
MAT 141 Homework 3 Solutions

1. Existence of 3
√

2

Proof: Step 1: Let S = {s > 0|s3 < 2} and T = {t > 0|t3 > 2}.
First note that for all s ∈ S, t ∈ T , s3 < 2 < t3 ⇒ t3 − s3 > 0.
But t3 − s3 = (t − s)(t2 + ts + s2). Since s and t are both positive,
(t2 + ts + s2) is positive, and so (t − s) must also be positive. Hence
t > s, and therefore every element of T is greater than every element
in S.

Step 2: Now we will show that S has no maximum, and thus does not
contain its supremum, and also that T has no minimum, and thus does
not contain its infemum.

So, to see that S has no maximum, assume for contradiction that sm ∈
S is a maximum. We will try to find a contradiction by finding an
element in S that is larger than sm. For reasons that will become clear
soon, let us denote such an element by sm + h. If there is some h > 0
so that (sm + h) is in S, then we have our contradiction.

Now we will show that we can find such an h. So, (sm + h) ∈ S if and
only if (sm + h) > 0 and (sm + h)3 < 2, or rather

s3
m + 3s2

mh + 3smh2 + h3 < 2

If we insist that 0 < h < sm, then we have, by using 3s2
mh > 3smh2

and s2
mh > h3:

s3
m + 3s2

mh + 3smh2 + h3 < s3
m + 3s2

mh + 3s2
mh + s2

mh = s3
m + 7s2

mh

and so
(sm + h)3 < s3

m + 7s2
mh

Thus, if we can find an 0 < h < sm so that s3
m + 7s2

mh < 2, then we
have by transitivity that (sm + h)3 < 2. But we can solve the above
inequality for h. In other words,

s3
m + 7s2

mh < 2 ⇒ h <
2− s3

m

7s2
m

Now it is important to note that 2−s3
m

7s2
m

> 0, since s3
m < 2, and sm > 0.

If this were not so then we could not find an h > 0 that satisfied
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this inequality. As it is, we can. However, recall that to ease our
simplification we had previously insisted that h < sm, so let m =

min{sm, 2−s3
m

7s2
m
}. Any h > 0 that satisfies h < m clearly satisfies h < sm

and h < 2−s3
m

7s2
m

.

Since sm and 2−s3
m

7s2
m

are both positive, m must be positive. Therefore

the interval (0,m) is nonempty. In other words, we can find an h0 with
0 < h0 < m.

But we have chosen this h so that (sm + h) > sm and (sm + h)3 < 2.
Therefore (sm + h) ∈ S. This contradicts our assumption that sm is
the maximum os S. Therefore S cannot have a maximum. We can
similarly show by contradiction that T has no minimum.

Step 3: We will use steps 1 and 2 to show that (sup S)3 = 2. Recall
from step 1 that s < t for all s ∈ S, t ∈ T . From theorem I.34
this means that sup S ≤ inf T . Later on in this homework you will
show that therefore (sup S)3 ≤ (inf T )3. Furthermore, since sup S /∈ S,
(sup S)3 ≥ 2, and since inf T /∈ T , (inf T )3 ≤ 2. But then, using the
above conclusions, we have

2 ≤ (sup S)3 ≤ (inf T )3 ≤ 2

and so 2 ≤ (sup S)3 ≤ 2 ⇒ (sup S)3 = 2 or rather sup S = 3
√

2.
Therefore 3

√
2 exists.

2. I 4.4 #1 b,c

(b) Our general assertion is A(n) : 1 + 2 + 5 + · · · + (2n − 1) = n2.
A(1) : 1 = 1, which is true. Now, if we are given that A(k) is true,
then we have that

A(n) : 1 + 2 + 5 + · · ·+ (2k − 1) = k2

and therefore that

A(n) : 1+2+5+· · ·+(2n−1)+(2(n+1)−1) = n2+(2(n+1)−1) = n2+2n+1

which factors, so we have

1 + 2 + 5 + · · ·+ (2n− 1) + (2(n + 1)− 1) = (n + 1)2
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But this is just the statement A(k + 1).

Therefore A(1) holds and A(k) ⇒ A(k+1), so by induction, the general
assertion holds.

(c) Our general assertion is A(n) : 13 +23 + · · ·+n3 = (1+2+ · · ·+n)2.
A(1) is the statement 1 = 1, which is still true. Now we must show
that A(n) ⇒ A(n+1), so let us suppose that we are given A(n). To the
right side of the equation, we use the result of part (a) of this exercise.
In other words:

13 + 23 + · · ·+ n3 = (1 + 2 + · · ·+ n)2 =

(
n(n + 1)

2

)2

. Adding (n + 1)3 to both sides of this equation and expanding gives:

13+23+· · ·+n3+(n+1)3 =
n2(n + 1)2

4
+(n+1)3 =

(
n2

4
+ (n + 1)

)
(n+1)2

which factors, so we have

13+23+· · ·+n3+(n+1)3 =

(
n2 + 4n + 4

4

)
(n+1)2 =

(n + 2)2(n + 1)2

4

But we can again use (a) to substitute on the right side, this time going
the other way, so we have:

13 + 23 + · · ·+ n3 + (n + 1)3 = (1 + 2 + · · ·+ n + (n + 1))2

which is exactly A(n+1). So we have shown that A(n) implies A(n+1),
so by induction the general assertion holds.

3. 4.4 # 3

Looking at the equations given, it seems the general law suggested is
that 1+1/2+1/4+ · · ·+1/2n = 2−1/2n. In summation notation, this
can be expressed

∑n
i=0 1/2i = 2 − 1/2n. Rather than outline a proof

by induction, I’ll instead show you a faster way to prove this law.

Note that (by elementary algebra) 1/2k = 1/2k−1 − 1/2k. Using this
to substitute in our original sum we have

∑n
i=0 1/2i−1 − 1/2i. But this

sum telescopes to 2− 1/2n, so we are done.

3



4. 4.7 # 11 a, b, e.

(a) True. 04 = 0, so
∑100

n=0 n4 =
∑100

n=1 n4.

(b) False, because
∑100

j=0 2 = 2 ∗ 101 = 202, not 200.

(e) False. Simply 100 ∗∑100
k=1 k2 >

∑100
k=1 k3.

5. 4.7 # 12

Writing out the first few sums we have:
∑1

k=1
1

k(k+1)
= 1/2,

∑2
k=1

1
k(k+1)

=

2/3,
∑3

k=1
1

k(k+1)
= 3/4 . . .. At this point we can make the conjecture

that
∑n

k=1
1

k(k+1)
= n/(n + 1). This can be shown by using the substi-

tution 1
k(k+1)

= 1
k
− 1

k+1
, after which the sum telescopes to the desired

result. Otherwise, it can be proved by induction as follows:

In this case our statement A(n) is
∑n

k=1
1

k(k+1)
= n/(n + 1). Since

this was conjectured based on the first three sums, clearly A(1) is true.
Now we must show that A(n) ⇒ A(n + 1). If we have A(n), that is∑n

k=1
1

k(k+1)
= n/(n + 1), then add 1/(n + 1)(n + 2) to both sides, so

that we have

n+1∑

k=1

1

k(k + 1)
=

n(n + 1) + 1

(n + 1)(n + 2)
=

(n + 1)2

(n + 1)(n + 2)
=

n + 1

n + 2

which is the assertion A(n + 1), so by induction the assertion holds for
all n ∈ P.

6. Given 0 < x < y prove by induction that for any n ∈ P, xn < yn.

The assertion A(n) is that xn < yn, so clearly we have A(1). Now,
to show that A(k) ⇒ A(k + 1) we will start with xk < yk. Multiply
both sides by x. Since x > 0 we have then xk+1 < xyk. Now take
the inequality x < y. Since y > 0 we have yk > 0, and so we can
multiply x < y by yk to get xyk < yk+1. But then by transitivity our
two results above give us xk+1 < yk+1, which is A(k + 1). Therefore
A(k) ⇒ A(k+1), and so by induction our assertion holds for all n ∈ P.
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