MAT 141

ASSIGNMENT 2

Please write proofs (or at least some reasoning if you can't give a full proof), not just answers! So if a problem asks whether some set has a maximum, do not just write "No", write "No, it doesn't because. . ."

As usual, you are allowed all the theorems stated in the appropriate chapters of the book (whether or not we have discussed them in class).

Notation:
\mathbb{Z} - set of integer numbers
\mathbb{P} - set of positive integer numbers
\mathbb{Q} - set of rational numbers
(1) Section I 3.12, problem 4
(2) Section I 3.12, problem 6 [Hint: consider first the case when $y-x>1$, and show that in this case, there exists an integer r between them]
(3) (a) Show (without using logarithms) that the set $\{2,4,8 \ldots\}=\left\{2^{n} \mid n \in \mathbb{P}\right\}$ is unbounded above. [Hint: can you show that $2^{n}>n$?]
(b) More generally, let a_{1}, a_{2}, \ldots be an increasing sequence of integer numbers: $a_{1}<a_{2}<$ $a_{3}<\ldots$. Show that the set $\left\{a_{1}, a_{2}, \ldots\right\}$ is unbounded above
(4) For each of the following sets, determine whether it is bounded above/below; whether it has a maximum/minimum (if so, find them); whether it has supremum/infinum (if so, find them)
(a) \mathbb{Q}
(b) $\{\sqrt{1}, \sqrt{2}, \sqrt{3}, \ldots\}=\{\sqrt{n} \mid n \in \mathbb{P}\}$
(c) $\left\{\frac{1}{2}, \frac{3}{4}, \frac{7}{8}, \ldots\right\}=\left\{\left.\frac{2^{n}-1}{2^{n}} \right\rvert\, n \in \mathbb{P}\right\}$
(d) $\left\{-1, \frac{1}{2},-\frac{1}{3}, \frac{1}{4}, \ldots\right\}=\left\{\left.(-1)^{n} \frac{1}{n} \right\rvert\, n \in \mathbb{P}\right\}$

