MAT 141 Homework 1 Solutions

1. (I.6) Proof: $a+0=a * 1+0=a *(1+0)$, by Axioms $4 \& 3$. By Axiom $3, a(1+0)=a * 1+a * 0$, which by Axiom 4 is the same as $a+a * 0$. So now we have shown that $a+0=a+a * 0$. By Thm. I. 1 this implies that $0=a^{*} 0$.
I. 11 Proof: Given $a b=0$, if $a \neq 0$ then by axiom 6 we can multiply both sides by a^{-1}, yielding $a * a^{-1} * b=a^{-1} * 0$. The right side of this equation is 0 by thm I.6, so $a * a^{-1} * b=b=0$. Symmetrically, if $b \neq 0$ then $a=0$ (this means it is the same proof substituting b for a). Therefore both a and b cannot be nonzero. Therefore if $a b=0$ either $a=0, b=0$, or both a and b are zero.
2. 3.3 3. From the axioms, $1 * 1^{-1}=1=1 * 1$. Using thm. 1.7 (the cancelation law for multiplication), we can cancel 1 from both sides, giving $1^{-1}=1$.
3. Assume for contradiction that there is some number y such that $0 * y=1$. But by thm I. $6,0 * y=0$, which is a contradiction. Therefore there cannot be such a number y.
4. I. 22 Proof: If $a<b$, then by definition $b-a$ is positive. Similarly, $c<0$ implies, using previous theorems, that $0-c=0+-c=-c$ is positive. By axiom 7, the product of two positive numbers is itself positive, so, again using our theorems from the previous section, $-c(b-a)=$ $-b c-(-c) a=-b c+a c=a c-b c$ is positive. But this means (by definition) that $b c<a c$, and therefore that $a c>b c$.
I. $23 a<b$ means that $b-a$ is positive. But from previous theorems $b-a=b+-a=-a+b=(-a)-(-b)$, so $(-a)-(-b)$ is positive, which means $-b<-a$, which means $-a>-b$.
5. 2. If $x=0$ then $x^{2}+1=0 * 0+1=1 \neq 0$, so assume $x \neq 0$. If $x \neq 0$, then by thm. I. $20 x^{2}$ is positive. Since 1 is positive by thm. I. $21, x^{2}+1$ is therefore positive by axiom 7 , or rather $x^{2}+1>0$. By the trichotomy law (thm. I.16) this means that $x^{2}+1 \neq 0$.
1. Let a and b be any two negative numbers. Note that by axiom $8,-a$ and $-b$ are positive. Therefore, by axiom $7,-a+-b$ is positive. Now, $a+b=-(-a-b)$ by exercise 5 in section 3.3. But since $-a-b=-a+-b$ is positive, $-(-a+-b)$ is negative. Thus the sum of any two negative numbers is negative.
2. Note that for any $a, a *(1 / a)=1>0$, by thm I.21. If $a>0$, then by thm I.24, $(1 / a)>0$.
3. The set A is closed under addition (the summation of two numbers in A is itself in A), because $a+b \sqrt{2}+c+d \sqrt{2}=(a+c)+(b+d) \sqrt{2}$. Similarly, A is closed under multiplication because $(a+b \sqrt{2})(c+d \sqrt{2})=$ $(a c+2 b d)+(a d+b c) \sqrt{2} \in A$. Therefore addition and multiplication are well defined over A, and the validity of the first three axioms is inherited from the real numbers. Since $0,1 \in A$, Axiom 4 is satisfied. Axiom 5 is satisfied because for any element $a+b \sqrt{2} \in A,-(a+b \sqrt{2})=$ $-a-b \sqrt{2} \in A$. To see that Axiom 6 is satisfied, we will first show that if $a+b \sqrt{2} \in A$ and $a+b \sqrt{2} \neq 0$, then $a^{2}-2 b^{2} \neq 0$. If $a, b \neq 0$, $a^{2}-2 b^{2}=0 \Rightarrow \sqrt{2}=a / b \Rightarrow \sqrt{2} \in \mathbb{Q}$, which is a contradiction. Therefore either one of a and b is zero, in which case either $a+b \sqrt{2}$ is zero or $a^{2}-2 b^{2}$ is nonzero. So given $a+b \sqrt{2} \neq 0$, we have $a^{2}-2 b^{2} \neq 0$. But then $\frac{a-b \sqrt{2}}{a^{2}-2 b^{2}}$ exists, and is the reciprocal of $a+b \sqrt{2}$. \square
