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Abstract. For a rationally connected fibration over a complex curve, and for

a closed point of the curve, we prove that every power series section of the fibra-
tion near the point is approximated to arbitrary order by polynomial sections

provided the “Laurent fiber”, i.e., the deleted power series neighborhood of the

fiber, as a variety over the Laurent series field is R-connected – the analogue of
rational connectedness when working over a non-algebraically closed field such

as Laurent series. In other words, we prove the Hassett-Tschinkel conjecture

when the Laurent fiber is R-connected. For varieties over the fraction field of a
complete DVR, we introduce a “continuous variant” of R-connectedness called

pseudo R-connectedness and we prove pseudo R-connectedness of the Laurent

fiber also implies the Hassett-Tschinkel conjecture. Our theorem implies all of
the known cases of the Hassett-Tschinkel conjecture, and we also prove some

new cases. The key is a new object, a “pseudo ideal sheaf”, which generalizes
Fulton’s notion of effective pseudo divisor.

1. Introduction sec-int

Disclaimer. This is the current, working draft of this article. This draft is incom-
plete, but has a complete list of the results. An earlier, complete draft has been
posted to the arXiv preprint server.

Let π : X → B be a surjective morphism from a smooth, projective, complex
variety to a smooth, projective, complex curve. Considered differently, π is a 1-
parameter family {Xb}b∈B of projective varieties. The morphism π satisfies weak
approximation if for every finite sequence (b1, . . . , bm) of distinct closed points of
B, for every sequence (ŝ1, . . . , ŝm) of elements ŝi in X (ÔB,bi), i.e., formal power
series section of π near bi, and for every positive integer N , there exists a regular
(i.e., polynomial) section s of π which is congruent to ŝi modulo mN

B,bi
for every

i = 1, . . . ,m.

Hassett observed that if π satisfies weak approximation then every sufficiently gen-
eral fiber of π is rationally connected, i.e., every pair of points in the fiber is in the
image of a morphism from P1 to the fiber. Hassett and Tschinkel conjectured the
converse.

Conjecture 1.1 (Hassett-Tschinkel conjecture). [HT06, Conjecture 2] If a general conj-HT
fiber of π is rationally connected, then π satisfies weak approximation.

We prove this conjecture assuming an extra condition on the “Laurent fibers” of π.
For every closed point b of B, the fraction field K = Frac(ÔB,b) of the completed
local ring is isomorphic to the Laurent series field C ((t)). The Laurent fiber is the
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projective scheme XK := X ⊗OB K. This is an algebraic version of the “deleted
tubular neigborhood” of the closed fiber Xb := π−1(b). Even when Xb is singular,
the K-scheme XK is smooth. Two K-points s and t of the Laurent fiber are directly
R-equivalent if there exists a K-morphism from P1

K sending 0 to s and sending ∞
to t,

f : (PK , 0,∞)→ (X ⊗OB K, s, t).
The Laurent fiber is R-connected if all K-points are directly R-equivalent. When
Xb = π−1(b) is smooth, the Laurent fiber XK is R-connected if and only if the
closed fiber Xb is rationally connected. (The usual definition of R-connected is a
bit different. But Kollár proved the equivalence of the two definitions when the
geometric generic fiber is separably rationally connected, as it is here.)

We prove Conjecture 1.1 when the Laurent fibers of π are R-connected. In fact
the proof requires a weaker, “continuous” variant of R-connnectedness which is
technical but useful. As above, the underlying hypothesis is that the geometric
generic fiber of π is rationally connected. Denote by Ô the complete local ring
ÔB,b, and let u be a uniformizer of Ô. This is a Henselian (even a complete) DVR.
Denote by X bO the base change Spec (Ô)×BX . The “bidisk”, D bO, is the Ô-scheme

D bO := Spec (Ô [[v]]).

The “punctured bidisk” is the complement of the closed point,

D∗bO := D bO \ {〈u, v〉}.
Denote by ∆v the divisor in D bO

∆v := Spec (Ô [[v]] /〈v〉) ∼= Spec (Ô).

And for every positive integer N , denote by ∆uN the divisor in D bO
∆uN := Spec (Ô [[v]] /〈uN 〉) ∼= Spec ((Ô/〈uN 〉) [[v]]).

Finally denote the intersections with D∗bO by ∆∗v = ∆v ∩D∗bO, ∆∗uN = ∆uN ∩D∗bO.

Let ŝ be an Ô-point of X bO. The restriction of ŝ to Spec (Frac(Ô)) determines an
Ô-morphism from ∆∗v → X bO via the identification ∆∗v = Spec (Frac(Ô)). Similarly,
the restriction of ŝ to Spec (Ô/〈uN 〉) composed with the “projection”

Spec ((Ô/〈uN 〉) ((v)))→ Spec (Ô/〈uN 〉)

determines an Ô-morphism ∆∗uN → X bO. The morphisms ∆∗v → X bO and ∆∗uN → X bO
defined in this way are the associated morphisms of ŝ.

defn-psiRprelim
Definition 1.2. Two Ô-points ŝ and t̂ of X bO are directly pseudo R-equivalent if
for every positive integer N there exist Ô-morphisms

qN , rN : D∗bO → X bO
such that the restriction of qN , resp. rN , to ∆∗v is the morphism associated to ŝ,
resp. the morphism associated to t̂, and such that the restriction of qN , resp. rN ,
to ∆∗uN is the morphism associated to t̂, resp. the morphism associated to ŝ. And
X bO is pseudo R-connected if every pair of Ô-points is directly pseudo R-equivalent.
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In fact pseudoR-connectedness depends only on the Laurent fiber XK = Spec K×Spec bO
X bO. Also R-connectedness implies pseudo R-connectedness. Here is our main the-
orem.

thm-first
Theorem 1.3. The morphism π satisfies weak approximation if the Laurent fiber
of π over every closed point of B is pseudo R-connected, e.g., if it is R-connected.

Pseudo ideal sheaves. The key is a new sheaf-theoretic object which we call a
“pseudo ideal sheaf”. Let S be a scheme or an algebraic space and let Y be a flat,
projective S-scheme or a flat, proper, algebraic space over S.

defn-pisprelim
Definition 1.4. For every S-scheme T , denoting YT = T×SY , a pseudo ideal sheaf
on Y/S parameterized by T is a pair (F , φ) of a T -flat, locally finitely presented,
quasi-coherent OYT -module F together with an OYT -module homomorphism, φ :
F → OYT , such that the induced OYT -module homomorphism,

φ′ :
2∧
F → F , f1 ∧ f2 7→ φ(f1)f2 − φ(f2)f1,

is the zero homomorphism. A morphism from a pseudo ideal sheaf (F1, φ1) to a
pseudo ideal sheaf (F2, φ2) is an isomorphism of OYT -modules, ψ : F1 → F2, such
that φ2 ◦ ψ equals φ1. The identity morphisms and composition of morphisms are
defined in the obvious way. For an S-morphism g : T ′ → T and a pseudo ideal
sheaf (F , φ) parameterized by T , the pullback by g is (g∗F , g∗φ).

As proved later, this category is an Artin stack PseudoY/S . And the Hilbert
scheme HilbY/S (or “Hilbert algebraic space”, more generally) is an open substack
of PseudoY/S . Most importantly, when Y is a Cartier divisor in a flat, projec-
tive S-scheme X (or a flat, proper algebraic space over S), there is a restriction
morphism

ιY : HilbX → PseudoY
associating to a flat family of closed subschemes of X with ideal sheaf I, the re-
striction I ⊗OX OY with its natural map to OY . For a geometric point s of S and
for an ideal sheaf I on the fiber Xs which is generated by a regular sequence, the
morphism ιY is smooth at [I] if H1(X,OX(−Y ) · HomOX (I/I2,OX/I)) equals 0.
And in this case, the Zariski tangent space of the fiber of ιY at [I] is canonically
isomorphic to H0(X,OX(−Y ) · HomOX (I/I2,OX/I)). Therefore, given a closed
subscheme of X and given an infinitesimal deformation of the intersection of the
scheme with a “tubular neighborhood” of a Cartier divisor in X, this result al-
lows us to find an infinitesimal deformation of the closed subscheme of X whose
intersection with the tubular neighborhood is as prescribed. We will usually apply
this when S equals Spec (C), when X equals X , and when Y is an infinitesimal
neighborhood of a fiber Xb of π.

R-connectedness and strong rational connectedness. As mentioned, XK is
R-connected if Xb is smooth and rationally connected. More generally, XK is R-
connected if the smooth locus (Xb)smooth is strongly rationally connected, i.e., if
every pair of closed points of (Xb)smooth is connected by a (complete) rational curve
in (Xb)smooth. Thus Theorem 1.3 gives a new proof of a theorem of Hassett and
Tschinkel, [HT06]: π satisfies weak approximation if the smooth locus of every fiber
Xb is strongly rationally connected.
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Additionally, we prove a structural result about strong rational connectedness using
pseudo ideal sheaves. Let X be a normal, projective, complex variety and let D
be a closed subset of X containing the singular locus. Assume there exists a very
free curve in X which is disjoint from D. Denote by U the dense open subset of
X which is the union of all very free curves which are disjoint from D, i.e., the
largest open subset of X \ D which is strongly rationally connected. Then every
connected component of X \ U intersects D. In particular, (X \ D) \ U has no
isolated points. This generalizes one of the steps in Chenyang Xu’s proof that log
Del Pezzo surfaces are strongly rationally connected, [Xu08]. Since Xu’s theorem is
an important advance in this area, we present our own interpretation of his proof
in an appendix to this article.

Special cases of R-connectedness. There are many other cases where the Lau-
rent fibers XK are known to be R-connected, cf. [CT08, Section 10]:

(i) XK is a compactification of a connected linear group [CTS77, Corollaire 6],
(ii) XK is a conic bundle over P1 with discriminant divisor of degree 4 [CTS87]

(such surfaces include Del Pezzo surfaces of degree 4 and Chatelet surfaces),
(iii) XK is a smooth complete intersection of type (2, 2) in Pn with n ≥ 5

[CTSSD87, Theorem 3.27(ii)], and
(iv) XK is a smooth cubic hypersurface in Pn with n ≥ 5 [Mad08, Footnote, p.

927].
So if the generic fiber of π satisfies one of (i) – (iv), then Theorem 1.3 implies π
satisfies weak approximation. We generalize (i) below. In fact (ii) is one example
of a fibration, which we consider below. We will also say more about Del Pezzo
surfaces. Case (iv) improves a result of Hassett and Tschinkel, [HT], who proved
weak approximation for cubic hypersurfaces in P6.

R-connectedness and rational simple connectedness. Hassett proved π sat-
isfies weak approximation if the geometric generic fiber satisfies a suitably strong
version of “rational simple connectedness”. Using [GHS03] the Laurent fibers are R-
connected if they satisfy a weak version of rational simple connectedness discussed
below. This refines Hassett’s theorem. In particular, de Jong and the second author
proved that every smooth complete intersection of type (d1, . . . , dc) in Pn satisfies
the weak version of rational simple connectedness provided that

n+ 1 ≥ d2
1 + · · ·+ d2

c .

We will review the proof of this quickly below. Thus π satisfies weak approximation
if the geometric generic fiber of π is a complete intersection as above.

Pseudo R-connectedness and fibrations. A fibration over C(B) is a surjective
morphism ρ : X → Y of smooth, projective C(B)-schemes whose geometric generic
fiber is connected. If Y satisfies weak approximation, and if the fiber of ρ over
each sufficiently general C(B)-point of Y satisfies weak approximation, then also
X satisfies weak approximation. The analogous statement for R-connectedness is
probably false: the analogue would contradict the Fano conjecture that some conic
bundles over P2

C are non-unirational. However, pseudo R-connectedness does satisfy
the analogous property for a fibration of K-schemes.

Pseudo R-connectedness of homogeneous spaces. Because of the fibration
property, conic bundles as in (ii) are pseudo R-connected. This also applies to a
compactification of a homogeneous space G/H under a connected, linear algebraic
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group G. When H is connected, i.e., when the connected component of the identity
H0 equals all of H, then H is (geometrically) rationally connected. Hence R-
connectedness of G/H follows from R-connectedness of G. For general H, we do
not know if G/H is R-connected. However, it is pseudo R-connected. The Deligne-
Mumford stack B(π0H) is R-connected in a suitable sense. Thus considering G/H
as fibered over B(π0H) with fibers of the form G/H0 (more correctly, G/H̃0 where
H̃0 is a twist of H0), it follows that every compactification of G/H is pseudo R-
connected. By Theorem 1.3, if the generic fiber of π is a compactification of G/H
then π satisfies weak approximation. This gives a new proof of a theorem of Colliot-
Thélène and Gille, [CTG04].

The Hassett-Tschinkel Conjecture. In fact the main importance of Theo-
rem 1.3 is a new perspective on the Hassett-Tschinkel conjecture. We believe this
conjecture fails as stated. As we understand it from conversations with experts,
there is an a priori obstruction to weak approximation defined using notions of
A1-homotopy theory. The two authors do not know how to compute whether or
not this obstruction is zero. But we are quite hopeful that this will be possible
in the near future, based on the work of Asok, Morel and Bhatt relating rational
connectedness to notions of A1-homotopy theory. Our understanding is that the ob-
struction is analogous to the Brauer-Manin obstruction to weak approximation for
varieties defined over number fields. Just as the “Brauer pairing” is actually an ob-
struction to R-connectedness of p-adic fibers – and even to pseudo R-connectedness
of p-adic fibers – so too any obstruction defined using a cohomology theory with
a “homotopy axiom” should factor through R-equivalence. And if the cohomology
theory has a “continuous nature”, then the obstruction should even factor through
pseudo R-equivalence. Thus R-connectedness and pseudo R-connectedness of Lau-
rent fibers is really a stand-in for vanishing of these cohomological obstructions,
at the moment beyond our reach. Each positive result listed above supporting the
Hassett-Tschinkel conjecture has a hypothesis implying R-connectedness or pseudo
R-connectedness of Laurent fibers. Therefore the conjecture which these results
more properly support is that the only obstruction to weak approximation for a
rationally connected fibration is a cohomological obstruction. This is an analogue
for C(B) of a well-known conjecture of Colliot-Thélène for number fields, [CT03].

New questions and other fields. This perspective leads to an array of enticing
questions. Is weak approximation preserved by finite base change? Is it an open
condition in families? Is it a closed condition? Is it preserved by “twists”? Is it
preserved under quotients by finite groups? Moreover, what can one say about the
set of formal sections of π which are approximable, i.e., approximated to arbitrary
order by rational sections? We will discuss these questions further at the end of
the article.

Of course all of these results remain valid when C is replaced by any algebraically
closed field of characteristic 0. We will discuss which results remain valid in positive
characteristic, and the issues in extending the other results.

Cubic surfaces with integral special fibers. Finally we prove a new weak
approximation result for Del Pezzo surfaces which is elementary and which has
nothing to do with Theorem 1.3. If every fiber Xb of π is an integral scheme whose
dualizing sheaf ωXb is antiample with degree c1(ωXb)

2 ≥ 3, then weak approximation
holds. In particular this implies all previously known weak approximation results
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for cubic surfaces. For Del Pezzo surfaces of degrees 2 and 1, the results of Amanda
Knecht and the results of Chenyang Xu give the best current results. In an appendix
we present our interpretation of the proof of Xu’s theorem.

Overview of this paper. [This still needs to be written]

Acknowledgments. We are very grateful to Universita’ Roma Tre, Queen’s Uni-
versity, Stony Brook University and Columbia University where this work was car-
ried out. We are also very grateful to A. J. de Jong who made major contributions
to this work, particularly regarding the notion of pseudo R-equivalence, but who
preferred not to be a coauthor.

2. Extension of two results of Grothendiecksec-G

This section proves technical results which are useful in the following section. But
this section is not strictly necessary for understanding the main ideas. The reader
can safely skip this section by assuming all proper morphisms of algebraic spaces
in later sections are actually projective morphisms of schemes.

One of Grothendieck’s results which is frequently useful in studying coherent sheaves
on proper schemes is [Gro63, Corollaire 7.7.8], stated below. The original proof in-
cludes a hypothesis which Grothendieck refers to as “surabondante” (Grothendieck’s
emphasis). This hypothesis has subsequently been removed by Lieblich, cf. [Lie06,
Proposition 2.1.3]. We would like to briefly explain another way to remove these
hypotheses based on the representability of the Quot functor. Martin Olsson proved
a very general result about representability of the Quot functor. This leads to the
following version of Grothendieck’s result.

Theorem 2.1. [Gro63, Corollaire 7.7.8], [Lie06, Proposition 2.1.3] Let Y be anthm-Hom
algebraic space. Let f : X → Y be a separated, locally finitely presented, algebraic
stack over the category (Aff/Y ) of affine Y -schemes. Let F and G be locally finitely
presented, quasi-coherent OX -modules. Assume that G is Y -flat and has proper
support over Y . Then the covariant functor of quasi-coherent OY -modules,

T (M) := f∗(HomOX (F ,G ⊗OY M)),

is representable by a locally finitely presented, quasi-coherent OY -module N , i.e.,
there is a natural equivalence of functors

T (M)
∼=−→ HomOY (N ,M).

Grothendieck deduced his version of this result as a corollary of another theorem.
In fact the theorem also follows from the corollary.

Corollary 2.2. [Gro63, Théorème 7.7.6] Let f : X → Y be as in Theorem 2.1. Letcor-Hom
G be a locally finitely presented, quasi-coherent OX -module which is Y -flat and has
proper support over Y . Then there exists a locally finitely presented, quasi-coherent
OY -module Q and a natural equivalence of covariant functors of quasi-coherent
OY -modules M,

f∗(G ⊗OY M)
∼=−→ HomOY (Q,M).

Grothendieck in turn deduces [Gro63, Théorème 7.7.6] as a special case of a more
general representability result regarding the hyperderived pushforwards of a bounded
below complex of locally finitely presented, quasi-coherent OX -modules which are
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Y -flat and have proper support over Y . Undoubtedly this general representability
result extends to the setting of stacks. However, to deduce [Gro63, Corollaire 7.7.8]
from [Gro63, Théorème 7.7.6], Grothendieck requires a hypothesis that F has a
presentation by locally free OX -modules. This is quite a restrictive hypothesis.

Instead one can try to prove Theorem 2.1 directly using Artin’s representability
theorems. This is precisely what Lieblich does in [Lie06, Proposition 2.1.3]. Here
we point out that Theorem 2.1 also follows from from representability of the Quot
functor as proved by Olsson, [Ols05, Theorem 1.5].

lem-Hom1
Lemma 2.3. Let f : X → Y be as in Theorem 2.1. Let F and G be locally finitely
presented, quasi-coherent OX -modules. And let

φ : F → G

be a homomorphism of OX -modules. Assume G has proper support over Y , resp.
F and G have proper support over Y and G is Y -flat. Then there exists an open
subspace U , resp. V , of S with the following property. For every morphism g :
Y ′ → Y of algebraic spaces, the pullback morphism of sheaves on Y ′ ×Y X ,

(g, IdX )∗φ : (g, IdX )∗F → (g, IdX )∗G

is surjective, resp. an isomorphism, if and only if g factors through U , resp. V .

Proof. Since Coker(φ) is a locally finitely presented, quasi-coherent sheaf supported
on Supp(G), Supp(Coker(φ)) is closed in Supp(G). Since Supp(G) is proper over Y ,
f(Supp(Coker(φ))) is a closed subset of Y . Define U to be the open complement.
For a morphism g : Y ′ → Y , (g, IdX )∗φ is surjective if and only if Coker((g, IdX )∗φ)
is zero, i.e., if and only if the support of Coker((g, IdX )∗φ) is empty. Formation of
the cokernel is compatible with pullback, i.e.,

Coker((g, IdX )∗φ) ∼= (g, IdX )∗Coker(φ).

Thus the support of Coker((g, IdX )∗φ) is empty if and only if g(Y ′) is disjoint from
f(Supp(Coker(φ))), i.e., if and only if g(Y ′) is contained in U .

Next assume that F , G each have proper support over Y and G is Y -flat. Since G
is Y -flat, the kernel of φ is locally finitely presented by [Gro67, Lemme 11.3.9.1]
(the property of being locally finitely presented can be checked locally in the fppf
topology on X , thus reduces to the case of a morphism of schemes). The support of
the kernel is contained in the support of the kernel of F . Thus Ker(φ) is a locally
finitely presented, quasi-coherent sheaf on the support of F , which is proper over
Y . So the support of Ker(φ) is also proper over Y . Thus its image under f is a
closed subset of Y . Define V to be the open complement of this closed subset in U .

For every morphism g : Y ′ → U , since G is Y -flat, the following sequence is exact

0→ (g, IdX )∗Ker(φ)→ (g, IdX )∗F → (g, IdX )∗G → 0.

Thus (g, IdX )∗φ is an isomorphism if and only if (g, IdX )∗Ker(φ) is zero, i.e., if and
only if g(Y ′) is contained in V . �

lem-Hom2
Lemma 2.4. Let f : X → Y , F and G be as in Theorem 2.1. There exists a
locally finitely presented, separated morphism of algebraic spaces h : Z → Y and a
morphism of quasi-coherent sheaves on Z ×Y X

φ : (h, IdX )∗F → (h, IdX )∗G
7



which represents the contravariant functor associating to every morphism g : Y ′ →
Y the set of morphisms of quasi-coherent sheaves on Y ′ ×Y X

ψ : (g, IdX )∗F → (g, IdX )∗G.

Proof. By [Ols05, Theorem 1.5], there exists a locally finitely presented, separated
morphism i : W → Y of algebraic spaces and a quotient

θ : (i, IdX )∗(F ⊕ G)→ H

representing the Quot functor of flat families of locally finitely presented, quasi-
coherent quotients of the pullback of F ⊕ G having proper support over the base.
Denote by

θG : (i, IdX )∗G → H
the composition of the summand

eG : (i, IdX )∗G ↪→ (i, IdX )∗(F ⊕ G)

with θ.

By Lemma 2.3, there is an open subspace Z of W such that for every morphism
j : Y ′ →W , the pullback

(j, IdX )∗θG : (i ◦ j, IdX )∗G → (j, IdX )∗H

is an isomorphism if and only if j(Y ′) factors through Z. Denote by h : Z → Y
the restriction of i to Z. If j(Y ′) factors through Z, then (j, IdX )∗θ equals the
composition

(i ◦ j, IdX )∗(F ⊕ G)
(ψ,Id)−−−−→ (i ◦ j, IdX )∗G j∗θG−−−→ (j, IdX )∗H

for a unique morphism of quasi-coherent sheaves

ψ : (i ◦ j, IdX )∗F → (i ◦ j, IdX )∗G.

In particular, applied to IdZ : Z → Z, this produces the homomorphism φ. And
it is straightforward to see that the natural transformation associating to every
morphism j : Y ′ → Z the homomorphism ψ is an equivalence of functors, i.e.,
(h : Z → Y, φ) is universal. �

Proof of Theorem 2.1. Let h : Z → Y and φ be as in Lemma 2.4. The zero homo-
morphism 0 : F → G defines a Y -morphism z : Y → Z. Since Z is separated over
Y , the Y -morphism z is a closed immersion. Since Z is locally finitely presented
over Y , the ideal sheaf I of this closed immersion is a locally finitely presented,
quasi-coherent OZ-module. Thus z∗I is a locally finitely presented, quasi-coherent
OY -module. Denote this OY -module by N .

Consider the closed subspace Z1 of Z with ideal sheaf I2. The restriction of h to
Z1 is a finite morphism, thus equivalent to the locally finitely presented OY -algebra
h∗OZ1 . Of course this fits into a short exact sequence

0→ z∗I → h∗OZ1 → OY → 0

where the injection is an ideal sheaf and the surjection is a homomorphism of OY -
algebras. And the morphism z defines a splitting of this surjection of OY -algebras.
Thus, as an OY -algebra, there is a canonical isomorphism

h∗OZ1
∼= OY ⊕ z∗I.
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The restriction of φ to Z1 together with adjunction of h∗ and h∗ defines a homo-
morphism of OY -modules

F → G ⊗OY h∗OZ1 .

Using the canonical isomorphism, this homomorphism is of the form

F (0,χ)−−−→ G ⊕ (G ⊗OY N ).

The homomorphism χ defines a natural transformation of covariant functors of
quasi-coherent OY -modules M

HomOY (N ,M)→ f∗(HomOX (F ,G ⊗OY M).

By the same argument used to prove the equivalence of parts (a) and (d) of [Gro63,
Théorème 7.7.5], this is an equivalence of functors and the induced Y -morphism

Spec
Y

(Sym•(N ))→ Z

is an isomorphism. �

Proof of Corollary 2.2. This follows from Theorem 2.1 by taking F to be OX . �

3. Pseudo ideal sheaves sec-pis

Given a fibration over a curve, given a fiber, and given a section, the N -jet of the
section at the fiber is simply the intersection of the section and the N th infinitesi-
mal neighborhood of the fiber, considered as a closed subscheme of the infinitesimal
neighborhood. The rule associating to a section its N -jet gives a morphism from the
parameter scheme of sections to the Hilbert scheme of the N th infinitesimal neigh-
borhood of the fiber. In order to prove Theorem 1.3, it is necessary to extend this
morphism to the locus parameterizing “combs” whose intersection with the fiber
may not be transverse. This is done using “pseudo ideal sheaves”, a generalization
of Fulton’s notion of effective pseudo divisor.

Let f : X → Y be a flat, locally finitely presented, proper morphism of algebraic
spaces. For every morphism of algebraic spaces, g : Y ′ → Y , denote by fY ′ : XY ′ →
Y ′ the basechange of f . Using results of Martin Olsson, the following definitions
and results are still valid whenever X is a flat, locally finitely presented, proper
algebraic stack over Y . But since our application is to algebraic spaces, we leave
the case of stacks to the interested reader.

defn-pis
Definition 3.1. For every morphism g : Y ′ → Y of algebraic spaces, a flat family
of pseudo ideal sheaves of X/Y over Y ′ is a pair (F , u) consisting of

(i) a Y ′-flat, locally finitely presented, quasi-coherent OXY ′ -module F , and
(ii) an OXY ′ -homomorphism u : F → OXY ′

such that the following induced morphism is zero,

u′ :
2∧
F → F , f1 ∧ f2 7→ u(f1)f2 − u(f2)f1.

For every pair g1 : Y ′1 → Y , g2 : Y ′2 → Y of morphisms of algebraic spaces, for every
pair (F1, u1), resp. (F2, u2), of flat families of pseudo ideal sheaves of X/Y over
Y ′1 , resp. over Y ′2 , and for every Y -morphism h : Y ′1 → Y ′2 , a pullback map from
(F1, u1) to (F2, u2) over h is an isomorphism of OXY ′1 -modules

η : F1 → h∗F2
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such that h∗u2 ◦ η equals u1.

The category of pseudo ideal sheaves of X/Y , PseudoX/S , is the category whose
objects are data (g : Y ′ → Y, (F , u)) of an affine Y -scheme Y ′ together with a flat
family of pseudo ideal sheaves of X/Y over Y ′, and whose Hom sets

Hom((g1 : Y ′1 → Y, (F1, u1)), (g2 : Y ′2 → Y, (F2, u2)))

are the sets of pairs (h, η) of a Y -morphism h : Y ′1 → Y ′2 together with a pullback
map η from (F1, u1) to (F2, u2) over h. Identity morphisms and composition of
morphisms are defined in the obvious manner. There is an obvious functor from
PseudoX/Y to the category (Aff/Y ) of affine Y -schemes sending every object (g :
Y ′ → Y, (F , u)) to (g : Y ′ → Y ) and sending every morphism (h, η) to h.

prop-algebraic
Proposition 3.2. The category PseudoX/Y is a limit-preserving algebraic stack
over the category (Aff/Y ) of affine Y -schemes. Moreover, the diagonal is quasi-
compact and separated.

Proof. Denote by CohX/Y the category of coherent sheaves on X/Y , cf. [LMB00,
(2.4.4)]. There is a functor G : PseudoX/Y → CohX/Y sending every object (g :
Y ′ → Y, (F , u)) to (g : Y ′ → Y,F) and sending every morphism (h, η) to (h, η).
This is a 1-morphism of categories over (Aff/Y ). By [LMB00, Théorème 4.6.2.1] and
[Sta06, Proposition 4.1], CohX/Y is a limit-preserving algebraic stack over (Aff/Y )
with quasi-compact, separated diagonal. Thus to prove the proposition, it suffices
to prove that G is representable by locally finitely presented, separated algebraic
spaces.

Let Y ′ be a Y -algebraic space and let F be a locally finitely presented, quasi-
coherent OXY ′ -module. Since fY ′ : XY ′ → Y ′ is flat, locally finitely presented and
proper, by Lemma 2.4, there exists a locally finitely presented, separated morphism
h : Z → Y ′ of algebraic spaces and a universal homomorphism

u : (h, IdXY ′ )
∗F → OXZ .

In fact, as follows from the proof of Theorem 2.1, there is a locally finitely presented,
quasi-coherent OY ′ -module N and a homomorphism of OXY ′ -modules

χ : F → OXY ′ ⊗OY ′ N
such that Z = Spec

Y ′
(Sym•(N )) and such that u is the homomorphism induced

by χ.

Since F is a locally finitely presented, quasi-coherent OXY ′ -module which is Y ′-
flat and has proper support over Y ′, the same is true of (h, IdXY ′ )

∗F relative to
Z. Thus, by Theorem 2.1, there exists a locally finitely presented, quasi-coherent
OZ-module N and a universal homomorphism

χ :
2∧

(h, IdXY ′ )
∗F → (h, IdXY ′ )

∗F ⊗OZ N .

Thus there exists a unique homomorphism of OZ-modules,

ζ : N → OZ
such that the induced homomorphism of OXZ -modules

2∧
(h, IdXY ′ )

∗F χ−→ (h, IdXY ′ )
∗F ⊗OZ N

Id⊗ζ−−−→ (h, IdXY ′ )
∗F

10



equals u′. Let P denote the closed subspace of Z whose ideal sheaf equals ζ(N ).
Chasing diagrams, the restriction morphism h|P : P → Y ′ together with the pull-
back of u to P is a pair representing Y ′×CohX/Y PseudoX/Y → Y ′. Since Z → Y ′ is a
locally finitely presented, separated morphism of algebraic spaces (also schematic),
and since P is a closed subspace of Y ′ whose ideal sheaf is locally finitely generated
(being the image of the locally finitely presented sheaf N ), also P → Y is a locally
finitely presented, separated morphism of algebraic spaces (also schematic). �

Denote by (g : HilbX/Y → Y,C) a universal pair of a morphism of algebraic spaces
g and a closed subspace C of HilbX/Y ×Y X which is flat, locally finitely presented,
and proper over HilbX/Y , i.e., an object representing the Hilbert functor, cf. [Art69,
Corollary 6.2]. Denote by

0→ I u−→ OHilbX/Y ×YX → OC → 0.

the natural exact sequence, where I is the ideal sheaf of C in HilbX/Y ×Y X.
prop-Hilbopen

Proposition 3.3. The pair (I, u) is a family of pseudo ideal sheaves of X/Y over
HilbX/Y . The induced 1-morphism

ι : HilbX/Y → PseudoX/Y

is representable by open immersions.

Proof. Since the kernel of a surjection of flat modules is flat, I is flat over HilbX/Y .
By [Gro67, Lemme 11.3.9.1], I is a locally finitely presented, quasi-coherent sheaf.
Since the homomorphism u is injective, to prove that u′ is zero it suffices to prove
the composition u ◦ u′ is zero. This follows immediately from the definition of u′.
Thus the pair (I, u) is a family of pseudo ideal sheaves of X/Y over HilbX/Y .

To prove that ι is representable by open immersions, it suffices to prove that it is
representable by quasi-compact, étale monomorphisms of schemes. To this end, let
Y ′ be an affine Y -scheme and let (F , v) be a flat family of pseudo ideal sheaves of
X/Y over Y ′. Denote the cokernel of v by

w : OXY ′ → G.

By [OS03, Theorem 3.2], there is a morphism of algebraic spaces σ : Σ → Y ′ such
that (σ, IdXY ′ )

∗G is flat over Σ and such that Σ is universal among Y ′-spaces with
this property. Moreover, Σ is a surjective, finitely-presented, quasi-affine monomor-
phism (in particular schematic). As an aside, please note that the remark preceding
[OS03, Theorem 3.2] is incomplete – [OS03, Proposition 3.1] should be properly at-
tributed to Laumon and Moret-Bailly, [LMB00, Théorème A.2].

By [Gro67, Lemma 11.3.9.1], Ker((σ, IdXY ′ )
∗w) is a locally finitely presented, quasi-

coherent sheaf. Moreover, because it is the kernel of a surjection of sheaves which
are flat over Σ, it is also flat over Σ. By Lemma 2.3, there is an open subscheme W
of Σ such that a morphism S → Σ factors through W if and only if the pullback of

(σ, IdXY ′ )
∗F → Ker((σ, IdXY ′ )

∗w)

is an isomorphism. Chasing universal properties, it is clear that W → Y ′ represents

Y ′ ×PseudoX/Y HilbX/Y .

Thus ι is representable by finitely-presented, quasi-affine monomorphisms of schemes.
11



It only remains to prove that ι is étale. Because ι is a finitely-presented it remains
to prove that ι is formally étale. Thus, let Y ′ = Spec A′ where A′ is a local Artin
OY -algebra with maximal ideal m and residue field κ. And let

0→ J → A′ → A→ 0

be an infinitesimal extension, i.e., mJ is zero. Let (F , u) be a pseudo ideal sheaf of
X/Y over Y ′, and assume the basechange to Spec A is an ideal sheaf with A-flat
cokernel. Since ι is a monomorphism, formal étaleness for ι precisely says that
Y ′ → PseudoX/Y factors through ι, i.e., u is injective and Coker(u) is A′-flat.

To prove this use the local flatness criterion, e.g., as formulated in [Gro67, Propo-
sition 11.3.7]. This criterion is an equivalence between the conditions of

(i) injectivity of u is injective and A′-flatness of Coker(u)
(ii) and injectivity of

u⊗A′ κ : F ⊗A′ κ→ OXY ′ ⊗A′ κ
By hypothesis, (i) holds after basechange to A. Thus (ii) holds after basechange to
A. But since A′/m equals A/m, (ii) for the original family over A′ is precisely the
same as (ii) for the basechange family over A. Thus also (i) holds over A′. �

The significance of pseudo ideal sheaves has to do with restriction to Cartier divi-
sors. Let D be an effective Cartier divisor in X, considered as a closed subscheme
of X, and assume D is flat over Y . Denote by ID the pullback

ID := I ⊗OX OD
on HilbX/Y ×X D. And denote by

uD : ID → OHilbX/Y ×XD

the restriction of u.prop-flat
Proposition 3.4. The locally finitely presented, quasi-coherent sheaf ID is flat
over HilbX/Y . Thus the pair (ID, uD) is a flat family of pseudo ideal sheaves of
D/Y over HilbX/Y .

Proof. Associated to the Cartier divisor D there is an injective homomorphism of
invertible sheaves

t′ : OX(−D) O−→X .

This induces a morphism of locally finitely presented, quasi-coherent sheaves

t : I ⊗OX OX(−D)→ I.
The cokernel of t is ID. By the local flatness criterion, [Gro67, Proposition 11.3.7],
to prove that t is injective and ID is flat over HilbX/Y , it suffices to prove that
the “fiber” of t over every point of HilbX/Y is injective. Thus, let κ be a field, let

y : Spec κY be a morphism, and let Iy
O−→Xy be an ideal sheaf. Since D is Y -flat,

the homomorphism of locally free sheaves

t′y : OX(−D)⊗OY κ→ OX ⊗OY κ

is injective, thus a flat resolution of OD⊗OY κ. In particular, Tor
OXy
2 (OXy/Iy,ODy )

equals zero because there is a flat resolution of ODy with amplitude [−1, 0]. By the
long exact sequence of Tor associated to the short exact sequence

0→ Iy → OXy → OXy/Iy → 0,
12



there is an isomorphism

Tor
OXy
1 (Iy,ODy ) ∼= Tor

OXy
2 (OXy/Iy,ODy ) = 0.

But this Tor sheaf is precisely the kernel of

ty : Iy ⊗OX OX(−D)→ Iy.

Thus ty is injective, and so ID is flat over HilbX/Y . �
notat-iotaD

Notation 3.5. Denote by

ιD : HilbX/Y → PseudoD/Y

the 1-morphism associated to the flat family (ID, uD) of pseudo ideal sheaves of
D/Y over HilbX/Y . This is the divisor restriction map.

Since HilbX/Y and PseudoD/Y are both locally finitely presented over Y , ιD is
locally finitely presented. Since HilbX/Y is an algebraic space, ιD is representable
(by morphisms of algebraic spaces). Since the diagonal morphism of PseudoD/Y
over Y is separated, and since HilbX/Y is separated over Y , ιD is separated.

ssec-inf

3.1. Infinitesimal study of the divisor restriction map. Let A′ be a local
Artin OY -algebra with maximal ideal m and residue field κ. And let

0→ J → A′ → A→ 0

be an infinitesimal extension, i.e., mJ is zero. Denote by XA′ , resp. XA, Xκ, the
fiber product of X → Y with Spec A′ → Y , resp. Spec A→ Y , Spec κ→ Y .

Let (FA′ , uA′) be a pseudo ideal sheaf of D/Y over Spec A′. Denote by (FA, uA),
resp. (Fκ, uκ), the restriction of (FA′ , uA′) to A, resp. to κ. Let IA be the ideal
sheaf of a flat family CA of closed subschemes of X/Y over Spec A. Denote by Iκ,
resp. Cκ, the restriction of IA to κ, resp. of CA to κ. And assume that ιD sends
IA to (FA, uA).

prop-inf
Proposition 3.6. Let n be a nonnegative integer. Assume that Cκ is a regular
immersion of codimension n in Xκ, cf. [Gro67, Définition 16.9.2] (since Xκ is an
algebraic space, in that definition one must replace the Zariski covering by affine
schemes by an étale covering by affine schemes).

(i) The morphism ιD is locally unobstructed at Cκ in the following sense. For
every étale morphism Spec RA′ → XA′ such that the pullback Iκ of Iκ in
Rκ is generated by a regular sequence, there exists an ideal IA′ in RA′ whose
restriction IA to RA equals the pullback of IA and whose “local pseudo ideal
sheaf” (IA′ ⊗OX OD, v) equals the pullback of (FA′ , uA′). Moreover, the set
of such ideals IA′ is naturally a torsor for the Rκ-submodule

J ⊗κ OX(−D) ·HomRκ(Iκ, Rκ/Iκ)

of
J ⊗κ HomRκ(Iκ, Rκ/Iκ)

(here OX(−D)· denote multiplication by the inverse image ideal of OX(−D)).
13



(ii) There exists an element ω in

J ⊗κ H1(Cκ,OX(−D) ·HomOCκ (Iκ/I2
κ,OCκ))

which equals 0 if and only if there exists a flat family CA′ of closed sub-
schemes of X/Y over Spec A′ whose restriction to Spec A equals CA and
whose image under ιD equals (FA′ , uA′). When it equals 0, the set of such
families CA′ is naturally a torsor for the κ-vector space

J ⊗κ H0(Cκ,OX(−D) ·HomOCκ (Iκ/I2
κ,OCκ)).

In particular, if h1(Cκ,OX(−D)·HomOCκ (Iκ/I2
κ,OCκ)) equals 0, then ιD is smooth

at [Cκ].

Proof. (i) Let v(A,1), . . . , v(A,n) be a regular sequence in RA generating IA. Denote
by vA the RA-module homomorphism

vA : R⊕nA → RA, vA(ei) = v(A,i).

Denote the associated RA-module homomorphism by

v′A : R
⊕(n2)
A → R⊕nA , v′A(ei ∧ ej) = v(A,i)ej − v(A,j)ei.

Since (v(A,1), . . . , v(A,n)) is a regular sequence, the following sequence is exact

R
⊕(n2)
A

v′A−−→ R⊕nA → IA → 0.

Thus there is an exact sequence

(RA ⊗OX OD)⊕(n2) v′A⊗Id−−−−→ (RA ⊗OX OD)⊕n → (IA ⊗OX OD)→ 0.

Denote by FA′ the RA′ -module whose associated quasi-coherent sheaf is the pull-
back of FA′ . Since FA equals IA ⊗OX OD, there is an isomorphism

FA′/JFA′ ∼= IA ⊗OX OD
compatible with the maps uA′ and uA. Since (RA′ ⊗OX OD)⊕n is a projective
(RA′ ⊗OX OD)-module, there exists an (RA′ ⊗OX OD)-module homomorphism

a : (RA′ ⊗OX OD)⊕n → FA′

whose restriction to A is the surjection above. So, by Nakayama’s lemma, this map
is also surjective. Since both the source and target of the surjection are A′-flat,
also the kernel is A′-flat. Thus there is also a lifting of the set of generators of the
kernel, i.e., there is an exact sequence of (RA′ ⊗OX OD)-modules

(RA′ ⊗OX OD)⊕(n2) b−→ (RA′ ⊗OX OD)⊕n a−→ FA′ → 0

whose restriction to A is the short exact sequence above.

The composition of the surjection with uA′ defines an (RA′ ⊗OX OD)-module ho-
momorphism

wA′ : (RA′ ⊗OX OD)⊕n → (RA′ ⊗OX OD)

whose restriction to A equals vA ⊗ Id. There is an associated map

w′A′ : (RA′⊗OXOD)⊕(n2) → (RA′⊗OXOD)⊕n, w′A′(ei∧ej) = wA′(ei)ej−wA′(ej)ei.
14



Since (FA′ , uA′) is a pseudo ideal sheaf, the induced map u′A′ equals 0. Therefore
the image of w′A′ is contained in the kernel of a. Since (RA′ ⊗OX OD)⊕(n2) is a free
(RA′ ⊗OX OD)-module, there is a lifting

c : (RA′ ⊗OX OD)⊕(n2) → (RA′ ⊗OX OD)⊕(n2)

such that w′A′ = b ◦ c. In particular, the restriction of c to A is an isomorphism.
Thus, by Nakayama’s lemma, c is surjective. A surjection of free modules of the
same finite rank is automatically an isomorphism. Thus there is a presentation

(RA′ ⊗OX OD)⊕(n2) w′
A′−−→ (RA′ ⊗OX OD)⊕n a−→ FA′ → 0.

Because both RA′ and RA′ ⊗OX OD are A′-flat, there is a commutative diagram of
exact sequences

0 −−−−→ J ⊗κ Rκ −−−−→ RA′ −−−−→ RA −−−−→ 0y y y
0 −−−−→ J ⊗κ Rκ ⊗OX OD −−−−→ RA′ ⊗OX OD −−−−→ RA ⊗OX OD −−−−→ 0

where the vertical maps are each surjective. By the snake lemma, the induced map

RA′/(JOX(−D) ·RA′)→ RA ×(RA⊗OXOD) (RA′ ⊗OX OD)

is an isomorphism. Thus, for every integer i = 1, . . . , n, there exists an element
v(A′,i) in RA′ whose image in RA equals v(A,i) and whose image in RA′ ⊗OX OD
equals wA′(ei). Moreover, the set of all such elements is naturally a torsor for
J ⊗κ (OX(−D) ·Rκ). In other words, there is an RA′ -module homomorphism

vA′ : R⊕nA′ → RA′

whose restriction to A equals vA and such that vA′ ⊗ Id equals wA′ .

Since (v(A,1), . . . , v(A,n)) is a regular sequence in RA, also (v(A′,1), . . . , v(A′,n)) is
a regular sequence in RA′ . One way to see this is to tensor the Koszul complex
K•(RA′ , vA′) of vA′ with the short exact sequence of A′-modules

0→ J → A′ → A→ 0.

Since the terms in the Koszul complex are free RA′ -modules, and since RA′ is
A′-flat, the associated sequence of complexes is exact

0→ J ⊗A K•(RA, vA)→ K•(RA′ , vA′)→ K•(RA, vA)→ 0.

Thus there is a long exact sequence of Koszul cohomology

· · · → J⊗AHn(K•(RA, vA))→ Hn(K•(RA′ , vA′))→ Hn(K•(RA, vA))→ J⊗AHn+1(K•(RA, vA))→ . . .

Since vA is regular, Hn−1(K•(RA, vA)) is zero, which then impliesHn−1(K•(RA′ , vA′))
by the long exact sequence above. Thus also vA′ is regular. Moreover, this gives a
short exact sequence

0→ J ⊗κ (RA/IA)→ R′A/Image(vA′)→ RA/IA → 0

from which it follows that RA′/Image(vA′) is A′-flat. Denote by IA′ the image of
vA′ .
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Both the pseudo ideal IA′ ⊗OX OD and FA′ equal the cokernel of w′A′ . Thus there
is a unique isomorphism between them compatible with w′A′ . Moreover, since the
compositions

(RA′ ⊗OX OD)⊕n a−→ F ′A
uA′−−→ (RA′ ⊗OX OD)

and
(RA′ ⊗OX OD)⊕n

vA′⊗Id−−−−−→ I ′A ⊗OX OD → (RA′ ⊗OX OD)
both equal wA′ , the isomorphism above is compatible with the maps to (RA′ ⊗OX
OD). Thus it is an isomorphism of pseudo ideal sheaves. Therefore there exists IA′
satisfying all the conditions in the proposition.

For every lift IA′ of IA which is A-flat, the surjection vA : R⊕nA → IA lifts to a
surjection R⊕nA′ → IA′ . Composing this surjection with the injection IA′ ↪→ RA′ , it
follows that every lift IA′ arises from a lift vA′ of vA. As mentioned previously, the
set of lifts vA′ whose restriction to A equals vA and with vA′ ⊗ Id equal to wA′ is
naturally a torsor for

J ⊗κ HomRA′ (R
⊕n
A′ ,OX(−D) ·Rκ).

But the translate of a lift by a homomorphism with image in Iκ gives the same
ideal IA′ (just different surjections from R⊕nA′ to the ideal). Thus, the set of lifts IA′
of IA whose pseudo ideal sheaf is the pullback of (FA′ , uA′) is naturally a torsor for

J ⊗κ HomRA′ (R
⊕n
A′ ,OX(−D) · (Rκ/Iκ)) = J ⊗κ HomRκ(Iκ, Rκ/Iκ).

(ii) Let Γ be an indexing set and let (Spec RγA′ → XA′)γ∈Γ be an étale covering
such that for every γ, either Iγκ ⊂ Rγκ is generated by a regular sequence of length n
or else equals Rγκ. By the hypothesis that Cκ is a regular immersion of codimension
n, there exists such a covering.

Suppose first that Iγκ equals Rγκ. Then also (F γκ , u
γ
κ) is isomorphic to Rγκ⊗OXOD

=−→
Rγκ ⊗OX OD. It is straightforward to see that the only deformations over A′ of
Rγκ

=−→ Rγκ, resp. Rγκ ⊗OX OD
=−→ Rγκ ⊗OX OD, as pseudo ideals are RγA′

=−→ RγA′ ,
resp. RγA′ ⊗OX OD

=−→ RγA′ ⊗OX OD. Thus there is a lifting IγA′ of IγA, and it is
unique.

On the other hand, if Iγκ is generated by a regular sequence of length n, by (i) there
exist liftings IγA′ and the set of all liftings is a torsor for

J ⊗κ OX(−D) ·HomRγκ(Iγκ , R
γ
κ/I

γ
κ ).

For a collection of liftings (IγA′)γ∈Γ, for every γ1, γ2 ∈ Γ, the basechanges of Iγ1A′ and
Iγ2A′ to

Rγ1,γ2A′ := Rγ1A′ ⊗OX R
γ2
A′

differ by an element ωγ1,γ2 in

J ⊗κ OX(−D) ·HomR
γ1,γ2
κ

(Iγ1,γ2κ , Rγ1,γ2κ /Iγκ ).

It is straightforward to see that (ωγ1,γ2)γ1,γ2∈Γ is a 1-cocycle for

OX(−D) ·HomOCκ (Iκ/I2
κ,OCκ)

with respect to the given étale covering. Moreover, changing the collection of lifts
(IγA′) by translating by elements in

(J ⊗κ OX(−D) ·HomRγκ(Iγκ , R
γ
κ/I

γ
κ ))γ∈Γ
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precisely changes (ωγ1,γ2)γ1,γ2∈Γ by a 1-coboundary. Therefore, the cohomology
class

ω ∈ J ⊗κ H1(Cκ,OX(−D) ·HomOCκ (Iκ/I2
κ,OCκ))

is well-defined and equals 0 if and only if there is a lifting IA′ as in the proposition.
And in this case, the set of liftings is a torsor for the set of compatible families
(tγ)γ∈Γ of elements tγ in

J ⊗κ OX(−D) ·HomRγκ(Iγκ , R
γ
κ/I

γ
κ ),

i.e., it is a torsor for the set of elements t in

J ⊗κ H0(Cκ,OX(−D) ·HomOCκ (Iκ/I2
κ,OCκ)).

�

4. Pseudo R-equivalence
sec-2q

Overview. The definition of R-equivalence in the introduction is valid over any
field. But in applications to number theory and geometry, R-equivalence is most
often applied when the field is the fraction field of a Henselian DVR. (Although it
is interesting to see what can be proved over other fields.) For varieties over a DVR
there is another notion, “pseudo R-equivalence”, which follows from R-equivalence
and which captures the “continuous nature” of the known cohomological obstruc-
tions to weak approximation.

Let Ô be a DVR. In later sections Ô will equal the complete local ring of a smooth,
closed point of a curve, i.e., k [[u]] for an algebraically closed field k. Let Y be
a flat, quasi-projective Ô-scheme whose generic fiber is smooth. Let ŝ and t̂ be
Ô-points of Y and consider the corresponding Frac(Ô)-points of the generic fiber.
Since Y is separated, t̂ specializes to ŝ only if t̂ equals ŝ. However, if ŝ and t̂ are
R-equivalent then ŝ is the specialization of a family of sections of Y which agree
with t̂ to arbitrary order. We say that t̂ “pseudo specializes” to ŝ. The same
holds with ŝ and t̂ permuted. Thus we say that ŝ and t̂ are “pseudo R-equivalent”.
Pseudo specialization is invariant under modification of the closed fiber of Y. If Ô
is Henselian and if t̂ pseudo specializes to ŝ, then both t̂ and ŝ determine the same
“Brauer pairing”,

Br(YFrac( bO))→ Br(Frac(Ô)).

Finally, pseudo R-equivalence satisfies the fibration property from the introduc-
tion which is not currently known for (usual) R-equivalence. For all these reasons
we develop these “pseudo” notions in this section. Some of the arguments are
technical. The reader who wants to skip this section may safely replace “pseudo
R-equivalence” by “R-equivalence” wherever it occurs in the later sections.

Definitions. As above, let Ô be a DVR, and denote by u a generator of the
maximal ideal. Let Y be a flat, quasi-projective Ô-scheme whose generic fiber is
smooth. The bidisk D bO is the power series ring,

D bO := Spec (Ô [[v]]).

The punctured bidisk is the scheme

D∗bO := D bO \ {〈u, v〉} = Spec (Ô [[v]]) \ {〈u, v〉}.
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The v-divisor ∆v is the closed subscheme of D bO with defining ideal 〈v〉,

∆v := Spec (Ô [[v]] /〈v〉).

Similarly, define ∆∗v to be the intersection of ∆v with D∗bO. Also for every integer
N the uN -divisor ∆uN is the closed subscheme of D bO with defining ideal 〈uN 〉,

∆uN = Spec (Ô [[v]] /〈uN 〉).

Similarly, define ∆∗uN to be the intersection of ∆uN with D∗bO.

Observe that ∆v equals Spec Ô and ∆∗v equals Spec Frac(Ô) as Ô-schemes. Also
∆uN equals Spec (Ô/uN ) [[v]] and ∆∗uN equals Spec (Ô/uN ) ((v)) as Ô-schemes. In
particular, the restriction of ŝ to Frac(Ô) gives an Ô-morphism from ∆∗v to Y. And
the restriction of t̂ to Ô/uN gives an Ô-morphism from ∆∗uN to Y (which happens
to be constant in v).

defn-psiR
Definition 4.1. Let ŝ be a Ô-point of Y and let t̂N be a Ô/uN -point of Y. An
N -jet specialization of t̂N to ŝ is an Ô-morphism

r : D∗bO → Y
such that r|∆∗v equals the restriction of ŝ to Spec Frac(Ô) and r|∆∗

uN
equals the

base change of t̂N . When tN equals the restriction of t̂ to Ô/uN , we say that t̂
N -jet specializes to ŝ.

The Ô-point t̂ directly pseudo specializes to ŝ if for every nonnegative integer N ,
t̂ N -jet specializes to ŝ. The Ô-point t̂ pseudo specializes to ŝ if there exists a
sequence of Ô-points t̂ = t̂0, . . . , t̂n = ŝ such that for every i = 1, . . . , n, t̂i−1

directly pseudo specializes to t̂i. Elements ŝ and t̂ are pseudo R-equivalent, resp.
directly pseudo R-equivalent, if each element pseudo specializes to the other, resp.
directly pseudo specializes to the other. If every pair of Ô-points of Y are pseudo
R-equivalent, then Y is pseudo R-connected.

Basic results. Although it is defined in terms of Ô-schemes, in fact pseudo R-
specialization depends only on the generic fiber, i.e., the fiber over Frac(Ô).

lem-model
Lemma 4.2. Let f : Y ′ → Y be a morphism of flat, quasi-projective O-schemes.
Let ŝ′ and t̂′ be Ô-points of Y ′ mapping to ŝ and t̂.

(i) Every N -jet specialization of t̂′ to ŝ′ in Y ′ maps to an N -jet specialization
of t̂ to ŝ in Y. Thus if t̂′ directly pseudo specializes to ŝ′ in Y ′, then t̂
directly pseudo specializes to ŝ in Y.

(ii) Assume that f is projective and is an isomorphism on Frac(Ô)-fibers. Then
there exists a nonnegative integer c such that for every nonnegative integer
N , every (N + c)-jet specialization of t̂ to ŝ in Y is the image of an N -jet
specialization of t̂′ to ŝ′ in Y ′. Thus if t̂ directly pseudo specializes to ŝ in
Y, then t̂′ directly pseudo specializes to ŝ′ in Y ′.

(iii) If t̂ and ŝ are directly R-equivalent, then they are directly pseudo R-equivalent.

Proof. Item (i) is obvious. Next assume the hypotheses in Item (ii). Let

r : D∗bO → Y
18



be an M -jet specialization of t̂ to ŝ. By the valuative criterion of properness there
exists a unique Ô-morphism

r′ : D∗bO → Y ′
such that f ◦ r′ equals r. Since f is an isomorphism on Frac(Ô)-fibers and since
r|∆∗v equals ŝ, also r′|∆∗v equals ŝ′. It remains to prove that there exists an integer
c such that for every nonnegative integer N , r′|∆∗

uN
equals the restriction of t̂′ if

r|∆∗
uN+c

equals the restriction of t̂.

This is easiest to see in coordinates. Let V be an open affine in Y containing t̂ and
let V ′ be an open affine in f−1(V ) containing t̂′. Let y1, . . . , yl be generators for
Γ(V ′,OV ′) as a Ô-algebra such that the ideal of t̂′ is 〈y1, . . . , yl〉. There exists an
integer c such that ucyi is in Γ(V,OV ) for every i = 1, . . . , l. And then ucyi is in
the ideal of t̂ for every i. Let τ be a Ô-point of V ′. If (f ◦ τ)∗(ucyi) is divisible by
uN+c, then τ∗(yi) is divisible by uN+c. Thus if f ◦ τ agrees with t̂ to order N + c,
then τ agrees with t̂′ to order N . Applying this to the germ of r′ at ∆∗uN shows
that r′|∆∗

uN
equals the restriction of t̂′ if r|∆∗

uN+c
equals the restriction of t̂.

For (iii), first consider the special case when Y equals P1bO, i.e., Proj Ô[Y0, Y1]. Also
assume that ŝ, resp. t̂, equals [1, 0], resp. [0, 1]. For every nonnegative integer N ,
consider the morphism

r : D∗bO → P1bO, r∗[Y0, Y1] = [v, uN ].

This is clearly an N -jet specialization of t̂ to ŝ. Thus t̂ directly pseudo specializes
to ŝ. By symmetry, t̂ and ŝ are directly pseudo R-equivalent.

Next consider the case when Y is an Ô-curve P whose generic fiber PFrac( bO) is
isomorphic to P1

Frac( bO)
. Any two distinct rational points of P1

Frac( bO)
are projectively

equivalent to [1, 0] and [0, 1]. So by the previous paragraph and by (ii), any two
Ô-points of P are directly pseudo R-equivalent.

Finally consider the case of general Y. Let ŝ and t̂ be Ô-points which are directly
R-equivalent, i.e., which are the images under a Ô-morphism

f : P → Y

of Ô-points of P , where P is a Ô-curve as in the previous paragraph. By the
previous paragraph, every pair of Ô-points of P are directly pseudo R-equivalent.
Thus, by (i), ŝ and t̂ are directly pseudo R-equivalent in Y. �

To prove the relation between pseudo specialization and Brauer equivalence, it is
useful to prove a lemma about extending Brauer classes. We believe this is well-
known; we include the proof to illustrate the technique.

lem-unramified
Lemma 4.3. Let t̂ be an Ô-point of Y. Let α be a Brauer class on the generic
fiber YFrac( bO) such that the pullback t̂∗α on Frac(Ô) extends to all of Ô. Then there

exists a projective, birational morphism f : Y ′ → Y, an Ô-point t̂′ of Y ′, and an
open subscheme U of Y ′ containing the generic fiber and containing Image(t̂′), such
that α extends to all of U .
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Proof. There is a first reduction. Denote by p : Y → Spec Ô the “structure mor-
phism”. Consider β = α−p∗t̂∗α. Since p∗t̂∗α is defined on all of Y, for a morphism
f and open set U as above, f∗α extends to all of U if and only if f∗β extends to
all of U . So, up to replacing α by β, we may assume that t̂∗α equals 0.

Since YFrac( bO) is smooth and quasi-projective, there exists an integer n and a
Brauer-Severi variety

π : P → YFrac( bO)

with geometric fibers Pn−1 such that the associated Brauer class is α. Since t̂∗α
equals 0, t̂∗P is isomorphic to Pn−1

Frac( bO)
.

Denote by ωπ the relative dualizing sheaf. The associated sheaf ω∨π is π-relatively
very ample and π∗(ω∨π ) is locally free of rank

(
2n
n

)
. Since Brauer classes on a regular

scheme satisfy glueing for Zariski open covers, it suffices to prove the existence of
f and U after replacing Y by any open affine neighborhood of t̂. So without loss of
generality assume that Y is an affine neighborhood on which π∗(ω∨π ) is trivialized.
More precisely, choose a free basis s1, . . . , sM for H0(Pn−1

Z , ω∨Pn−1
Z

) and then choose
a trivialization

φ : O⊕MYFrac( bO)
→ π∗(ω∨π )

whose pullback by t̂ has components (s1, . . . , sM ). Since ω∨π is π-relatively very
ample, this trivialization induces a closed immersion of Y-schemes,

ι : P ↪→ PM−1
YFrac( bO)

.

Denote by h(d) the numerical polynomial

h(d) :=
(
n(d+ 1)

n

)
.

The closed immersion ι determines a Ô-morphism to the Hilbert scheme

ι̃ : YFrac( bO) → Hilbh(d)

PM−1
Y /Y

.

As Hilbh(d)

PM−1
Y /Y

is projective over Y, there exists a projective, birational morphism

f : Y ′ → Y

such that the pullback of P over Y ′ extends to a Y ′-flat closed subscheme

P ′ ↪→ PM−1
Y′ .

There exists an open subscheme U of Y ′ such that for every Y ′-scheme T , the
pullback of P ′ to T is smooth over T if and only if T factors through U ; for the
projection π′ : P ′ → Y ′, U is the complement of the image under π′ of the singular
locus of π′. By construction, ι̃ ◦ t̂|Frac( bO) is the constant morphism corresponding
to the anticanonical embedding of Pn−1 in PM−1 by the basis [s1, . . . , sM ]. Thus
the restriction of P ′ to the strict transform t̂′ of t̂ in Y ′ equals the constant family
[s1, . . . , sM ](Pn−1) over the dense open subscheme Spec Frac(Ô) of Spec Ô. By
separatedness of the Hilbert scheme, the restriction of P ′ over all of t̂′(Spec Ô)
equals the constant family. In particular, t̂′(Spec Ô) is contained in U .
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The restriction of P ′ over U is a Brauer-Severi scheme whose associated Brauer
class extends α. �

As promised, pseudo specialization implies Brauer equivalence.
prop-Brauereq

Proposition 4.4. Assume that Ô is Henselian. If t̂ pseudo specializes to ŝ, then
the pullback maps,

t̂∗, ŝ∗ : Br(YFrac( bO))→ Br(Frac(Ô))

are equal.

Proof. Of course it suffices to verify this when t̂ directly pseudo specializes to ŝ.
The goal is to prove that the difference t̂∗− ŝ∗ equals the zero map, i.e., the kernel is
the entire Brauer group. Of course the kernel contains the pullback p∗Br(Frac(Ô))
since t̂∗p∗ = (p ◦ t̂)∗ = Id∗ and likewise for ŝ∗p∗. And the sum of p∗Br(Frac(Ô))
and Ker(t̂∗) is the entire Brauer group. Thus it suffices to prove that the kernel of
t̂∗ is contained in the kernel of ŝ∗.

To this end, let α be a Brauer class on YFrac( bO) such that t̂∗α equals 0. By
Lemma 4.3, there exists a projective, birational morphism f : Y ′ → Y and an
open subscheme U of Y ′ containing both the generic fiber and the strict trans-
form t̂′ of t̂ such that α extends to U . Denote by ŝ′ the strict transform of ŝ. By
Lemma 4.2(ii), t̂′ directly pseudo specializes to ŝ′. In particular, there exists a 1-jet
specialization

r : D∗bO → Y ′
of t̂′ to ŝ′. Since U contains both the generic fiber and the image of t̂′, U also
contains the image of r. Consider r∗α. By purity for Brauer classes, cf. [Gro68,
Théorème 6.1(b), Corollaire 6.2], r∗α extends to a Brauer class γ defined on all of
D bO.

Consider first the restriction of γ to ∆u1 = Spec (Ô/u) [[v]]. Since (Ô/u) [[v]] is
Henselian, every Brauer class γ on (Ô/u) [[v]] is the pullback of a Brauer class γ0

on Ô/u. But since r|∆∗
u1

equals the restriction of t̂′, and since α is trivial on t̂′, the

restriction of γ to (Ô/u) ((v)) equals 0. Therefore γ0 equals 0.

Consider next the restriction of γ to ∆v = Spec (Ô). The further restriction to the
closed point is γ0, which equals 0 by the previous paragraph. Since Ô is Henselian,
a Brauer class on Ô which is trivial on the closed point is trivial on all of Ô. Thus
the restriction of γ to ∆v equals 0. In other words, ŝ∗(α) equals 0. Therefore the
kernel of t̂∗ is contained in the kernel of ŝ∗. �

Relation to weak approximation. Let k be an algebraically closed field. Let
π : X → B be a flat, proper k-morphism from an algebraic space X to a smooth,
projective k-curve B. Let b be a k-point of B. Denote by Ô the completion of
the stalk of OB at b. And denote by X bO the base change of X to Ô. A Ô-point
ŝ of X bO is approximable if for every integer N there exists a section sN of π such
that sN ∼= ŝ modulo mN . If each sN intersects the very free locus of π, then ŝ is
approximable by sections intersecting the very free locus.
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thm-second
Theorem 4.5. Assume that X bO is regular. Let ŝ and t̂ be Ô-points of X bO. If t̂
pseudo specializes to ŝ, and if ŝ is approximable by sections intersecting the very
free locus, then also t̂ is approximable by sections intersecting the very free locus.

Of course one can deduce an analogue using a larger number of closed points by the
Weil restriction technique of de Jong, cf. [GHS03]. Sections of π are parameterized
by an algebraic space which is locally of finite type over k. But Ô-points of X bO are
not parameterized by an object which is locally of finite type over k. An important
step in the proof of Theorem 4.5, and hence Theorem 1.3, is the introduction of a
new parameter space which is locally of finite type over k and which serves a similar
role to the set of Ô-points of X bO. This is done in the next two sections.

[CONTINUE HERE: From this point on remains to be written / revised.]
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Exposés sur la Cohomologie des Schémas, pages 88–188. North-Holland, Amsterdam,
1968.

[HT] Brendan Hassett and Yuri Tschinkel. Weak approximation for hypersurfaces of low

degree. to appear in the Proceedings of the AMS Summer Institute in Algebraic
Geometry (Seattle, 2005).

[HT06] Brendan Hassett and Yuri Tschinkel. Weak approximation over function fields. Invent.

Math., 163(1):171–190, 2006.
[Lie06] Max Lieblich. Remarks on the stack of coherent algebras. Int. Math. Res. Not., pages

Art. ID 75273, 12, 2006.

22



[LMB00] Gérard Laumon and Laurent Moret-Bailly. Champs algébriques, volume 39 of Ergeb-
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