hyyo F o Hi o At o Hit ) (opw)
= FiyoHl o (AL o Hy')(opw)

= F oM (opw')
(12.2.2)

By the definitions of ¥¥ and **1, we obtain the following equation.
Ur oyt (w) = Frvo HiZ o (o1 0 Hi' ) (0pw)

= Fp0H ' (op_1w)

Recall the equation ¥ = F},_;09F. Then by the similar calculation of (12.2.2),
we obtain the following.

VE okt (w) = FP_yo H ' o (A o H ') (okw)

= Fyo M (opw)

Hence, the second part of the proposition, ¥¥ o "™ (w) € Fj,_j 0 Hy_1(0%_1B)
holds. O
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In the rest of this paper, we use the notation ¢(y) and ¢x(y) as follows.

d d

q(y) = d—y5(y,f‘1(y),0), a(y) = d—yék(y,fil(y),()) (12.2.3)

for each k € N. Similarly, we can define ¢(z) or qx(z). Moreover, the value of

qx at different point, for instance at oy is expressed as gx o (oxy) and so on.

Theorem 12.2.2. Let the set of Hénon-like maps defined on (12.1.1) be N.
The space N in the space of infinitely renormalizable maps, g () is invariant
under renormalization, that is, if F' € Tg(€) NN, then RF € Zg(g) NN.

Proof. Suppose the following equation holds for F' € Zg(g) "N

9,0, 0 (F, o H, Y (o,w)) + 8.6, o (F, 0 H, ' (c,w)) 00, 0 H Y (ow) =0
0y0, 0 (F2 o H, ' (0,w)) + 0.6, 0 (F2 0 H Y (o,w)) -0p0, 0 (F, 0 H,, ' (0,w))
=0
(12.2.4)
forn=20,1,2,...,k — 1 and for every w € B. Then it suffice show that the
above equation holds for n = k by induction. Recall ¢! = H_*(opw) and
Y+t = B o H Y (opw) for k € NU {0}.
Let us express each partial derivatives of d; in terms of 0,01, J,0,—1 and

0,0k_1.
0,61 0 (Fi o Hy (o4w))

= 0,0, 0 Y (w)
= 0.05-10 (Fy—1 0 Hi Y\ (041 Fy 0 H H(ogw)))

004 0 B (001 Fr o Hy (o))

+ 00,1 0 Hi ! (041 Fy 0 Hy ' (04w)) - gr © (Uk—lcb;Zl(UW))]

— 0010 (UE o Uk (w)) - [ B0kt 0 (v 0 v (w))

+ 0.0,—1 0 (%’f © ¢§+1(w)) *qk-10© (Uk—1¢1;1(0kw))}
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0,0 © (Fk o Hk_l(akw))
= az(sk © ¢§+1(w)
= 0.03—1 0 (Fypo1 0 Hi ! (041 Fy 0 Hy (opw))) (12.2.5)
0,061 0 H. Y, (O’k_le ) Hk_l(akw))

= 0.65-10 (VY o T (w)) - 0.05—1 0 (Y 0 i (w))

0z01 0 (Hy M (o04w)) = 0p 0 5 (w)
= 0,05—10 (Fro1 0 Hi ! (041 Hy H(ogw))) = o1 © (0510, (opw))

= Oub—1 0 (Vo Wi (w)) — 1 © (0419 (opw))
(12.2.6)

Then

dy6r o (Fy o Hy M (opw)) + 8.0, 0 (Fy 0 Hy Hogw)) - 0,0, 0 (H,  (opw))
= 0,0 0 U (w) + 0.0, 0 Y (w) - 0,0 0 ¥ (w)
= 0010 (vh 0 Ul (W) - | 9,81 0 (v 0wl (w))

0010 (VE o Ul () - it o (k107 (arw) |
+ 0:05-1 0 (U7 0 U™ (W) - B © (U 0 U™ (w))
[0uir 0 (85 0 UE (W) = i o (or165 (rw)) |

= 0010 (¥ 0¥k (w)) - |0k 0 (¥ 0 v (w))

0.0 0 (uh 0 U (w)) - Budiy 0 (U 0 v (w) |
(12.2.7)
By Proposition 12.2.1, observe the following relations

Uy o Yt (w) € FEy o Hya(op 1 B), ¢F o ¢y (w) € Fyy o Hy_1(0 1 B).
Moreover, by the same proposition we see
Fy—y o9 oy H(w) = ¢ o ¢y (w) (12.2.8)

Hence, the first part of the equation holds by induction.

Recall that I}, = Ak_lon_loFlf_loHl;_lloA;_ll. Let us calculate the following
equation for later use.
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H, !\ o (o1 - Ff o Hy Hogw))
= H; ! o(oh-1- (A1 o Hyoy 0 Fp_yo Hi ' o AL)) o Fyo Hy Hogw))
= Ff o H Y o (op 1+ Fyo Hy ' (opw))
= FiioH ooy -9t (w)

= F2 ovF oyt (w) (12.2.9)

Let us express each partial derivatives of J; in terms of 0,01, 0,01 and

0.0k—1.

Oy0r o (¢ o Hy M (opw))
= 0,04 0 (Fj o ™ (w))
= 0.05_10 (Fpoy 0 Hi ' (0k-1Ff 0 Hy ' (opw)))
: [ayak_l o HY, (041 F2 0 H7 (o))
+ 0,041 0 Hi ! (031 FF o Hy Y (oqw)) + @y 0 (01 - akx))}
= 0.0i1 0 (FEy o vk o vl (w)) - [ 0,81 o (FEy 0wk o gt (w))

+ 0,051 © (sz_l oo wfﬂ(w)) “qr_1 0 (op_1 - akx))]
(12.2.10)

0,0 © (Fk2 o Hk_l(akw))
= 0.0p0 (Fy o™ (w))
= 8Z5k_1 ©) (Fk—l @) Hk__ll (O'k_lez ©) Hk_l(akw)))
. 8z6k—1 e} Hk__ll (O'k_lez e} Hk_l(akw))

= 0,0k-10 (FP_ ot o T (w)) - 0,651 0 (FP_; o 90k 0 pF T (w))
(12.2.11)
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0,0) © (Fk o Hk_l(akw)) = 0,05 0 P (w)
= 0,05_1 0 (Fk—l o Hk__l1 (ak_le o H,;l(akw))) — Qg1 0 (Op_1 - O)))

= 0,031 0 (Fy1 0 0 0 i (w)) — goy 0 (041 - 042))
(12.2.12)
Then

dyor o (FZ o Hy Y(opw))
+ 0.0 0 (Flf o Hk_l(akw)) - 0,0}, © (Fk o Hk_l(akw))
= 0,0 0 (Fj, o Wi (w)) 4 0.0 0 (Fy o T (w)) - 8,61 0 (Fy o ¥l (w))
= 0,010 (sz—l ° wf © ¢§+1(w)) ) [8y5k—1 o (sz—l © ¢f © ¢§+1(w))
+ 0,0_1 © (Flf_l oo wfﬂ(w)) Q10 (op_1 - akx))}
+ 0,051 0 (Fk2—1 © w(]f © ¢§+1(w)) 00k-10 (Fk2—l © @Df © @Dfﬂ(w))
' [89551@—1 o (F—1 0 o i (w)) — g1 0 (041 - Ukl"))]
= Do (P00 ¥R W) - [Bkcr o (2, o vk o 0¥ )
+ 0.0k—1 0 (sz—1 © 1/15 © 1/15“(11})) 0p0p-10 (Fk—l o wff o wf“(w)) ]
(12.2.13)
By Proposition 12.2.1, 4% o ¢+ (w) € F? | o Hy_1(0x_1B), that is,

V¥ o YN (B) C F?_y o Hy_1(04-1B)

v

for all w € B. Furthermore, since the region Hy_i(0)_1B) is invariant under
F?,

Fi_y oy opi ™ (w) € Fiy o Hy—1 (041 B).
Hence, the second part of the condition (12.2.4) for n = k holds. Therefore,
the space, N'N Zp(&) is invariant under renormalization. O

Then if F' € Zg(€) NN, then the recursive formula of the partial derivatives
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of dg11(w) in terms of the partial derivatives of d(w) is following.

d
0p0y1(w) = 0p0g o (Fy 0 Hk_l(akw)) — o ok (opx, fk_l(akx), 0)

8y(5k+1(U)) = 825k o (Fk ©) Hk_l(akw))
d
. 8y(5k O Hk_l(akw) + 8z5k o Hk_l(akw) . d_y 5k(aky7 fk_l(O'ky), O)

0.0k+1(w) = 0,0 o (Fy 0 Hk_l(akw)) - 0,01 © Hk_l(akw)
(12.2.14)

Corollary 12.2.3. Let F' € N NZg(¢) and the third coordinate function of F
be 6(w). Then

0,0 0o Ui (w) + 0,0 o W (w) - 0,6 0 W (w) = 0 (12.2.15)

v
for every n € N.

Proof. Firstly recall the fact that U"(B) is invariant under F?" for every
w € W". Moreover, recall also the fact that F,,(w) = A,_1 0 H, 1 0 F,%_l o
H, 1 0A, 1(w) for every n € N. Then

i (w) = Uy o By 0 HyH(opw)

= H'oAN'oH"oA oo H Y oA 0 F, 0 H  (0,w)
= HloA™! OHl_l OAl_l o ---oFs_l OH;_ll oA,_1 oHrjl(anw)

— F2" o H—l o A—l o Hl_l o Al_l O-+-0 Hg_ll (¢] An—l o H;l (¢] A;1<U))
= %o \Ifz,ffl(w)
Moreover,

2n71

F¥ o0l (w) = F* " o F2o H Yoy - 92 02 0 -- 0" (w))
€ F* ' oF?oH ' (0g-¢20¢do-- oyt (B))
C FPoH (oo -¢)o0t)o--- 0yt (B))
c F’oHYB)
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Similarly,

FoUlt(w)=FoVU" o H '(o,w)
= FoFoH 'oA'FloH'oA{'o---0F, joH ' oAl o H ' (o,w)

= FoFononzo---oF2ni1
oH oA toH " oA oo H Y oAy 1o H oA (w)

= F* o Ut (w)

Hence, the proof is complete. O
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Chapter 13

Asymptotic of each partial
derivatives of o0,, and related
formula of Jye)

13.1 Ciritical point and recursive formula of
0r0n

Let us define the critical point of F' € Zg(€) as the inverse image of the tip,
7r under F' and denote this point to be c¢g. Recall the definition of the tip.

{re} = () ¥ (B)

n>1

The above intersection is nested and each V7, (B) is connected. Then the tip
is just the limit of the sequence of U7, (B) as follows.

{rr} = ¥in(B) = lim ¥7.(B) (13.1.1)

n—00
n>1

Observe that the following fact

\I]n

un

o F,oH Yo,w) € V" (B)
U o H,(oww) € Wi (B)

for each n € N. Since diam (V) < C¢" for some C > 0, the limit of V?.(B)
as n — oo is a single point and furthermore, it is same as the limit of the point
set which is included in ¥, (B) where w = v or ¢ € W. By Corollary 12.2.3,
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the following equation holds
FoWU” o H '(o,w) = V" o F,oH, (0,w)
for every n € N. Passing the limit the following equation holds

Fo lim V., (B) = lim FoV. (B)

n—o0 n—o0
= lim FoV” o H,'({o,w}) = lim V", o F, 0o H,'({o,w})
n—o0 n—oo

= lim U}.(B) = {7r}
n—o0
(13.1.2)
where B is the domain of F}, for all n € N. Then the critical point of F', {cp}
is lim,, 0 V2 (B).

Definition 13.1.1. Let us express the notation of the composition of ¥* o
-+ 0" where w = v or ¢ € W as follows.!

k k+1 —
'va O,lvbv—i_ © O’QDZL = Z,v"*k = Z,v

k k+1 —
wc O¢c+ O OTP? = Z,c"*k = Z,c

Moreover, let us take the following notations

n n+l — \n+1 n n+l — \n+1
kv © wc - \Ilk,vm k,c © ¢v = \Ijk,cv
for each n € N. Furthermore, the notation W}%? or ¥7*2, and any similar

)

notations are allowed.

Proposition 13.1.1. Let the Hénon-like map F is in the space N N Ig(&).
Let 6,,(w) be he third coordinate map of F,, for eachn € N. Then the following
equation 1s true

n—1

0,0, (w) = 040 0 W (w) = Y gio (g 0 WP (w))

=0

!By the above definition 13.1.1, ¥%, and ¥”, can be also expressed as follows

on

o, = o

0, v»

no o _ \yn
U =¥g ¢
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for each n € N. Moreover, passing the limit the following equation holds

—_

n—

n—1
0:0(cr) = lim 2_; a:0 (Moo Wi o(w)) = lim B gi(m(cr))

Il
=)

where cg is the critical point of F.

Proof. By the equation (12.2.14), we see

d
a:c(sn(w) - a:(:(Sn—l o (Fn—l o H;_ll(o-n—lw)) - % n—l(an—lza fn_—ll (Un—lx)> 0)

Recall the definition of gx(z) in the equation (12.2.3). Then

0z0n(w) = 0xbp—1 0 Y (W) — G—1(mz 0 P (w))
= Oubpz 0 (P~ oy (w))
— n—20 (M 0 YT 0P (w)) = Gt © (mz 0 Y7 (w))

n—1

= 0,60 Wh(w) =Y g;o (w0 U} o(w))

1=0

Moreover, we observe that following limit in (13.1.2)

lim W7 (B) = {cr} (13.1.3)

n—o0

for each fixed i € N. Since || 9,0,| < C&2" for some C' > 0, passing the limit
we obtain

n—1
0,0(cp) = li_)m Z gi o (my 0 U} (w))
i=0

Furthermore, since the above limit is constant and the critical points of each
level, cp, are in W} (B) for all n € N. Then

n—1

0,0(cp) = lim Z qi(m2(cr,))

n—oo 4
=0
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13.2 Universal number 0, and the asymptotic
of 0.9, and 0,9,

Proposition 13.2.1. Let the Hénon-like map F is in the space NNZg(&). De-
note the n' renormalized map of F' to be R"F = F,, = (fu(z)—&,(w), x, 6,(w)).
Assume that F is a diffeormorphism. Then

where by is a positive number for each n € N and 0 < p < 1.
Proof. Recall the equation (12.2.14) for 0,4,,. Then

8z5n(w) = a25n—1 o (Fn—l © Hrj—ll(an—lw» ’ 826n—1 © Hg—ll(an_lw)
= 0,0p-1 0 Y (w) - 0,0,-1 © Yy (w)

= 0.0p 20 (Y ol (w)) - 820,50 (Yt o r (w))
C0.6p_0 0 (Y 0 (W) - Dubp_n 0 (WMoY (w))  (13.2.1)

= [ 26095 (w)

we Wn

The number of word w € W™ is 2". Let us take the logarithmic average of
|0.0,,| on the regions W7 (B) and let this map be I, (w) for each n € N.

ln(w):% S log | 0.6 0 W (w)| (13.2.2)

we Wn

If 0,0(w) = 0 for some w € B, then d,0(w) = 0 at the same point because
F € N. Thus Jac F(w) = 0, that is, F' cannot be a dffeomorphism. Moreover,
0.0 is defined on some compact set which contains the set (Jgc yn W (B).
Then we may assume that 0.0(w) has the positive lower bounds (or negative
upper bounds) on the given compact set.

) — [ log 0.3 dy
OF

as n — oo where p is the unique ergodic probability measure on the Cantor
set Op.

The limit of [,(w) as n — oo is a function defined on the critical Cantor set,
Opr. However, the values of the limit function at all points of O are same as
each other. Then the limit is a constant function. Let this limit be log b, for
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some by > 0. Moreover, since diam(¥2 (B)) < Co” for all w € W™ for some
C > 0, the convergence of the above equation (13.2.2) is exponentially fast.
In other words,

1
o 108 0.0, (w)| = logby + O(pp)

for some 0 < pg < 1. Let us choose the constant p = po/2. Then we obtain
the following asymptotic.

log | 0.6, (w)| = 2"log by + O(p")

= 2"log by +log(1+ O(p™)) (13.2.3)
= log b (1+0(p"))

Hence,

10.6,,| = b3 (1 + O(p")) (13.2.4)
By the assumption, 0,4 is not zero at any point. Then we may assume that
0.0 is positive. O

Lemma 13.2.2. Let ' € N NZg(&) and d,(w) be the third coordinate map of
F, for each n € N. Then the following equation holds

Oyl (w) - 0,0 o Uy (w)

/U’!L

= 0,0n(w) - [8y5 oW, (w)+ Z gi o (my o U} (w)) - 8.0 0 Ul (w)

for each n € N.

n—1
0y0 o I, (w) + Z gio(myoW (w))- .60 (w) < Co™(140(p"))

=0

for some C' >0 and 0 < p < 1. Moreover, ,0,(w) < Co™b3" (1 + O(p")) for
each n € N.

Proof. By the equation (12.2.14), we see
0,00(w) = 026,10 (Fy_y 0 HoY\ (00 1)) [ayan_l o H=Y (00 1w))
d
+ 02051 © H77—11<‘7n—1w)) ) d_y On—1 (Un—lyv fn_—ll(an—ly)a O) ]

Recall the definition of gx(y) in the equation (12.2.3). Then
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0,0 ()

— 0001 0 UL (W) - Dy © V(W) + D80 (w) - g1 © (my 0 U (w))
0.0 1 0 Y2 (w) - [ 00020 (U1 0 (w)) - Bydn a0 (V3 0 Y (w))
0,001 0 Y7 (W) - G 0 (my 0 (7 0 47 (w))
+0.0,(w) - gur 0 (my 0 Y (w))

= 0001 0 U (w) 0,20 (Y 0 YT (W) By 0 (7 0 YD (w))
+0.0(w) - [ quoz 0 (my 0 (V3" 0 Y2(w)) + g1 © (my 0 U (w)) |

825n—1 © @D?(w) ' az(sn—2 © (,lvbg_l © ¢g(w))
<080 (@l ovia o ulw) 00 Ui(w)

+ 0,0,( Z gio (my o W', (w))
(13.2.5)
Thus let us multiply 0,0 o W%, (w). Then

0,6, (1) - 0.5 0 Wi (w)
n—1

= @%h@-@domﬁ()+05(w)§:qi( o WP (w)) - 9.0 0 Wi (w)

=0

= 0.0,(w) - [ 9,00 W (w +Zqz 7y 0 W (w) - 0.6 0 Wi (w) |

(13.2.6)
By Lemma 13.2.1, the asymptotic of 0,9, (w) is as follows
9.0, (w) = b3 (14+O(p")) (13.2.7)
for each n € N.
Let us estimate the following expression.
9,0 0 U™, (w) + Z gi o (m, 0 U (w)) - 0.6 0 U, (w) (13.2.8)

Recall the definition of the tip in (13.1.1) and the critical point as the limit in
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(13.1.3)
{rr,} = lim V! (B), {cg}= lim ¥} _(B)
n—o00 ) n— 00 )

for each ¢ € N. Moreover, since F;(cg,) = 7p, and the Hénon-like map Fj is of
the following form

Fi(w) = (fi(x) = ei(w), =, 5i(w))

and especially the second coordinate of Fj(w) is the first coordinate of the
point w, we see the equation

mo(cr,) = my(Tr,)

for every ¢ € N. By Proposition 13.1.1, we have the following equation.

n—1

8965(01:) = lim Z q; © (7Tac o \IIZC(U)))
=0

Take the limit of (13.2.8).

n—1
0,8(7e) + lim D gi o (m, 0 Uy (w)) - 0.6(rx)
1=0

n—1
= 9,0(rr) + lim ; ¢; 0 (my(7,)) - 0:0(7r) (13.2.9)
n—1

= 0,6(rp) + lim > gio (mler,)) - 0-6(7r)
=0

= 8y5(7'p) + 0,0(cr) - 0.0(7r)

Since the fact that F' € N, cp, € U} (B) and 75, € U} (B) for all n € N, the
above expression (13.2.9) is zero. Moreover, ¥, (B) and W, (B) converge to
Tr and cp respectively as n — oo with at least the exponential rat because
the scaling map ! (respectively ") is the composition of the linear contrac-
tion with o™ (1+O(p™)) and the horizontal map, H, ' (w) (respectively vertical
map, F, o H, ' (w)).

n—1
The Z q; © (7ry o \Iflnv(w)) converges exponentially fast as n — oo by Corol-
i=0
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lary A.0.5. Then the following asymptotic holds

n—1
8y50\lfﬁn(w)+z gio (myo U} (w))-0.00W, (w) < Co™(1+0(p")) (13.2.10)

/U’!L
1=0

for some C' > 0 where 0 < p < 1. Hence, applying the equation (13.2.7) and
(13.2.10) to the equation (13.2.6), we obtain that

Oybn(w) < C’a"bgn(l +O(p"))

for some C' > 0 where 0 < p < 1. O

Remark 13.2.1. By the definition of the class N, if F' € N, then
0ydn 0 I (W) = B0, 0 YT (w) - (= Dudy 0 YT (w)).

Then || 9,0, o Y| < Ce2"b%" for some C' > 0.

Corollary 13.2.3. Let F € N NZg(&) for each n € N. Then the following
asymptotic holds

n—1
0,8 0 Wiy (w) + D 450 (my 0 WEy (w) - b 0 W (w) < Coo™ B3
i=k
for every k < n and where C,, = C(1+ O(p"™)) > 0 for some 0 < p < 1.

Proof. By the direct calculation of the recursive formula in (13.2.5) from level
n to k, the expression (13.2.8) is generalized as follows.

Oy (w) - 0.0, 0 Uy (w)

n—1
= 0.6,(w) - | 0,6 0 U L(w) + Y gy (m, 0 UF () ~8Z5ko‘é[fz7v(w)]
i=k

Lemma 13.2.2 and the asymptotic of 0.6, in Lemma 13.2.1 implies the follow-
ing expression.

n—1
8,0, (w) - b2 = b’ [8y6k oWy (W) + > gio(my 0 Ul (w)) - 0.0 0 U (w)
i=k

(1+0(p")
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Hence,

n—1
00, 0 W (W) + > gio (m, 0 W (w)) - 9.6, 0 U, (w)
i=k
b2
< 00, (w) bgn
2
niy2™m b%k n n 1.2k n
< Co"b b2" (1+0(p") = Co"by (1+0(p"))
2
for some C' > 0. U

13.3 Asymptotic of partial derivative of ¢,, over
Y

Let us consider the Jacobian of the Hénon-like map F,, in the class N at ¢.(w).
By the universality theorem we obtain the following asymptotic.

Jac F, o (F, 0 H, *(c,w))

= Oye, 0 (F, 0 H, Y (o,w)) - 0.5, 0 (F, 0 H, (0,w))

— .50 (F, 0 H, Y (o,w)) - 9,0, 0 (F, 0 H, (0,w))
= Oye, 0 (F, 0 H, Y (o,w)) - 0.5, 0 (F, 0 H,  (0,w))

- azgn o (Fn © Hgl(anw))

| = 0.6, 0 (Fno Hy Yo,w)) - 0,6, 0 (H, H(o,w)) |

= [8y€n o (F, o H *(o,w))+ 0.6, 0 (F, 0 H *(o,w)) - 0,0, o (H;l(anw))]

' 825n © (Fn © Hgl(anw))

= b a(onz)(1 + O(p"))
(13.3.1)
where b is the average Jacobian of F'.

Let us define the number b; satisfying the equation, b = b;by. Combine the
equation (13.2.3) and (13.3.1). Then

0" a(onx) (14 O(p"))
= | Oyeno (F,o0 H Y (o,w)) 4 0.6, 0 (F, 0 H Y (o,w)) - 0,6, o (H, *(o,w))
05 (1+0(p"))
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Then we get the new asymptotic.

Oyen o (F, 0 H;l(anw)) + 0.0 (F, 0 H;l(anw)) - 040, © (H;l(anw))

= b a(onz)(1+O0(p"))
(13.3.2)
By the similar calculation, we obtain another asymptotic.

OyEn © (F,f o H;l(anw)) + 0,e, 0 (Fg o H;l(anw)) -+ 0z0p 0 (F, 0 H;l(anw))

= 0¥ ao fulonx) (1+0(p"))
(13.3.3)

Lemma 13.3.1. Let the Hénon-like map F is in the space N N Ig(&) for
sufficiently small € > 0. Then the following equation holds

n—1

Oyer o (Vi y 0 Fu(w)) + Y gio (w0 Uy o Fy(w)) - diex o (i 0 Fo(w))

i=k

— b2 a0 (m, 0 WY, 0 Fy(w)) (14 0(s")

where a(x) is the universal function of x for some C' > 0, 0 < p < 1 and for
each big enough k and n such that n > k+ A and A is depends only on by and
£.

Proof. Recall the equation (13.3.3) on the restricted domain W} .(B)

yer o (B o i (w') + daep o (Fy o i T (w')) - 9,0k o (v (w'))

= b%k- a o (71‘1, oFjo Q/Jf—l_l(w/)) (1+ O(pk))
(13.3.4)

for every w' € Wy, .(B). The following equation can be shown by the direct
calculation using definition of renormalization

Uy o Fy(w) = Fpo Wy (w) (13.3.5)

for every k < n. See the proof of Corollary 12.2.3. Moreover, the formula of

the Hénon-like map, Fj implies the following equation.
mz 0 (Vg (w)) = my 0 (Fy o Uy o(w)) =m0 (W}, o Fy(w))

Then according to Proposition 13.1.1
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n—1

= Oyep o (V0 Fy(w)) + Z gi © (mp 0 U (w)) - Doe o (Wi, 0 Fr(w))
i—k

= Oyero (Y}, o Fy(w))

+ [ 000 0 U} (W) — 0,6, (w) | - Do o (W, 0 Fy(w))

= Oyer o (U 0 Fu(w)) 4 0x05 0 U} ((w) - Boep 0 (V) , 0 Fy(w))
— 0p0p(w) - O, 0 (\IIZV o Fn(w))
(13.3.6)

Observe that [|0,0, - 8.4 = O(&2"22"). Then for exponential convergence of
the equation (13.3.6), we need £2"2" < p2".

2 < = (2" + 2" loge < 2 log by

log bl

@2”22’“( —1)+Co

log e

for some positive Cy > 0. If by < e, then &2° < b2" is always true. Let us
suppose that by > &.

log b
n2k:+0max{0, Ing(l(:)ggg—l —1)}

1
for some C' > 0. Then the number A in the lemma is O <10g2 ( loggzl - 1))
o

Hence, apply the equation (13.3.4) to (13.3.6), the asymptotic is true.

Oyero (Vi y o Fu(w) + Y gio (m, 0 Uy 0 Fy(w)) - duei o (T}, 0 Fy(w))
= b ao (mp o Up 0 Fu(w)) (14 0(p"))

The proof is complete. O

Corollary 13.3.2. Let the Hénon-like map F is in the space N NZg(g). Then

137



the following equation holds

n—1
Dyex © \IIZ’V(w) + Z qgi © (ﬂ'y o \Ilfv(w)) - 0,6 © \IIZN(w)
i—=k
= b?k -ao (m o \I/Zv(w)) (1 + O(pk))

for every k < n which is big enough and for some C' > 0 where a(x) is the
universal function of x and 0 < p < 1.

Proof. By Lemma 13.3.1, the asymptotic at the tip, 75, holds as follows.

n—1
Byer o Vi (i) + D gio (my 0 W7 (7)) - D 0 VT (7,)
i=k
n—1
= ex(rr,) + lim Y~ g0 (my 0 (1r)) - Decu(rr,)
i=k

= 02 a0 (m(r)) (1+O0(")

Moreover, since W  (w) — {7p,} as n — oo exponentially fast, each d,e; o
Up  (w) and O.ex o Wy (w) converge to d,er(7r,) and 0.ex(7r,) respectively
as n — oo exponentially fast. Additionally, the universal function a o (7rx o
Uy, (w)) converges to a o (m,(7x,)) as n — oo exponentially fast.

n—1

The exponential convergence of the series, Z q; © (ﬂ'y o \Ilfv(w)) comes from
i=k

Corollary A.0.5. O

Remark 13.3.1. The space N'NZg(¢) allows that the lower bound of ||0.¢]| to
be zero. If FF € N NZg(¢) is a diffecomorphism with the condition ||d,|| = 0
and additionally if 0,0(w) = 0,0(w) = 0, then 0, (w) = 0,(2) for every n € N.
Furthermore, the renormalizability implies that 0,6,(z) = b3 (1 + O(p")) for
each n € N where 0 < p < 1 and 0 < by < 1. The set of these map is
contained in the intersection of model maps and the class N. We can call
this space trivial extension of the infinitely renormalizable two dimensional
Hénon-like maps.
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Chapter 14

Unbounded geometry of the
Cantor set

The unbounded geometry of a certain class would be proved by the calculation
of the three dimensional asymptotic.

14.1 Horizontal overlap of two adjacent boxes

The proof of the (un)bounded geometry of the Cantor set requires to compare
the diameter of the box and the minimal distance of two adjacent boxes in
the boxing. In order to compare these quantities, we would use the maps,
U?(w) and Fy(w) with the two points wy = (21,y1, 21) and we = (29, Y2, 22) in
the domain of F,,(w), namely, Dom(R"F'). Let us each successive image of w;

under U} (w) and Fj(w) be w;, w; and w; for j =1,2.

\a4 F vk
5| k ! -k k N .| 0 -
Wy | Wi | Wi | w;

For example, w; = V}(w;) and w; = (4,9, Z;) for j =1,2. Let S; and S; be
the (path) connected set on R®. If 7, (S7) N7, (S2) contains at least two points,
then this intersection is called the x—axis overlap or horizontal overlap of Sy
and S5. Moreover, we say Sy overlaps Sy on the x—axis or horizontally. Recall
o is the linear scaling of Fj, the fixed point of the renormalization operator
and o, = o(1+ O(p*)) for each k € N.

Recall the map U} from B(R"F) to BV F(RFF), a, , = o> 8 (1 4+ O(p"))
and o, p = (—o)" F(1+ O(p")).
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I tok Unk\ [ank z + S} (w)
\IIZ(U]) = 1 On,k Y
dnr 1 On, k 2+ R (y)

where v = v"% € Wn"*_ Thus for any w € B(R"F) we have the following
equation.

my 0 Wi(w) = o k(x4 S (w)) + 0,k (b, 1y + un, (2 + BE(y)))

Let us find the sufficient condition of the horizontal overlapping. Horizon-
tal overlapping means that there exist two points w; € B}(R"F) and w, €
B! (R"F) satisfying the following.

T O \IIZ(wl) — T, O \IJZ(UQ) =0

Equivalently,

.k [(1’1 + Sp(wr)) — (w2 + SI?(U&))}

(14.1.1)
+ Un,k [tn,k(yl - y2) -+ un,k{21 — 29 —+ RZ(yl) — Rz(y2>}i| — 0

Recall that = + SM(w) = v,(z) + O(E2" + p*) for some 0 < p < 1 with C*
convergence. Since the universal map v,(x) is a diffeomorphism and |z, — 25| =
O(1), we have the following estimation by the mean value theorem.

|SL’1 + S,’:(wl) — (SL’Q -+ S]?(wg))‘ = 0(1)

Then the z—axis overlapping of two boxes, namely, the equation (14.1.1) im-
plies that

0" =t k(g — y2) + tn {2 — 22 + Rp (1) — Ri(y2) }
for every sufficiently big & € N.

Proposition 14.1.1. Let F' € N NZg(¢). Then

bfk =t k(Y1 — y2) + Un i {21 — 2o+ R (1) — RZ(y2)}

for every big enough k and n such that n > k + A where A is the number
defined on Lemma 13.3.1.
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Proof. Let us choose two points in B(R"F') as follows.

wy = (21,91, 21) € B,(R"F) N R"F(B)
Wy = (IQ, Ya, 22) c BCI(RTLF) N RnF(B)

Recall that |x; — 23] = O(1), |y1 — yo| = O(1). Let us choose the points w;
and wsy in F,(B). In particular, we may assume that w; € Ognp for j = 1,2.
Then |z, — 2| = O(£%"). Two points w; and w, has their pre-image under
R"F and let w} and w), be the pre-image of wy and ws respectively. Then

|21 — 22| = | 6n(w]) — 6, (wh)] < C|| D6, || - [wy — wall = O(*")
for some C > 0. Then

b k(Y1 — Y2) + U i {21 — 20 + R (y1) — R (y2) }
= tok(y1 — y2) + tn i { R (1) — R (y2) }

It suffice to show that

By Proposition A.0.2, we see that
n—1
bk — Un k Ay, g = Z o i — i, dier i) (1 + O(pY))
i=k

Recall the fact if A < B and A’ < B’, then A+ A’ < B+ B’. Recall also that
if a series is convergent exponentially fast, then the sum is comparable with
the first term of the given series. Then we see the following asymptotic

[ a0 = 92) + wn i { B ) = B )} | (14 O(6)

= |:(tnk — Up ko k) (Y1 — Y2) + Un i {dn k(Y1 — y2) + R (1) — RZ(yz)}}
(1+0(p")

—_

n—

— o' i, — Wisr, i divr i) (Y1 — U2)

~
Il
B
—

n—

+ otk Wiy1,i {dn,k(yl — Y2) + R (y1) — RZ(y2)}

s
Il
B
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< [trgr, e — Wtk D, k) (V1 — ¥2)
+ Wkt 1 {dn k(11 — y2) + Rp(y1) — R () }

n—1

(%) = Oper(tr,) (W1 — v2) + Oeen(Th) Y 50 (0 6is1) - (41 — 1)

i=k
n—1
= [Oenlrn) + 0enlrn) - Y o (i) [ (1 — o)
i=k

(¥) = B (31— 92)

where ;&1 is some points in the line segment between 7, o W7 (w;) and
7, 0P (ws) in m, o W (B) for each k <i <n—1. Lemma 13.3.1 and Corollary
13.3.2 involve the (%) and (xx). The proof is complete. O

14.2 Unbounded geometry of the critical Can-
tor set

Lemma 14.2.1. Let F € N N1Ip(&). Let the box By, be Wi (B, (R"F)).
Then
k
diam(B2,) > | C, 0" a® "% — Cy oFonFp? |

kcon=F=1 € W™ for some positive Cy and Cs.

where w = v

Proof. Let us choose the two points
w; = (;,9;,%) € By(R"F) N Opnp

where j = 1,2. We may assume that |21 — xo| = O(1), |y1 — 12| = O(1) and
|21 — 22| = O(£2"). Thus

7 0 U (w) = ay, k(x4 Sp(w)) + an,k(tn,k Y+ U k(2 + RZ(y)))
Then
7 0 Wi (w1) = 7 0 Wi (w5) = an i | (w1 + S (w)) — (w2 + S7(w2)) |

+ Onk [tn,k(yl — o) + Un,k{zl — 2+ R (y1) — RZ(yz)}]
(14.2.1)
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By the equation (14.2.1),

i =3 = | (21 + Sp(wn) = (22 + Sp(ws)]
+ On,k [tn,k(% —y2) + un,k{z1 — 20+ Ry (y1) — RZ(yz)}]

Recall the estimation of the non linear part of m, o U}(w). Then x + S} (w) =
v (x) + O(E2" + p**). Since v,(x) is a diffeomorphism,

| va(1) = ve(2)| = [0L(Z) (21 — 22)| = Ci

for some Cy > 0. The definition of the Hénon-like map F}, and the coordinate
change map Wk, we see the following equations.

U1 — Yo = Ty — Ty
= Q. (xl + S}:(wl)) — (x2 + S}:(wg))]
+ Onk [tn,k(yl — o) + un,k{zl — 2+ R (y1) — RZ(yz)}}

= k| VL(T) + O + pn_k)] (21 — x2)

+ On,k [tn,k(m —y2) + Un,k{21 — 2+ Ry (y1) — RZ(%)}}
Yr1—Ya= 0,0(1 — o) = ok0(t1 — 12)
(14.2.2)
Clearly diam(BZ) > |¥; — Us| where w = vFco" %=1 € W". Hence, by
Proposition 14.1.1, we have the estimation

diam(B ) > C ¢"g*"=)

where w = vFco™* =1 € W” for some C > 0. O

Lemma 14.2.2. Let F € N NZg(&). Let us choose two different points as
follows.

wy = (z,y,2) € BA(R"F)N Ognp, wy = (2,9,2) € B(R"F) N Opnp

Suppose that B F(RFF) overlaps BI%(RFF) with respect to W7 (w;) and
U (wy) on the x—axis for the word v =v""% € W% Then

diStmin (Bn

wuv?

By.) < Clo™o" kb + oo hp3" ]

where w = vFco" 1 € W™ for some C > 0.
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Proof. Recall the expression of the map ¥ from B(R"F) to B2 *(RFF).

I tok Unk\ [om g x+ Sp(w)
\I]Z(UJ) = 1 On, k )
dn,k 1 On, k Z+ RZ(y)

where v = v"™* € W"*  Then the expression of U7 on the above and
the assumption of the overlapping on the x—axis, we obtain the following
estimation.

T — 2= 0
Y1 — Y2 = on k(Y1 — o)
G—d = Onnldun(yn — y2) + 21— 2+ Ri(y1) — Ry (y2) ]
By the mean value theorem and the map RFF, we obtain the following equa-
tions
iy — @y = fa1) —en(wr) — [f(22) — exlwn)]
= —er(uw1) + er(u)
= —0yex(n) - (Y1 — 42) — O.ex(n) - (Z1 — 22)
= —0yex(n) - on,k(y1 — ¥2)
— D.ek(n) - On k[ dn k(1 — 1) + 21 — 22+ R (1) — Ry (y2) |
Y1—92= 0
P = Zy = Op(wn) — Op(u2)
= 8y5k(o ’ (yl - ?Jz) + az5k(C) : (21 - Zé)
= 0y01(C) - on k(Y1 — Y2)

+ 0.0%(¢) - Un,k[dn,k(yl —y2) + 21— 22+ Ry (y1) — RZ(%”
(14.2.3)
where 1 and ( are some points in the line segment between w; and wy in
U7 (B). Furthermore, by Proposition A.0.4, the distance #; — &2 and %, — 2,
as follows.
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n—1
Ty — 3o = —0yer(n) - on k(yn — Y2) — 0:€k(n) - Oy - Z ¢i(0i §iv1) - (Y1 — 12)
i—k

- azgk( ) . Un k (Zl - 22)
= —1|0 5k ‘I’ 0 Ek Zqz ag; gz—i-l ] *On,k (yl - y2)

— 0,ek(n) - On k(21 — 22)

n—1
2 —Z = 0y0k(C) - onk (1 — y2) + 0:01(C) - O,k - Z%(Ui §iv1) - (1 — 12)
+ 0, 5k(C)~ank(z1—z2) =

0,00(C) + 0.04(¢ qu 0i&is) | - (1 = 1)

+ azék(C) . Un,k (Zl - 22)

Since n,( € V(B) and 0,41 € m, 0 ¥ (B) for each k < i < n —1, the
asymptotic in Corollary 13.2.3 bounds | Z; — Z;| and Corollary 13.3.2 bounds
|Zi'1 - ZL’Q| Then
iy — o S o™ ] — 03 ao filowa) |- |y — yol + | Been(n)] - | 21 — 2] ]
(1+0(p"))

|50 = 2| S 0™ 03 0" |y — o] + 02 | 0] |21 — 2] (14+0(pF))
(14.2.4)
Recall

Tz 0 U (w) = a k(x4 SjH(w)) + Ok (tn, kY + wn, k(2 + RE(Y))).
Then
Ty — Ty = m, 0 Wh(iy) — m, 0 U(iy)
= a0 (&1 4 85(tn)) — (2 + S5 (i2)) ]
+ 010 [tho (i1 — di2) + uk0 (31 — %2 + RE (1) — R (i) |

= aho[v;(i) + O(E—l— pk)}(li'l — Zi’g) + Ok,0 * Uk, 0 (21 — 22)
(14.2.5)
Y1 —Yo= o0 —i2) =0
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Zl — 2’2 = 7,0 \Iflg(wl) — T, 0 \I]IS(U)Q)
= 0k0 (31 — %) + ok,0[ di,o(i1 — ¥2) + Ry (1) — R (32) ]

= Uk,O(él —2'2) ( )
14.2.6

Moreover, let us apply the estimations in (14.2.4) to T — Ty and 2} — Z's.
Let us assume that both & and n are even numbers.

distmin (Bwy, Bae )

< ‘ B :132| n | S 22|
S [O’zk|SL’1_SL’2|U*(i’)—FO'k(1+U1€,0)|Zl—22”(1—|—0(pn)) (1427)
< C’{ [U%a"_k b?k cao (m oWy (w)) + oFononk bgk } S — el

+ [0 0.ex(m)] + 0" 08 ]| 21— 2l |

for some C' > 0.

Observe that F,(BL(F,)) C B:(F,) and F,(B}(F,)) C B:(F,). Let us mea-
sure the distance of each third coordinates of two given points

wy = (2,9,2) € B(F,)NOF,, wy=(z,y,2) € B{(F,)NOF,

as follows. Recall |21 — 25| and |y; — y2| is O(1). By the mean value theorem,
the z—coordinate distance of two points is estimated as follows.

|70 Fo(w1) — 7.0 Fy(w2)| = | 8 (w1) = a(w2)] < | Dl - || w1 —we]] = O(£*")

Since the critical Cantor set Op, is an invariant compact set under F),, we
may assume that |2, — 2] < Ce?". For sufficiently small £ > 0 and big

enough n >> k, the number 2" is very small, that is, 2" < ¢" %2, where
bmin = min{by, by }. Then the estimation (14.2.7) is refined as follows.
diStimin( By, Bwe ) < | @1 — To| + | 21 — 25
. . (14.2.8)
< C[O’zk(fn_kb% + O_2k0.2(n—k)b§ :|
]

For the (un)bounded geometry of the Cantor set, both the level k and n travels
through any big natural numbers toward the infinity with each fixed numbers
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by and by. Then by the comparison of the diameter of the box and minimal
distance between adjacent boxes, Op has the unbounded geometry.

Theorem 14.2.3. Let F,, € N NZIg(&) be in the set of parametrized family
for by € [0,1]. Suppose that biby = b where b is the average Jacobian and by is
a fized number. Then for some by > 0, the set of parameter values, a interval
[0,01] on which Fy, has no bounded geometry of (’)Fb1 contains a dense Gg set.

Proof. Let us choose the two points as follows.

wp = (1’1, U1, Zl) - Bi(RnF) N ORnF, Wy = (l’g,yg, 22) - Bcl(RnF) N ORnF
By the choice of above two points, distances between each coordinates of w,
and ws are as follows.

|21 — 2| <1, |y —wa| X1, |21 — 2| = O(E")

Let w; = (5,95, 2j) be U (w;) for j =1,2. By (14.2.1), we see that

i = n = | (21 SE(wn) = (22 + Sp(wy)]

+ Onk [t k(Y1 — Y2) + un k{21 — 22 + R (y1) — R (o) }].
(14.2.9)
Recall that a,, x = o2 (1 4+ O(p*)), opr = (—0)"*(1 + O(p*)) and = +
Si(w) = v,(x) + O(E¥ 4 p*). Since v, is a diffeomorphism and |z1 — 25| =< 1,
then |v,(x1) — v4(x2)| < 1 by the mean value theorem.

Moreover, Proposition 14.1.1 implies the following.

bfk Xt k(Y1 — Y2) + Unk {21 — 2o+ Ri(y1) — RZ(?J?)}

Then we express the equation (14.2.9) as follows.
iy — iy = 07 (1) = va(22)) - [L4 i b (=0) "] (14 O(0)

Then r,, , depends uniformly on bi. Let r <1, < % Let us take any number
by in the parameter space (0,b;) and any natural number £ > N for some big
enough N.

Then we can find the biggest number n such that n — k is odd and o" % >
1
- (bf)2k, that is,
r
Lt 7 (07)2 ()"0 > 14 = (57)2 (—0)~™H) > 0

B r
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2
Let us increase the parameter from by to b7 such that (b7)2" = = ¢»%)_ Then
r

L+ 0D (=0)" " <14 7. % (-1)=-1<0
Then there exists by € (by, b)) such that z; —i5 = 0, that is, ¥(B}(R"F)) and
U (B(R"F)) overlaps over the z—axis with respect to w; and wy. Moreover,
b?" < o™~ *. For all big enough k, by < by . Thus log(b, /b;) = O(27%). Then b,
converges to b; as k — co. Then we obtain the dense subset of the parameter,
(0,b1) on which ¥#(BL(R"F)) and U} (B(R"F)) overlaps over the r—axis.

Moreover, there exists open subset, J,,, of parameter (0, by) for each fixed level
k > m. Then N,,J,, is a G5 subset of (0, by).

Let us compare the distance of two adjacent boxes and the diameter of the box
for every big k < n. Let us take n such that "% < b%k. We may assume that
B R(REE) overlaps B2 *(RFF) on the r—axis where v = o™ *=1 € WnF-1,
By Lemma 14.2.1 and Lemma 14.2.2,

diam(B",) > Cy o* o=k
diStimin (B, s Bwe) < Ch [azkan_kbfk + 02k02("_k)b§k}

wuv’

k

where w = v*cv"*=1 € W™ for some positive C; and C}.

Moreover, by Proposition 14.1.1, the condition of the overlapping of two ad-
jacent boxes, B *(RFF) and B" *(R*F) on the z—axis implies that

_ k
o = p?

Hence,
diStmin (Bn

wuv?

B".) < Cy o diam(B7)

for every sufficiently large & € N. Then the critical Cantor set has the un-
bounded geometry. O
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Chapter 15

Non rigidity on the critical
Cantor set

15.1 Distance between two points

Let us estimate the lower bounds of the distance. The diameter of the box B,
and B, has same bounds up to the constant —o,,41 , = o(1 4+ O(p")). Then
we obtain the following lemma similar to Lemma 14.2.1

Lemma 15.1.1. Let F € N NZg(&). Then
diam(B?) > | Cy o*a> ™" — Cy o*o" |

kcon=F=1 € W™ for some positive Cy and Cs.

where w = v
Proof. See the proof of Lemma 14.2.1. O

Let us estimate the upper bound of the distance. The estimation does not
contain the assumption of horizontal overlapping of some two points. Then
the distance of all general two points has the larger upper bound than distance
with horizontal overlapping.

Lemma 15.1.2. Let F € N NZg(g). Then
diam(Bp) < C [o"o* ™M + Ukan_kb%k}
where w = vFco" 1 € W™ for some C > 0.

Proof. Recall the map ¥% from B(R"F) to Br*(R*F).
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I tok Unk\ [ank z + S} (w)
\IIZ(U]) = 1 On,k Y
dnr 1 On, k 2+ R (y)

where v = v" % € W%, Let us choose the two points

wi = (x1,y1,21) € By(R"F)N Opnp, wy = (22,Y2, 22) € BL(R"F) N Opnp.
Recall w; = WU (w;), w; = Fi(w;) and W; = Wk(w;) for j = 1,2. Let us express
distances between each coordinates of w; and s, w; and w, and between w,

and Wy. Observe that |z —xs| and |y; —y»| is O(1). Moreover, we may assume
that |21 — 22| = O(8*") because Ognp is a completely invariant set under R"F.

By the equation (14.2.2), we have the following expressions.

i’l — i’g = Opk |:(SL’1 + S,?(wl)) — (SL’Q + S]?(wg))]
+ Ok to, k(Y1 — y2) + un k{21 — 22 + R (1) — RZ(yz)}:
= i [v;(a’:) + O(ézk + p”_k)] (x1 — x2)

+ 0n k|t k(Y1 — Y2) + Un,k{zl — 2+ R (y1) — RZ(?D)}
< 0[0_2(n—k) _i_o_n—kb%k}

(15.1.1)
for some C' > 0.

= Y2 = On k(1 — y2)
P == Op k| duk(n — y2) + 21 — 22 + R (1) — R (y2) |

Moreover, by the equation (14.2.3), we estimate the distance between each
coordinates of Fy(wq) and Fy(w-) as follows.

iy — @y = f(i1) —ex(r) — [f(@2) — exlt)]
= fI(Z)(#1 — @2) — ep(tn) + ex(tia)
= [ /() = Over(n) [(&1 — &2) — Oyer(n) (41 — ¥2) — Dzex(n) (21 — 22)
= [ () = Ower(n) [(&1 — @2) — Oyer(n) - o k(Y1 — y2)
— 0.e1(n) - Ok [ di k(Y1 — y2) + 21 — 22 + R (y1) — R (y2) |

Y1 — Y2 = X1 — X2
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21— Zy = Op(tn) — Op(1ire)
= 0u0k(C) - (£1 — Z2) + 0,0k (C) - (Y1 — Y2) + 0=0k(C) - (21 — 22)
= 0:6k(Q) - (Z1 — B2) + 0y0k(C) - on k(Y1 — ¥2)

+ 0:61(C) - o[ dn k(1 — y2) + 21 — 22 + R (1) — Ry (y2) ]

where 1 and ¢ are some points in the line segment between w; and w, in

(D).

Recall the coordinate change map WE. Then the difference of each

coordinates of W (i) and WE (i) as follows.

.Zl‘f.l - 1'2 —

Gy Gy =

Zl . 22 -

Ty 0 W (i) — 7, 0 Uk (1)
a0 (i1 + S (1)) — (d2 + S§ (1n)) ]

+ 01,0 [ tr,0 (51 — B2) + uk0(31 — 22 + R (i) — R (42)) ]
ay 0[ Wz )+O(€+/) )}(55’1—i2)+0k,0'uk,0(51—52)

+ a0 [tho (61 — G2) + ur,o (R (i) — Ro(42)) |
(15.1.2)

Ok,0 (I1 — B2) = Ok,0 (T1 — T2)
o Wi(iy) — 7, o g (1)
Ok (1 — %2) + 0k o[ di,o(i1 — Bi2) + Rp(41) — Ry (i) |

(15.1.3)
Let us calculate a upper bound of the distance, | — Ws|.
| Wy — Wy

< |y — | 4| Ty — Tl 4| Fr = 5l
< ‘aho[v;(i’) + O+ p) | (&1 — &) + on0 - U0 (31 — Zo)

+ 0%,0 [ tho (G1 — i) + Uk,o(Rg(xﬁ) - Rg(ﬂz))] Ok,0 (1 — U2) ‘

+‘Uk0 1 — E) 4 oo dio (it — §2) + Ri (i) — Ri(ij2) | ‘
< o[ vi(Z) + O+ p") | (E1 — &) | + | ok,0 [ 1+ troo + dryo] (i1 — i) |

+ ‘O’k,o

L+ up,o] (RE(5) — R (ij2) ‘ + }Uk,o [14+ug o] (21— Z) ‘
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< CLo®™| [ f1(x) — Ouer(n) (81 — d2) — Oyer(n) - o,k (Y1 — ¥2)
— 0.e1(n) - O,k [dmk(yl —y2) +21 — 2+ R (1) — RZ(yQ)} ‘
+ Co|oF (@1 — @) |+ Cy | 0*& (i1 — i) |
+ Cu0™| 0u04(Q) - (1 — ) + 0y0k(C) - ok (y1 — 1)
+ 0:06(C) - o[ dnk(yr — y2) + 21 — 20 + R (y1) — Ry (y2) | |

05 O'k| i’l — SL’2|

IA

+ CgokgnF

Ri(y1) — Ri(ye) H

0,u(n) + Ducaln) | dni+

Y1 — Y2
R» — R»

F G o | 0,8(0) + 0.00() [ dy i + TEW ’f(”)”
Y1 — Y2

+ Cyg [azka”_kH@ZskH + akan_kbgk] | 21 — 23]

(x) < Cy o" [02(”_k) + U"_kb%k } + Cho U%a"_kb%k +Ch Ukan_ka"bgk

_L._o9n
+ Chp oo ke

< Cyzo” [az(n—k) + Un_kbfk }

for some positive Cj, 1 < j < 13 independent of k£ and n. The second last line,
(%) holds by the estimation of (15.1.1), Corollary 13.2.3 and Corollary 13.3.2
with Proposition A.0.3 and Proposition A.0.4.

U

15.2 Non rigidity on the Cantor set with b,

Theorem 15.2.1. Let F and F are in N NZg(g). Moreover, let by be the ratio
of the average Jacobian and the asymptotic number by < 0.0 of I'. The number
by is defined by the similar way. Suppose that by > by. Let ¢: O — O be

a homeomorphism which conjugate Fo, and ﬁog and ¢(1) = Tp. Then the

1 log b
Hélder exponent of ¢ is not greater than — (1 + og~1).
2 log by

Proof. For sufficiently large k£ € N, let us choose n depending on k which
satisfies the following inequality

_ Tok _
o k+1§b% <O_nk

Observe that b?k > g%k By Lemma 15.1.1 and Lemma 15.1.2, we have the
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following inequalities
dist(wy, wq) < Cy [aka2("_k) + Uka”_kbfk] < Cy o0
diSt('Tb:l, wg) Z ‘ Cg O'k0'2(n_k) - Cg UkO'n_kg%k| Z C4 O'kg%k b%k

for some positive C; where j =0,1,2,3 and 4.

The Holder continuous function h with the Holder exponent « has to satisfy
dist (w1, wy) < C ( dist (i, iWjy))*
for some C' > 0. Then we see that
akgfkb%k <C (Jkgfkg%k)a

Take the logarithm both sides and divide them by 2*. Passing the limit and
after that divide both sides by the negative number, 2log b;. Then the desired
upper bound of the Holder exponent is obtained.

klogo + 28 log by + 2" log by < log C + a(klogo + 28 log by + 2" log b )
k ~ 1 k ~ ~
?logaleogbl +logb; < ﬁlongLoz (ﬁlogaj@ogbl +logbl)

loggl +logh; < - 210g31

1 1
a< — <1 + ng),l)
2 log by

O

The average Jacobian of the map in N N Zp(&) less affects the non rigidity
than the number b;. In the two dimensional Hénon-like map theory, when
two average Jacobian of F', say b and F', say b are same, the best possible
regularity of homeomorphic conjugation between two critical Cantor set is
unknown. However, the upper bound of Hoélder exponent is worse than the
two dimensional in general.

Let us consider a map in Zg(&) as follows.

Fw) = (f(x) —e(z,y), ©, 6(2))

We call the set of the map which is of the above form trivial extension of two
dimensional Hénon-like maps. Let us denote this set to be 7. It seems to be
worth notifying that 7 NZg(e) C N NZp(&) and T NZp(€) a space which is
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invariant under renormalization. 7 is also contained in the set of model maps.
Then if ' € T NZp(¢), then the n'® renormalized map of F', F,, = R"F is of
the following form

Fo(w) = (falz) — a(@)bi"y (1+0(p"), z, b3 = (1 + O(p")))

where b, is the average Jacobian of two dimensional map, 7,0 F and by = b/b;
for some 0 < p < 1. Let F' be another map in 7 NZg(¢) with the corresponding
numbers by, b and by. By Theorem 15.2.1 , if by > by, the upper bound of Holder

exponent is
1 log b
(1 ioes)
2 log bl

Let § and 0 be the third coordinate map of F' and F respectively. Since by
and by are completely independent of each other for every map F' € T NZg(é)
and by is the contracting rate on the third coordinate, the different by from
by may require the less regularity of the homeomorphic conjugacy between
critical Cantor sets of F' and F. For example, let us assume that

blbg - b :g:glgg

with the condition b; > 51. It implies that by < 52. Then Theorem 15.2.1
holds and the conjugacy between third coordinate map is also Holder map
because ¢ and ¢ is asymptotically linear map with different contracting rates.
Then the upper bound of Hélder exponent in Theorem 15.2.1 might not be
even sharp even though the average Jacobian of F' and F' are same. Then
the average Jacobian of the three dimensional Hénon-like map in N' N Zp(&)
is not corresponding invariant with the average Jacobian of two dimensional
Hénon-like map in the sense of the critical Cantor set geometry.
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Appendix A

Recursive formula of \IJZ

Proposition A.0.2. Let F' € Zg(&) and denote k'™ and n'™™ renormalized map
of F' to be F}, and F,, respectively. The derivative of the non-linear conjugation
at the tip, Tp, between F,f”fk and F, from domain of the n'* level, B(F,) to
the k™ level, B(F},) is called D}. The expression of D} is as follows

O k Umktmk On, k Un, k
D} On,k

UnJﬂLLk On,k

ko
|

where o, and . are linear scaling factors such that o, ) = (—a)”—k(l +
O(p")) and a, i, = o*" (1 + O(p*)). Then

n—1 n—1
dn,k = Z dit1,is  Unk = Z o ui,i (1+0(p"))
i—k i—k

n—1
bnk = Z 0" [tia,i + irr,i dny i1 ] (1 + O ("))
i=k

n—1

bnk = Un, ko Ay, )y = ZUi_k [ti—i-l,i — Ujq1,i di-i—l,k} (1+0(p"))
i—k
i1

where o= F(1+0(p*)) = HM Moreover, d,, i, un i and t, y are conver-
ik Ot

gent as n — oo super exponentially fast.

Proof. D} = D} - Dy, for any m between k and n because the image of the
tip under W7(7p, ) is the tip of k" level. By the direct calculation,
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m
On k L O, kOn,m Un,m + On,k Um, k
= On,k
0n7kdm7k+an7kdn,m On, k

where L = u k Op o b, m + On ke b, k & Ok U,k A, . Then

Jn,ktn,k - am,kan,mtn,m + Un,ktm,k + On,kUm, k dn,m
On,kUn,k = Om k On,m Un,m + On, kUm, k

Un,kdn,k = On,k dm,k + Un,kdn,m

for any m between k and n. Recall that 0,y = 0y m - Opx and o, =
Qpom - O k. Let m be k+ 1. Then

p i = dp k41 + dit1. 5
= dp, g2 + dpy2 k41 + dps1,k

(A.0.1)
=dpn-1+ + dpgo k1 + digk

n—1
= E dit1,q
1=k

Moreover, the absolute value each term is super exponentially small. More pre-
cisely, each term is bounded by 2" for each i, that is, | ;1| < | ¢; (7, (Tix1)| <
|D&;|| = O(2%"). Then d,,  converges to a number, say d, , super exponen-
tially fast.
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Let us see the recursive formula of w,, j.

Oyl k
Up kg = —Up k+1 + Ukt1,k
Ok+1,k

Q11 k | Ok+2,k+1
Up, k+2 T W42, k+1 | + Uk+1,k

Ok+1,k | Ok+2,k+1

(A.0.2)

n—1 i—1

a. .

Jj+1,j

= E | | P Uip1,i + Uk+1,k
i=k+1j=k I LI

n—1

= Z Ji_kui-i-l,i (14 O(pk>>

i=k

Moreover, w;y1,; =< 0.€;(7r,,,). Then u, ; converges to a number, say wu. j
super exponentially fast by the similar reason for d,, j.

Let us see the recursive formula of ¢, j.
Oyl k

tnk = ——— okt + tot1, e + Upt1, ko A, k1
Ok+1,k

Qg1 k | Ok4+2, k+1
= l o k2 + thg2, kb1 + U2, k1 A, kg2
Ok+1,k | Ok+2,k+1

+ g1,k + U1,k A, g1

n—1 1—1 a n—1 1—1 o (AOB)
_ J+1,J Jj+1,7
= E H P Liv1,i + teg1,k + E H o Uit dn, i1
i=kt1j=k ITLJ i=kt1j=k IT1J

+ Upg1, k A, k1
n—1

= Z O'i_k [ti+1,i + Uit1,4 dn,i—l—l ] (1 + O(pk>>

i=k

Moreover, by the equations (A.0.1), (A.0.2) and (A.0.3), we obtain the recur-

161



sive formula of ¢, — u,, k d,, i as follows.

n—1 i—1
a.
J+1,j
= > [ti-i-l,i + Uiy, dn,i—i—l} + g1,k + U1,k A, g1
i=k+1 =k I +1J
n—1 1—1 o
j+1,j
- § Hia Ui, + Ukt1,k | Ao,k
i=k+1j=k I +1J
n—1 i—1

a. .

_ J+1,j

o Z H [tiﬂ,i + Wig1,i dn,i1 — Ui+1,idn,k]
; O+,
i=k+1 j=k )

F 1,k + Uk k Ao kb1 — Ukt kG, ke
n—1 i1

a. .

J+1,j

= § | | —— [tivt, — Wit i1,k | + tisn ke — Werr, ks &
i=k+1j=k I +1J

n—1
= Z 0" tivr, — wirn i digr i | (1 + O(pY))
i—k

Recall the expression of the derivative of the coordinate change map at the tip
on each level.

ok - DHi(1p,) = (D)™

(ak)_l 1 —tp+urpdy —ug
= (o)~ : 1
(on)~" —dy, 1

Since Hy(w) = (fr(x) —er(w), y, z— o (y, fk_l(y), 0)), we see that 0y, (7p,) =
—tr + ug dy, for every k € N. Moreover, the fact that ;41 ; — ujp1, div1,; <
0y€i(Tr,,,) and | u;y1,; d, ;| is super exponentially small for each i < n implies
that ¢, , converges to a number, say ¢, j, super exponentially fast.

O

Recall the expression of the map W7 from B(R"F) to B2 *(RFF).

Utk Unk\ [ank T+ SP(w)
t(w) = 1 On,k (]
doy 1 Ink) \z+ Rp(y)
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where v = v F € Wn—F,

Proposition A.0.3. Let F € Ip(¢) and \If}g be the map from B(R"F) to
B(RFF) as the conjugation between (RFF)*"" and R"F. Moreover, R (y) be
the non linear part of w, o W} depending on the second variable y. Then both
R} (y) and (R})'(y) converges to zero exponentially fast as n — oo.

Proof. Let w = (z,y,2) be the point in B(R"F) and let ¥I'_,(w) be w' =
(z/,y',2"). Recall U2 = W"_, o WP~' Thus

2= m,o Ur (W) = 0, n-1 [dn,n—ly +z+ RZ—1(?J)]

y = Ty © Uy (w) = On,n—1Y

Then by the similar calculation and the composition of W7 ' and ¥"_,, we
obtain the recursive formula of 7, o U} as follows.

7, 0 U (w) = oy [dn,ky +z+ Rz(y)}
= mo W W) = on1 [dnor k) + 2+ R ]
= Op_t,k [ o1,k Onna1Y + Ot [dun1y + 2+ Ri_1(y) ]
+ Ry N onn-1y) ]

= On,k (dn—l,k + dn,n—l) + On,k Z + On, k RZ—l(y) + On—1,k Rz_l(an,n—l y)
(A.0.4)

By Proposition A.0.2, d,, = dp—1,k + dn,n—1. Let us compare the left side of
(A.0.4) with the right side of it. Recall the equation o, = 0y n—1 - On_1,k-
Then

Ri(y) = By (y) + Ry~ (0n,n1Y)

On,n—1
Each R}(y) is the sum of second and higher order terms of 7, o W} for i > j.
Thus
Ri(y) = an iy + Auik(y)y’

Moreover, || R*_,|| = O(22" ") because R"_,(y) is the second and higher order
terms of the map 8, 1(0n.n1Y, fili(Gn.n_19), 0). Then

1 _ Cn
RZ(CU) = o . RZ l(gn,n—l y) + Cn,k y2 + 0(52 1y3)
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_on—1 .
where ¢, 1, = O(g%" ). The recursive formula for a,, ; and A, j as follows.

1 n—
RZ(?/) = P . <an—l,k(gn,n—1 y)2+An—1,k(Un, n—1 y)'(gn,n—l y)3) +O(§2 1y3)

Then ap k= Gnnt @1,k + o and | An ]l < || on 1l An_i k]| + O(E* ).
Then for each fixed k£ < n, a, ), — 0 and A, , — 0 exponentially fast as
n — oo. R} (y) converges to zero as n — oo exponentially fast.

Let us estimate ||A;, ;|| in order to measure how fast (R})'(y) is convergent. By
the similar method of the recursive formula of R} (y), we have the expression
and recursive formula of (R})'(y) as follows.

(R (y) = 200y +3401(y) yv° + AL (y) v
Moreover, (Rp)'(y) = (Rr_1)'(y) + Ry (0n,n-1)
— RN 0nna1y) +2cany+O0E" 42

Then

(R (y) = 2an1.10nn1Y+ 34 1600 1Y) (Onn1Yy)?
_'_ A'/n,k(o-’n,n—l y) (Un,n_l y)3 + 2 Cn,k y + O(§2n—1y2>

Let us compare quadratic and higher order terms of (R}) (y).

’ Amk(y) y2 * AéLJﬂ(y) y3 - BAn_l’k(O-n, n—1 y) (O-n,n—l y)2
* A;’k(an’ n-1Y) (On,n-1 3/)3 + 0(6_2%192)

Thus
AL W)y =AL (0 n-1Y) 0o 1y — 345 1Y) + 3An_1,k(0n,n-1Y) 05 s
+0@E )
Then
_on—1
TAL el < AL el om, et P + 31 An ]l + 3]l Anes, k|l o0l + O(EF )

<
< 1Ay il onn-all® + Cllon, nall?

for some C' > 0. Then A, , — 0 as n — oo exponentially fast. Hence, so does
(R})(y) exponentially fast. O
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Proposition A.0.4. Let ' € Zp(g). Then

2y — 2y =m0 W (wy) — m, 0 Wi (ws)
n—1

=o0n k(21 — 22) + On e Z ¢i(0i&iv1) - (Y1 — v2)
i—k

where 0; &1 is some points in the line segment between m, o U}'(wy) and 7, o
U (wq) in my 0 WP(B) for each k <i<n—1. Moreover,

n—1

ZQi(Ui iv1) (Y1 — Y2) = dn k(Y1 — y2) + R (y1) — Ry (y2)
i—k

Proof. Firstly, let us express 7, o W7 (w). Denote &;(y, f; '(y),0) to be p;(y)
in order to simplify the expression. Recall the definition of ¢;(y), namely,
%pi(y) = qi(y). Let ¥ (w) be w; for k < i <n —1and let w; = (x;,y;, ).

For notational compatibility, let W!(B) = B, that is, ¥! = id and let 0; ;, = 1
for every i € N. Let w = w,. Recall m, o /™ (wi11) = 0241 + pi(0i Yir1).
Since U = ;' o WT |, we estimate z; using recursive formula

2z = myoVl(w)=m,o0 ¢,§+1(wk+1)
= 0k 2k+1 + Pie(OkYk1)
= Uk(0k+1 “Zpy2 + Prr1(0ri 'yk+2)> + pr(0k - Yrt1)

= Op0kt1 " Zht2 + Ok - Dig1 (Ot - Yry2) + Pr(Ok - Y1)

= OkOpt1  Ono1 2+ [OkOkt1* Ons* Pu1(0n_1 - y) (A.0.5)

+ OkOkt1 On-3 Pn-2(0n_2Yn-1) + -+ prlow- yk+1)}

= On,k* % + On—1,k * pn—l(gn—l : y) + On—2k * pn—2(0n—2 : yn—l)_l'
o+ pr(on - Ykea)
n—1
= Op k- 2+ Zai,k “pi (07 Yig1)
i=k

where 0y41,1 = 0. Moreover, by deﬁnitiQn of w;, y; = m, o U'(w). Moreover,
the second coordinate function of each 1! (w) is just scaling map with o; by
the definition, H; o A;(w) = (¢; ' (o;w), 0y, ®) for each k < i < n — 1. Recall
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Yy = Yn. Thus
On,i Y = 0;i Yix1 = Yi = Ty O Ui (w)
Then the above equation, (A.0.5) is expressed as follows.

n—1
moo Wi (w) =0k 2+ Y oik-pi(my o Uf(w)) (A.0.6)
i=k
Secondly, let us estimate 2 — 2y = w0V} (wy)—m, 0V} (wy) where w; € B(R"F)

for j = 1,2. By the equation (A.0.6) and Mean Value Theorem, we obtain
that

Z1— 2

— 70 Wp(wy) — 7, 0 U (wy)

n—1

= Oni- (21— 22) + Z Oik - [pi (my 0o Ul (wy)) — pi (my 0 WP (wy)) |
i=k
n—1
= Onk (Zl - Zz) + Zai,k “0; 44 (Ui : €i+1) ) {Un,i+l Y1 — On,it+1 'y2}
i=k
n—1
= Onk (Z1 - Zz) + Zai-i-l,k " (Ui : §i+1) *On,it1 " (yl - y2)
i=k
n—1
= Onk- (21— 22)+ 00k ZQi (05 - &ig1) - (Y1 — v2)
i=k

(A.0.7)
where ;11 € m,0U?(B) for each k <i+1 < n—1. Moreover, by the expression
of U},

.0 Ui(w) = 0, k[dnky + 2+ R (y) ]

Then
71— 2= w0 Wi(wi) — . 0 Ui(wo)
= On,k [dn,k (y1 —y2) + (21 — 22) + Rii(y1) — RZ(?Q)]

= Onk (21— 22) +on i [dn,k (y1 — y2) + Ri(y1) — RZ(?&)]
(A.0.8)
Hence,

n—1
ZQZ' (0i - &ir1) - (1 — y2) = du i (Y1 — v2) + Ry (y1) — R (v2)
i=k
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Corollary A.0.5. Let F' € Zp(¢). Then

n—1

> @m0 Uiy (w)) = de + (B (my 0 VFy (w)) (1+O(0™))

i=k

Proof. Let us compare the equation (A.0.7) and (A.0.8).

n—1

i Oni Y1) = PiOni- Ry - R}
Zai, k_P (0n,i = y1) = pi(on,i - y2) = Opp | ot k(1) k(Y2)
i—k Y1 =92 Y1 — Y2

By the mean value theorem, we see the equation as follows.

n—1
Onk° ZQZ' (05 &41) = On g+ [ + (RY) (07 - Gin) |

1=k

where 0; &1 and 0; (41 are some points in the line segment between o, ; y1
and o, ;Y2 in m, 0 U} (B) for each k < i < n —1. The points 0;&;;; and
0; Giv1. We choose the point 0; ;41 arbitrarily in the domain 7, o W7 (B) for
each k <i<n—1and|(R})| < Co? for some C' > 0. Moreover, d,, j — dy i
as n — oo super exponentially fast by Proposition A.0.2. Hence,

n—1

Y aimy o W7 (w) = [dns+ (B (my 0 U] (w)) ] (1+O0(c™))
1=k

= dor+ (R (7, 0 W7, (w) (14 O(0™))
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Appendix B

Recursive formula of Jac R"F

Let Fyy € Zp(&) for sufficiently small £ > 0. Let R"Foq = 99F,, = (fn(x) —
en(z,y),7) be the n'® renormalized map of Fy;. Then by the Universality
theorem, &, (z,y) has the universal expression, €, (z,y) = b a(z) y((1+0(p"))
for some 0 < p < 1 where b; is the average Jacobian of Fy; and a(x) is the
universal function of z. Let us define the horizontal diffeomorphism Hy4 ,, and
its inverse map H2_d}n as follows.

HQd,n(w) = (fn<':(:) - 5n(x,y), y)

Hyy' (W) = (¢3g (), 9)
Proposition B.0.6. Let Fy; be the infinitely renormalizable two dimensional
Hénon-like map with sufficiently small £ > 0 where ||e||cs < CE. Let the n'"
renormalized map be F,(x,y) = (fu(x) — en(2,y), x) and 0, = a(1 4+ O(p™))

be the scaling factor for n'" renormalized map. Then e,(x,y) = a(z) b3 y(1 +
O(p™)) with the universal function a(x). Moreover,

fr/L © fn(anx> ’ a(Unl’) ’ (fn_1>/<an*r) "ao (bQ_dI7 n(O'nI)
converges to a(z) as n — oo exponentially fast.

Proof. The first part of Proposition is the Universality theorem of two dimen-
sional Hénon-like maps. Denote the point w = (x,y). Let the inverse of the
horizontal diffeomorphism be H~(w) = (¢, (w),y). Then by the definition
of H='(w), we see the following equation

pa (W) = [+ 0 H  (w)).
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Thus
8y¢2_dl(w)
= () (z+eoH (w)) - dy(co H (w))
= (Y (@0 H Y w)) - [Bye o H - (w) - 0,050 (w) + Bye 0 H(w)]

Then,

1 — (f )@+ 20 H ' (w))
Oytag (W) = 1= (f"Y(x+ecoH Yw))- Oweo H Y w)

= (f7)(2) - 9ye 0 (¢34 (w), y)(1 + O(2))

By the Universality theorem of the two dimensional Hénon-like maps, we can
let

0,50 H ' (w)

en(,y) = a(z) 0"y (1+ O(p"))

where by is the average Jacobian of Fy; and for some positive p < 1.

Then using the definition of the pre-renormalization, let us define the map in
the following.

Pre [fn-i—l(x) - 5n+1(x>y)] = fn(.fn(x) —&po Fn © Hrjl(w)) —&po Fr% © Hrjl(w)
Then up to the exponential convergence, we see that
Oy Pre e, 44]

= [u(fa(@) = n(®, &y, 50(w)) - Oye(®, by g(w))
+ay€n(fn( )_EN(:E ¢n 2d( ) ,ZL’)

(

)
= fo(ful2) _5n(xv¢;,2d( w)) -0 (x,¢n12d(w))
— Ouen o (Ffo Hy'(w)) -0 8n($a n2a(W))

= [frlz(fn(x> — en(w, ¢;,12d(w)) + Opep 0 (Fn © H;l(w))} - Oye(x, ¢7_L,12d(w))

= [fr(fal2) = enl@, ¢, (w)) + Bpen o (Fy 0 HyH(w)]
- Oye o (, ¢;,12d(w)) : ayﬁb;lm(w)

= fu(Fa(@)) - a(@) b - (fi) (@) - a0 ¢ y(w) b (1+ O(E™))
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Hence,
Oyenir(.y) = fr0 fulour) - alow) - (7Y (0u) - ao 65} (0,2) B
(L4 0(p"))
= a(z) b7 (1+0(p")

Therefore, by the Universality theorem of two dimensional Hénon-like map
with exponential convergence, we obtain that

foo fal(0nw) - alon) - (f71) (002) a0 ¢y ,(0nz) — alx)

as n — oo exponentially fast. O

The three dimensional map ¢! (w) is also defined as the first coordinate map
of H™'(w). Then we can estimate 9,¢ ' (w) and 9.¢~*(w) in terms of d,¢ and

0,¢.
Let us estimate 9.¢~1(w).

0.9~ (w) = (f7)(x+eoH (w)) 0.(e 0 H '(w))
= (f ) (@+eoH  (w))
[0 0o H M (w) - 0.0~ H(w) 4 0.6 0 H ' (w)]

Then
1 B (fY(x+eo H 1 (w)) .
00" () = T Y ot o () - e o w00 (W)
= (fY(x)- 8.0 H w)(1+ 0(2)) Bos

Let us estimate 9,0~ (w).
0,0~ (w) = (f7)(z+eoH (w)) (e 0 H ' (w))
= () (@+eoH (w))- | deo H '(w)- 0,6~ (w)

+ 0,20 H7H(w) + 0ue 0 HH(w) - 10 00, £~0),0)]
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Then
(f D) (@ +eoH Y(w))

W) S T et e o BT (w) - Bz H (W)
00 B (w) + 0o B w) 5 80017 (1). 0]
Y 1 . d .
= (7Y@ [0z 0 H™ ) +920 H () - 1 60y, 17 (0), 0]
(1+0(9)
(B.0.2)
On the above equations let us define the map (f=!)(z) as follows
(f1 () = U7 )(@ +eo H H(w) (B.0.3)

1= (fY(z+eoH Y (w)) - 0pc 0 H N w)

Jacobian of R"F can be expressed as the formula using Jacobian of R*'F. In
order to express of the Jacobian as the recursive formula, each partial deriva-
tives of g, and §,, should be expressed by the function of partial derivatives of
€n_1 and 6,1 firstly.

Let us estimate 0,Pre 0, (w).

0.(6 0 Fo H Y w) — 6(x, f1(2),0))
d

= 0wz, 67 (x), 00 HH(w)) = == d(x, [ (2),0)

= 0,00 (FoH ' (w))+ 09,00 (FoH ' (w)): 0w (w)
d

+0.00 (FoH ™ (w)) - 0x(d 0 H'(w)) = — d(z, f~'(x),0)

= 0,00 (FoH ' (w))+ 09,00 (FoH ' (w)):0up(w)

+ 0,60 (FoH Y w))- 0,00 H  (w) - 0,0 (w) — % §(z, f1(x),0)

= [[8,60 (Fo H '(w) +0.00 (Fo H ()-8, 0 H ™ (w)] |- 0,67 (w)

+ 0,00 (Fo H Hw)) — % §(z, fH(x),0)

(B.0.4)
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Let us estimate J,Pre d; (w).

0,(60 F o H ™' (w) - < F7),0)) = 8,3(, ¢ (x), 0 0 H(w)
= 9,60 (Fo H ™ (w))- 8,6 (w) + .00 (F o H (w))-9,(5 0 H(w))
= 9,00 (Fo H ' (w))- 8,6 (w) + .00 (F o H (w))

0.8 0 H (w) m <w>

+ 9,0 0 H ' (w) + 9,6 0o H ' (w) - d%/ iy, f_l(y),O)}

— [[0y60 (Fo H'(w) + 030 (F o H ' (w)) - 0,6 0 H-'(w)] |- 8,6~ (w)
+ 0.0 0 (Fo H Y(w))

: [aya o H Y w) + 8.0 0 H™ ' (w) - d% 5(y, f‘l(y),U)]

(B.0.5)
Similarly, we can estimate 0,Pre d;(w).
d.(60 Fo H Y (w) — d(x, f(2),0)) = 0.6(x, ¢~ (x),6 0o H '(w))
= 0,00 (FoH '(w)) 0.4~ ( )+ 0.00 (FoH Yw))-0.(60 H ' (w))
= 0,00 (FoH (w))- 0.0 (w)
+0.00(FoH Y(w)):[0:60 H ' (w) 0.0~ (w) + .6 0o H ' (w)]

- [ay(s o (FoH Y(w))+ .00 (FoH H(w))-dy00 H_l(w)} - 0.0 (w)
+ 0,60 (FoH Yw))-0,6 0 H Y (w)

(B.0.6)
In order to estimate d,Pree;(w), we need to estimate 9,(c o F o H™!(w)) and

d,(c 0 F? o H ' (w)) first.
Let us estimate d,(c o F'o H '(w)).
dy(e0 Fo H Y (w)) = 0ye(x, ¢ ' (z),d 0 H ' (w))
= Jyeo (FoH '(w)) 9,0 (w)+ 0,60 (FoH 'w))-8,(6 0 H ' (w))
= Do (Fo H ' w)) - 8,6~ (w) + duc o (F o H-'(w))
+|0u6 0 H™H(w) - 9y¢p~ " (w)

)
)
0,50 7 w) + 0.0 7 (w) - £ 60,1 (0),0)
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— (B0 (Fo H () +0uc o (Fo Hw)) - 0,00 H™w) ] - 0,07 (w)
+ 0,60 (Fo H *(w))

[0y 0 B (w) + 0.6 0 B (w) - d% 5y, £ (9),0)]

Moreover, we can express d, (¢ o F? o H™'(w)) in terms of ,(¢ o F o H ! (w))
and 0y(d o F o H Y (w)).

8,0 F* o HY(w)) = O,e(f(x) — o0 F o HYw), 2, 50 F o H™'(w))
= —O,e0 (F o H '(w)) - 9y(e 0 Fo H ™ (w))
+0.60(F?o H  (w))-9,(60 Fo H (w)
B.0.7)

(
Denote the function f'(f(x) —eo F o H (w) — 0, o (F? o H ' (w))) to be
f'(fe(x)). Then 0,Pree;(w) can be estimated in terms of partial derivatives
of e(w) and §(w) as follows.

0,Pree;(w)

=—0,[f(f(x) —eoFoH '(w)) —co F?o H '(w)]

= f(f(x) —eoFoH Yw)) 0,(s0 Fo H *(w))+3d,(c0 F?o H '(w))

= [f'(f(x) —eoFoH '(w)) — d,e0 (F?o H '(w))] - 9y(c 0 F o H ' (w))
+0.e0(F?o H Nw)) - 9,(6 0 F o H ' (w))

= [f'(fa(:)s)) A0,c0(FoH Y(w))+0.c0(FoH *(w)): 0,60 H 'w)}
+ 0,20 (F* o H Y (w))

1]8,00 (FoH Y(w)+ .00 (FoH Y(w))- 0,00 H () }]

-0y (w)

[ F(fela)) - Bz 0 (F o H (w))

4.0 (F2o H Y (w)) 8.60 (Fo H—l(w))]

[o,50 B w) + 000 H(w) - - 50y, (), 0)]

dy

(B.0.8)
Let us estimate 9.(¢ o F o H™1(w)).
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O:(co FoH (w)) = d.e(x, ¢~ (x),0 0 H™'(w))

0:¢ (w) + 0.0 (F o H ' (w)) - 0:(6 0 H ™' (w))

Z ( )
w)) - [0,6 0 H N (w) - 0.6~ (w) + 0.6 0o HH(w)]

= [Oye0(FoH (w))+d.e0(FoH (w): 0:00 H '(w)] 0.0~ (w)
+0.e0(FoH Y(w))-0.6 0 H ' (w)

= Jyeo(FoH '(w

)

= Jyeo (FoH '(w)
)

+0.e0(FoH™!

)=
) -
)- 0
(

(B.0.9)

Moreover, we can express d,(c o F? o H™*(w)) in terms of d,(¢ o F o H*(w))
and 0y(d o F o H Y (w)).

d.(c0 F? o H Y w)) = d.e(f(x) —co Fo H Y(w), 2, 6 0o F o H ' (w))
= Oy o (F o H™\(w)) d.(c 0 F o H}(w))

+0,e0(F2o H (w))-0,(60 F o H (w))
(B.0.10)

Then 0,Pree;(w) can be estimated in terms of partial derivatives of e(w) and
d(w).

d.Preei(w) = =0.[ f(f(x) o FoH Y(w)) —co F? o H ! (w)]
= f'(f(x) —eoFoH Yw)) 9y(s0 FoH '(w))+3d,(s0 F? o H '(w))
= [J(f(x) —eoFoH '(w)) = dpe o (F? o H '(w))] - 0:(c 0 F o H ™ (w))

+0.0(F*o H  (w))-0.(00 F o H '(w))
= [ /') - {Dye 0 (F o H™'(w)) + . 0 (F o H ™ (w)) - 9,0 0 H (w)}

+ 0.e0 (F?o H Y (w))

A[0,50 (Fo H Yw) + 050 (Fo H (w)) - 0,00 H "(w)| }
0.0 (w)
+ | f/(fel@)) - Oue 0 (F o HH(w))
+0,e0(F2o H  (w))- 0,00 (FoH  (w))|-0.60 H ' (w)

(B.0.11)

Lemma B.0.7. Let F' be an infinitely renormalizable three dimensional Hénon-
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like map. Then
Jac R"F(w)
= (fil) (on12) - fry (famr(00-12))
JacR"'Fo (H ' (0, 1w))-JacR" ' Fo (F, 0 H,' (6, 1w))

n—1

Proof. Let us calculate Jac RF(w) in terms of partial derivatives of € and .
Recall the equations (B.0.5), (B.0.6), (B.0.8) and (B.0.11). Let us express
Jac RF' in terms of these.

Jac RF(w) = 0ye1(w) - 0,61 (w) — O,e1(w) - 001 (w)

= [{£(flon)) - (9,2 o (F o H™oww)) + 020 (F o H (opw)
- 0,0 0o H  (ogw)}
+ 0,e 0 (F? o H Y (ogw))
{8,860 (FoH Yogw))+ .00 (FoH '(oow)) 0,60 H '(oow) }}
-8y¢_1(00w)
+{ f(f-(00x)) - 0. 0 (F o H H(ogw)) + D 0 (F* o H™ ' (ogw))
+0.6 0 (F o H ' (oqw))}
{9,0 0 H™(00w) + 0.6 0 H™*(agw) - d% (a0, ~H(o0y), 0)}}
. [{%5 o (FoH oow))+ .60 (FoH '(oggw)) - 0,6 0 H ' (oow) }

- 0,0 (ogw) + 0,6 o (F o H  (ogw)) - 9,6 o H_l(aow)]
(B.0.12)
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— [{ £/ (felo0x) {0, 0 (F 0 H (oqw))
+ 0,e 0 (Fo H Y (ogw)) - 0,0 0o H *(oow)}
+ .60 (F? o H *(oqw))
{ 8y60(FoH *ogw))+ .00 (FoH '(oow)) - 8,6 o H '(oow) } }
- 0.0~ (oow)
+{ f'(feloox)) - 2 0 (F o H™ (ogw))
+0.c0 (F*o H ' (ogw)) - 8.0 o (F o H ' (oqw)) }
0,0 0 H_l(aow)}
: [{ayd o (FoH Yoow))+ .60 (FoH '(ogw)) 0,0 0 H ' (cw) }
-0y¢_1(00w)
+ 0.0 0 (FoH '(oow))-{0,0 0 H ' (ogw) + 9.6 0 H (o)

. (% d(o0y, f_l(UOy)a O)}]

On the above equation, let us denote some factors to be A, B, C' and D as
follows.

A= f(flo0x)) - {dye o (F o H}(oqw))
+0.e0(FoH Y ogw)) - 0,0 0 H  oow)}
+ 0,60 (F? o H  (oqw))
{ 9,60 (FoH Yogw))+ 9,00 (FoH ogw)) 0,60 H (ogw) }

B = f'(f(ox)) 0.c0 (FoH ' (oow))
+ 0,e0 (F*o H *(oow)) - 0.6 o (F o H (ogw))

C= 9,00(FoH Yoyw))+09.50(FoH *(oow))- 9.6 0H (ogw)

d
D = ay5 o H_l(Uow) + 025 o H_l(Uow) : d_y 5(00% f_l(goy)> 0)
(B.0.13)
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Let us calculate A - 9.5 0 (F o H Y(ow)) — BC for later use.
A-0,00(FoH *(oyw)) — BC

= [ £/(ful00)) - {0y 0 (F o H™ (ogw))
+ 0,e 0 (F o H  ogw)) - 0,0 0o H *(oow)}
+ .60 (F*o H *(oqw))

{050 (F o H™ (opw)) + 0.6 0 (F o H™ (ow)) - 8,5 0 H(oyw) }|
0,60 (F o H \(ogw))
— [ F(fo(o02)) - 8.2 0 (F o H (o))
4 8.0 (F2o H Y ogw)) - 8.6 0 (F o H Y (ogw)) ]
: [aya o (F o H \(ogw)) + 8.6 o (F o H-\(opw)) - 06 0 H™ (ogw) }
= ['(foloor)) - [8ye 0 (F o H™ (oow)) - 0.6 0 (F o H™ (oqw))

— .0 (FoH Yogw))- 0,00 (FoH ' (oyw))]
(B.0.14)

Then the above equation of Jac RF is expressed as follows.
Oyer(w) - 0,01 (w) — D.1(w) - b1 (w)
- [A 8,0~ (opw) + BD]
-8, (ogw) + .60 (F o H (ogw)) - 8.6 0 H (ow)

_ [A 0.0 (ogw) + B- .60 H_l(aow)} (B.0.15)

e 0,0 (ogw) + 0,0 o (F o H™ Y (ogw)) - D}

= A 9,0 ' (oow) - 0.6 0 (Fo H '(ogw)) 9.6 0 H ' (ogw)
+ BCD - 9.¢"(oow)
~ [AD- 0.6 (o) - 0.6 0 (F o H (o)
+ BC - 0.6 o H ' (gw) - 9,0~ ' (oow) |

Recall the equations (B.0.2) and (B.0.1) for 9,¢ ' (cow) and 9.¢~ ' (oow) re-
spectively. Let us expand D in the equation (B.0.13). Then above equation is
continued as follows.
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A-(f7Y (oox) - { Oy 0 H(oow) + 0.6 0 H (opw)
di S(ow, F(000).0) )
0,60 (F o H Yogw)) - 0,6 o H Y (oqw)

+ BC - {8,60 H (opw) + 0.6 o H (0w) - dily 8(ooy, [~ (o0y),0)}
- (f71)(00x) - 9.2 0 H™ (o)

[ A {8,650 H oqw) + 8.5 0 H (oqu) d% 5(coy, /" (o00),0)}
(f71(00x) - 9.6 0 H™ (agw) - 9.0 0 (F o H™ (ggw))

+ BC - 0.5 0 H (ogw) - (71 (002)

{ 9ye 0o H™(oow) + 02 0 H™(ogw) - d% 8(aoy, f~H(o0y),0) }}

= A-(fZ")(o0x) - 0:0 0 (F o H™' (0w))
- [9ye o H (opw) - 0.6 0 H (oqw) — O.6 0 H™ ' (ogw) - 8,6 o H ™ (opw) |
— BC - (f=")(00z) - [9ye 0 H ' (opw) - 0.6 0 H ' (oqw) — 0. 0 H™ ' (o)
- 9y6 o H™ ' (oqw) |
= [A-0.60(FoH "(oow)) — BC| - (f7") (ooz)
- [0ye 0o H Y (ogw) - 0.0 0 H ' (5gw) — 0.6 0 H ' (ogw) - 8,6 0 H™ ' (ow) |

By the equation (B.0.14), the above equation is continued as follows.
= (1) (007)
- [0ye 0o H  (ogw) - 0.0 o H™ ' (5gw) — 0.6 0 H (ogw) - 8,6 0 H™ (o) |
< f'(feloox)) - [0y 0 (F o H™ (oow)) - 0:0 0 (F o H™ (oow))
—d.e0(FoH Y(ogw)) -9y 0 (FoH '(ogw))]

= [(f-(o0x)) - (fZ1)(002) - Jac F o (H™ (gow)) - Jac F o (F o H~'(oow))
(B.0.16)

Similarly, Jac R"F'(w) is expressed in terms of the partial derivatives of &,_;

178



and 6,,_; as follows.

Jac R"F(w)
= ( n_—ll7 a)/(an—lz) . f;z—l(fn—17a(0n—1z))
JacF, 1o (H ' (0, w))-JacF, o (F,_y0 H' (0, 1w))

179



Appendix C

Further research topics

The theory of three dimensional renormalizable Hénon-like maps has open
problems. Recall that Zp(€) is the set of infinitely renormalizable three di-
mensional Hénon-like maps. Let us consider subsets of Zp(£) appearing on the
previous sections. Let us define each set using the curly alphabet and consider
their basic properties.

e 7 — set of the Hénon-like maps such that
0.e=0, 0,0=0, and 9,0=0

Let the maps satisfying above conditions be trivial extension of two di-
mensional Hénon-like map or simply trivially extended map, which is of
the following form.

(Zlf,y,Z) = (f(l’) - E(Z',y), L, 5(2))
e M — set of model maps. See §9.1.

0,e =0

e SM — set of small perturbation of model maps with the condition
by > by. In particular, (by)" > by is assumed for the given finite number
r > 3. See §9.3 and §10.2.

e N — set of maps the following identical equation of partial derivatives
of the third coordinate map

dy6 o F(w) + 0,0 o F(w) - 0,0(w) =0
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where w = (z,y,2) € B} U B!. See §12.1.

Then clearly we observe the following inclusion property of each sets.
TCMNN

Moreover, the set differences, M \ N and N'\ M are non empty sets. Fur-
thermore, each of the following sets

T NZg(E), MNIg(E), and N NZg(E)

are invariant under renormalization. The set SM N Zg(€) with the condition
(b1)" > by is invariant under renormalization in the sense that there exist
invariant surfaces under renormalized map for each level.

We can call each of those sets a subspace of Zg(¢). The renormalized map
of Fy € T NZg(é) is the following due to the universality theorem of two
dimensional Hénon-like maps.

R'Fu(x,y,2) = (falz) = b a(2) y(1+ 0(p")), @, 03" (2 — 2:) (1 + O(p")))

where |z,| = O(g2") for some p € (0,1). Then R"F, has invariant plane paral-
lel to xy—plane for each n € N,. However, the Hénon-like maps in the space
SM NZg(&) has C” invariant surfaces. Then by the diffeomorphism between
surface and xy—plane two dimensional renormalizable C" Hénon-like maps are
defined. Moreover, it is shown that this renormalization is the same as the
usual definition of Hénon renormalization by the conjugation of the horizontal
diffeomorphism and dilation.

Problem I
There are open problems related to invariant surfaces and two dimensional C”"
Hénon-like maps.

(1) Are there C'* or C¥ invariant surfaces different from plane under R"F' €
Zp(¢) for each n € N, 7

(2) Suppose that the map, Fi(z,y) = (f.(x), x) is the fixed point under
renormalization operator of infinitely renormalizable two dimensional C”"
Hénon-like maps for big enough r < oo, say Z". Is F, the hyperbolic
fixed point under renormalization?

(3) Invariant surfaces under R"F € Zp() in three dimension can define a
subset of infinitely renormalizable two dimensional C™ Hénon-like maps,
say Lg,. Clearly 7, C Z". Is the set Z) dense or open in 777
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Problem I1
There some open problems about the Hénon-like maps in the space N NZg(&).

(1)

(2)

Recall that b3" = 9,5,(w)(1 + O(p™)) and the average Jacobian and b
satisfies that b = b;by. Are logb; and log bs Lyapunov exponents on the
Cantor attractor? It might be yes.

Does the continuous invariant line field exist on the Cantor attractor of
F e NQIB(E)?

The set of parametrized Hénon-like maps by b; in N N Zg(€) has the
parameters (0, b;] for some b; > 0. There exists parametrized subfamily
of Hénon-like maps of which Cantor attractor has unbounded geome-
try. Then the corresponding parameters of the above subfamily contains
G subset of (0, 51]. Can this parameters contain the points of the full
Lebesgue measure?

Problem ITI
The extension of the Hénon renormalization to the larger space is a further
research topic.

(1)

(2)

Does there exist invariant subspace of Zg(£) which contains M U N ?
Can a subspace of Zg(&) invariant under renormalization describe the
map of the whole family Zz(&) generically?

For the maps in M UN, 9,6, = 03" (1 + O(p")) for some positive small
number by. Is it true for all maps in Zp(£)? If not, is there a map whose
Cantor attractor has dynamical properties which cannot be induced from
the two dimensional Hénon-like maps?

Extend three dimensional theory to the arbitrary finite dimensional map.
The Hénon-like map in the general dimension is of the following form.

(S(I,y,Z) = (f(i(]) - 6(5(3,y,Z), xz, 5(5(3,y,Z))

where z = (21, 29, . . ., zy,) for any fixed m € N.
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